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ABSTRACT

Title of Thesis: Clustering with Propagated Constraints

Eric Robert Eaton, Master of Science, 2005

Thesis directed by: Dr. Marie desJardins, Assistant Professor
Department of Computer Science and
Electrical Engineering

Background knowledge in the form of constraints can dramatically improve the qual-

ity of generated clustering models. In constrained clustering, these constraints typically

specify the relative cluster membership of pairs of points.They are tedious to specify and

expensive from a user perspective, yet are very useful in large quantities. Existing con-

strained clustering methods perform well when given large quantities of constraints, but do

not focus on performing well when given very small quantities.

This thesis focuses on providing a high-quality clusteringwith small quantities of

constraints. It proposes a method for propagating pairwiseconstraints to nearby instances

using a Gaussian function. This method takes a few easily specified constraints, and prop-

agates them to nearby pairs of points to constrain the local neighborhood. Clustering with

these propagated constraints can yield superior performance with fewer constraints than

clustering with only the original user-specified constraints. The experiments compare the

performance of clustering with propagated constraints to that of established constrained

clustering algorithms on several real-world data sets.
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Chapter 1

INTRODUCTION

Consider the following scenario. You need to create a clustering model that will group

newspaper articles based on their contents. Constrained clustering methods have been

shown to outperform standard unsupervised clustering methods for this problem (Basu,

Bilenko, & Mooney 2004). These methods require a set of unlabeled articles and pairs of

these articles (called constraints) that should be groupedtogether (or grouped apart). In

order to specify these pairs, you need to read the articles. Existing constrained clustering

methods require many pairs in order to perform well, up to several hundred to obtain high

performance. Would you want to read that many articles?

By propagating the constraints provided by the user to similar articles, the proposed

method infers further (possibly inaccurate) constraints between pairs of articles. This al-

lows the user to specify significantly fewer constraints in order to reach the same level of

performance.

1.1 Constrained Clustering

Recent work on constrained clustering (Wagstaff 2002; Bilenko, Basu, & Mooney

2004; Xinget al. 2003; Bar-Hillelet al. 2005) has resulted in methods to cluster unlabeled

data using background knowledge provided in the form of relative membership labels for
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some of the data points. These algorithms perform significantly better than standard unsu-

pervised clustering in a variety of domains.

These methods typically take labeled background information in the form ofpairwise

constraintsor equivalence sets. Both pairwise constraints and equivalence sets are sim-

ple, natural, and useful forms of background knowledge. Pairwise constraints specify the

relative clustering for a pair of points. Research has focused on two types of pairwise con-

straints:must-linkconstraints that specify pairs of data points which belong in the same

cluster, andcannot-linkconstraints that specify pairs which belong in different clusters.

Equivalence sets specifysetsof points that belong in the same cluster. Since it is possible

to translate between pairwise constraints and equivalencesets, this thesis focuses on using

pairwise constraints.

1.2 Problem Definition and Motivation

The constraints for constrained clustering must be provided by a domain expert. Pro-

viding such a relative labeling is expensive, compared to data collection. In order to gen-

erate a high-performance clustering, these algorithms often require many pairwise con-

straints. Most users want to specify as few constraints as possible, so this thesis focuses on

providing a high-quality clustering when given few constraints.

Law et al. (2004) note that it is important to propagate the effect of constraints to the

nearby neighborhood. Several methods do this by warping a distance metric based on the

constraints (Xinget al. 2003; Bar-Hillelet al. 2005; Basu 2005), which implicitly con-

strains nearby points. This thesis takes this idea one step further byexplicitly propagating

the constraints to the nearby neighborhood.

Constraint propagation assumes that the specified constraints are representative of

their neighborhood. The approach introduced in this thesis, Gaussian Propagated K-Means
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(GPK-Means), infers additional constraints in the local neighborhood of the given con-

straint, with the weight of the propagated constraints decreasing by a Gaussian function as

the endpoints move farther from the source constraint. By inferring additional constraints

from the source constraints, GPK-Means can generate a higher-quality clustering than other

algorithms when given few constraints.

This thesis explores a method for propagating constraints to nearby points using a

Gaussian function. The hypothesis of this thesis is that clustering using the propagated

constraints will outperform clustering using the originalconstraints.

1.3 Contribution

This thesis proposes a method for propagating user-specified constraints to nearby

instances using a Gaussian function, and provides an algorithm, GPK-Means, that uses

these propagated constraints in clustering. GPK-Means canbe used with any clustering

algorithm that supports weighted constraints.

The experiments in this thesis compare the performance of clustering with propa-

gated constraints to several constrained clustering methods (Bilenko, Basu, & Mooney

2004). These experimental results support the hypothesis that clustering with the propa-

gated constraints can result in improved clustering performance than using only the source

constraints.



Chapter 2

BACKGROUND

2.1 Notation

This section introduces notation that will be used throughout the thesis. This notation

is based on that of Bilenko, Basu, and Mooney (2004).

X = {xi}
N
i=1, xi ∈ R

n, is the set of all data instances.µxi
, Σxi

, and matrixAxi

represent the centroid, covariance matrix, and metric matrix, respectively, of the cluster

to which instancexi belongs. Similarly,µh, Σh, and matrixAh represent the centroid,

covariance matrix, and metric matrix, respectively, for clusterh ∈ {1, . . . , K}. The radius

radiush of clusterh is the Mahalanobis distance from the centroidµh to the farthest point

assigned to the cluster.

M andC are the sets of must-link and cannot-link constraints, respectively.Mh ⊆ M

andCh ⊆ C refer to the respective sets of must- and cannot-link constraints that involve

points currently assigned to the clusterh. The notation〈xi, xj, w〉 ∈ M means thatxi and

xj are required to be in the same cluster, with a penalty costw for violating the constraint.

Similarly, 〈xi, xj, w〉 ∈ C implies thatxi andxj must be in different clusters, with a penalty

costw.

The function1[expr ] returns 1 whenexpr evaluates to true, and 0 when it evaluates

to false. The pair(x′
h, x

′′
h) are defined as the points with the greatest separation using the

4
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Ah metric. The Mahalanobis distance betweenxi andµxi
using the metricAxi

is notated

as||xi − µxi
||Axi

, where

(2.1) ||xi − µxi
||Axi

=
√

(xi − µxi
)T Axi

(xi − µxi
) .

For convenience, Table 2.1 summarizes the notation used in this thesis.

2.2 Semi-Supervised Clustering

Clustering is the unsupervised grouping of similar instances. Each cluster is defined

by its center, or centroid,µ. Clustering methods can be grouped intopartitioningclustering

algorithms, which construct flat clusters of the data, andhierarchicalclustering algorithms,

which generate a hierarchical grouping of the data instances.

While traditional clustering algorithms are unsupervised,semi-supervised clustering

generates a model for a set of unlabeled data, aided byside-informationfor some of the

data. Semi-supervised clustering algorithms use the side-information to reduce the search

through the space of possible clusterings, which increasesthe accuracy of the final cluster-

ing relative to the side-information.

The side-information includes specific or relative clusterlabels for some data items.

Specific cluster labels are equivalent to class labels. Relative cluster labels define an equiv-

alence relation between data items, where all items within an equivalence class belong

in the same cluster. These equivalence relations typicallytake the form of constraints

between pairs of data items, specifying whether the pair belongs in the same cluster (a

must-linkconstraint) or in different clusters (acannot-linkconstraint). Pairwise constraints

and equivalence sets are discussed further in Section 2.4. With relative cluster labels, the

domain expert providing the constraints does not need to know the number of clusters.

Semi-supervised clustering using equivalence relations is known asconstrained clustering.
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2.3 K-Means Clustering

The work presented in this thesis is based on theK-Meanspartitional clustering algo-

rithm (MacQueen 1967), which groups the data intoK clusters, creating aK-partitioning

of the data set. K-Means begins by pickingK initial seed centroids, and then iteratively

refines the clustering by repeatedly assigning each instance to the nearest centroid, then re-

computing each centroid as the mean of the instances assigned to that cluster. The K-Means

algorithm is given in Figure 2.1.

Algorithm: K-Means

Inputs:

• the data setX , and

• the number of clustersK.

Output:

• a disjointK-partitioning{Xh}
K
h=1 of X .

Method:

1. ChooseK initial cluster centroids{µ1, µ2, . . . , µK}.

2. Repeat until no change in{µ1, µ2, . . . , µK}:

(a) Assign each instancexi to the cluster of the nearest centroid.
For each clusterh, letXh be the set of instances assigned to that
cluster.

(b) Recompute eachµh as the mean of the instances assigned to that
clusterXh.

3. Return the clusters{Xh}
K
h=1.

FIG. 2.1. The K-Means clustering algorithm.
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Traditionally, the initial seed centroids are chosen randomly from the data set, but

recent work has focused on developing better selection methods. The final clusters deter-

mined by K-Means are sensitive to the initial seed centroids. The labeled data provided to

semi-supervised clustering can be used to seed these centroids, resulting in better clusters

than by using random centroids (Basu, Banerjee, & Mooney 2002).

A K-Means model is equivalent to a Gaussian mixture model under the assumptions

that the prior probability of each cluster (i.e., each Gaussian) is equal and that each Gaus-

sian has an identity covariance (Kearns, Mansour, & Ng 1997;Hastie, Tibshirani, & Fried-

man 2001). K-Means can be viewed as trying to minimize the total mean squared error

of each point to its assigned cluster by minimizing the objective function (Duda, Hart, &

Stork 2001):

(2.2) JKmeans =
K
∑

h=1

∑

xi∈Xh

||xi − µh||
2 .

Equivalently, using the notation conventions described earlier,

(2.3) JKmeans =
∑

xi∈X

||xi − µxi
||2 .

The computational complexity of the standard K-Means algorithm is O(NKnT ),

whereN is the size of the data set,n is the number of dimensions, andT is the number of it-

erations to convergence (Duda, Hart, & Stork 2001). Elkan (2003) provides an accelerated

K-Means algorithm that uses the triangle inequality to avoid unnecessary computations.

The accelerated K-Means algorithm has an empirical complexity closer toO(N).
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2.4 Equivalence Relations in Constrained Clustering

As mentioned previously, constrained clustering algorithms typically take side-

information in the form ofpairwise constraintsor equivalence sets. Both constraints and

equivalence sets form an equivalence relation over points in the data set.

Recall thatmust-linkconstraint〈xi, xj, w〉 specifies that pointsxi andxj belong in the

same cluster. This constraint can be violated with a penaltycostw. Similarly, acannot-

link constraint〈xi, xj, w〉 specifies that pointsxi andxj belong in different clusters, with a

penalty costw for placing them in the same cluster. The set of all must-linkconstraints is

notated asM, and the set of all cannot-link constraints is notated asC.

Equivalence sets specifysetsof points that belong in the same cluster. Each cluster

may have more than one equivalence set; points in different equivalence sets may still

belong in the same cluster. Bar-Hillel et al. (2005) generateequivalence sets by taking

the transitive closure of a set of must-link constraints. Each connected component then

becomes an equivalence set.

It is simple to extract pairwise constraints from equivalence sets, and simple to gen-

erate equivalence sets from a set of must-link constraints.Constructing an equivalence

set using cannot-link constraints is more difficult, because cannot-link constraints are not

transitive. Bar-Hillel et al. (2005) argue against the use ofcannot-link constraints, because

must-link constraints are more informative, and because the use of cannot-link constraints

imposes an increased computational cost. Their method, Relevant Component Analysis

(RCA), uses equivalence sets generated from must-link constraints only.
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2.5 Approaches to Constrained Clustering

2.5.1 Hard Constrained Clustering

Wagstaff (2002) proposed the COP-Kmeans algorithm, which enforces the pairwise

constraints during K-Means clustering. At initialization, K random instances are chosen

as the starting centroids, such that no constraints are violated. COP-Kmeans follows the

K-Means algorithm described in Figure 2.1 with one modification: COP-Kmeans assigns

points to the nearest clustersuch that no constraint is violated. The algorithm aborts if such

an assignment is not possible. COP-Kmeans uses both must-link and cannot-link pairwise

constraints.

COP-Kmeans is ahard constrained clustering algorithm, since it does not allow any

constraint violations. In constrast,soft constrained clustering algorithms allow constraint

violations, typically with some penalty. Wagstaff (2002) has also developed a soft con-

strained clustering version of COP-Kmeans, called SCOP-Kmeans.

2.5.2 Soft Constrained Clustering

Bilenko, Basu, and Mooney (2004) have developed the MPCK-Meansalgorithm for

soft pairwise constrained clustering with metric learning. MPCK-Means uses weighted

must-link and cannot-link constraints; a constraint can beviolated with a penalty equal to

its weight. Bilenko et al.’s algorithm locally minimizes an objective function that incor-

porates constraint violations with the K-Means objective function (Equation 2.3). During

the clustering process, MPCK-Means learns a distance metric. It can learn either a single

distance metric for all clusters, or one metric for each cluster. Details on the MPCK-Means

algorithm are given later in Section 2.6; MPCK-Means forms the basis for the implemen-

tation of the method proposed in this thesis.

Basu et al. (2005; 2004) have also developed a probabilistic framework for semi-
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supervised clustering that is closely related to MPCK-Means. This model formalizes the

combination of constraint-based and distance-based clustering used in MPCK-Means, us-

ing ideas from Hidden Markov Random Fields.

Shental et al. (2004) propose a constrained Expectation-Maximization (EM) proce-

dure that fits a Gaussian mixture model to a data set. They provide an EM algorithm

for using only must-link constraints, and a generalized EM algorithm for use with both

must-link and cannot-link constraints. Lange et al. (2005)provide an alternative method

of incorporating soft constraints into fitting a mixture model using maximum likelihood.

Their method models both must-link and cannot-link constraints using maximum entropy,

while bounding the number of violated constraints. Lu and Leen (2005) propose an alterna-

tive method of fitting a Gaussian mixture model using EM. Lange et al. and Lu et al. have

similar approaches that incorporate the constraint information into the prior probabilities

of the data to each mixture component.

2.5.3 Distance Metric Learning

Xing et al. (2003) use gradient ascent combined with iterative projections to learn a

Mahalanobis metric. Their method learns a metricA that minimizes the total mean squared

error for must-linked points, such that other “dissimilar”points are not collapsed into a

single location. It explicitly uses must-link constraints, and uses cannot-link constraints

only to identify “dissimilar” points. In the absence of cannot-link constraints, their method

assumes that all pairs of points that are not must-linked canbe considered “dissimilar.”

This assumption is incorrect in most situations, since points which are not must-linked

might still belong in the same cluster.

Bar-Hillel et al. (2005) use Relevant Component Analysis (RCA) (Shentalet al. 2002)

with must-link equivalence sets to learn a Mahalanobis metric. Bar-Hillel et al. argue

against using cannot-link constraints, based on an argument that a cannot-link constraint
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provides less information than a must-link constraint, anddue to the increased computa-

tional cost of using cannot-link constraints. Their algorithm uses only must-link constraints

given asequivalence setsof points that belong in the same cluster. RCA’s computation is

similar to the optimization problem solved by Xing et al. (2003), but is more computation-

ally efficient, and prohibits the volume of the entire data set (rather than just the “dissimilar”

points) from collapsing. In this manner, the RCA method avoidsthe problematic assump-

tion made in Xing et al.’s method. Both Xing et al. and Bar-Hillel et al. first train the

distance metric based on the labeled data, and then use the distance metric to cluster the

entire data set.

The constrained complete-link algorithm presented by Klein et al. (2002) uses pair-

wise constraints to warp a similarity matrix of the data points. It forces must-linked points

to have a distance of zero and cannot-linked points to have the maximum distance of all

pairs of points. After each distance adjustment, it warps the similarity matrix by comput-

ing the shortest distance between every pair of points. Klein et al.’s method then performs

hierarchical complete-link clustering using the warped similarity matrix.

2.5.4 Other Related Work

Several methods have been developed for active learning of constraints during clus-

tering (Basu, Banerjee, & Mooney 2004; Klein, Kamvar, & Manning 2002). Cohn et

al.’s (2003) approach to semi-supervised clustering combines interaction with the user with

EM to cluster the data, repeatedly clustering and then warping the distance metric in re-

sponse to user feedback on the clustering.

In a different approach, Zhu et al. (Zhu, Ghahramani, & Lafferty 2003; Zhu, Lafferty,

& Ghahramani 2003) propose a framework for semi-supervisedlearning with binary class

labels using Gaussian random fields and Gaussian processes.
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2.6 Details on PCK-Means and MPCK-Means

The implementation used in the experiments builds on the MPCK-Means algorithm

of Bilenko, Basu, and Mooney (2004). This algorithm combines constrained K-Means

clustering with metric learning by minimizing a single objective function. MPCK-Means

uses soft pairwise constraints between instances both to seed the initial cluster centroids and

to influence the clustering via the objective function. Bilenko et al.’s (2004) PCK-Means

algorithm is effectively MPCK-Means without the metric learning component.

Bilenko et al. represent Euclidean distance with a symmetricpositive-definite metric

matrixA. A is a Mahalanobis metric, based on Equation 2.1. As a reminder, X is the set of

data instances;M andC are the sets of must-link and cannot-link constraints, respectively;

µh represents the centroid of the clusterh, whereh ∈ {1, . . . , K}; and matrixAh represents

the metric matrix for clusterh. MPCK-Means generates aK-partitioning of the data setX

that (locally) minimizes the objective function (Bilenko, Basu, & Mooney 2004):

JMPCKmeans =
∑

xi∈X

(

||xi − µxi
||2Axi

− log(det(Axi
))
)

+
∑

〈xi,xj ,w〉∈M

wfM(xi, xj)1[µxi
6= µxj

](2.4)

+
∑

〈xi,xj ,w〉∈C

wfC(xi, xj)1[µxi
= µxj

]

fM(xi, xj) =
1

2
||xi − xj||

2
Axi

+
1

2
||xi − xj||

2
Axj

(2.5)

fC(xi, xj) = ||x′
xi
− x′′

xi
||2Axi

− ||xi − xj||
2
Axi

.(2.6)

This equation is the same as used by Bilenko et al. with one minor modification: the sets

W andW described in their paper (Bilenko, Basu, & Mooney 2004) have been eliminated

by incorporating the weights into the individual constraints.

The first term ofJMPCKmeans is an attempt to maximize the log-likelihood of the K-
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Means clustering (see Equation 2.3). The second and third terms incorporate the costs of

violating the constraints inM andC.

The MPCK-Means algorithm uses Expectation-Maximization (EM) to generate the

clustering ofX that locally minimizesJMPCKmeans. The E-step consists of assigning each

point to the cluster that minimizesJMPCKmeans from the perspective of that data point,

given the previous assignments of points to clusters. The M-step consists of two parts:

re-estimating the cluster centroids given the E-step cluster assignments, and updating the

metric matrices{Ah}
K
h=1 to decreaseJMPCKmeans. Each metricAh is updated according

to the following equation:

Ah = |Xh|

(

∑

xi∈Xh

(xi − µh) (xi − µh)
T

+
∑

〈xi,xj ,w〉∈Mh

wf
′

M(xi, xj)1
[

µxi
6= µxj

]

(2.7)

+
∑

〈xi,xj ,w〉∈Ch

wf
′

C(xi, xj)1[µxi
= µxj

]





−1

f
′

M(xi, xj) =
1

2
(xi − xj) (xi − xj)

T(2.8)

f
′

C(xi, xj) =

(

(

x
′

h − x
′′

h

)(

x
′

h − x
′′

h

)T

− (xi − xj) (xi − xj)
T
)

.(2.9)

The original paper by Bilenko et al. (2004) includes further details on the MPCK-

Means algorithm and the initialization steps for cluster seeding.
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2.7 Details on Relevant Component Analysis

Relevant Component Analysis (RCA) (Shentalet al. 2002) uses equivalence sets

to “identify and down-scale global unwanted variability within the data (Bar-Hillelet al.

2005).” It generates a Mahalanobis metric for the data set from the equivalence sets. RCA

uses the equivalence sets to identify and emphasize important dimensions by assigning

them large weights in the metric. RCA computes the metricA as follows (Bar-Hillelet al.

2005):

(2.10) A =
1

N

|E|
∑

j=1

|Ej |
∑

i=1

(xji − mj)(xji − mj)
T ,

whereE is the set of equivalence sets. Thejth equivalence setEj contains a set of points

Ej = {xji}
|Ej |
i=1 that belong in the same cluster.mj denotes the mean ofEj.

This metricA can then be used directly as the Mahalanobis metric for all clusters. The

full RCA algorithm (Shentalet al. 2002) includes optional dimensionality reduction of the

data set. Bar-Hillel et al. (2005) provide details on applying RCA to constrained clustering.

2.8 Clustering Evaluation

Measuring the performance of constrained clustering requires a measure of agreement

between the desired clustering (as viewed by the domain expert providing the constraints)

and the generated clustering. Following the methodology ofother researchers, this thesis

uses two objective measures to evaluate the clustering: thepairwise F-Measure (Equa-

tion 2.13) and the adjusted Rand index (Equation 2.15).
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2.8.1 Pairwise F-Measure

The pairwise F-Measure (Equation 2.13) (Basu 2005) is the typical information-

theoretic F-Measure, adapted to measure the number of same-cluster pairs. The F-Measure

is the harmonic mean of precision (Equation 2.11) and recall(Equation 2.12). The pair-

wise F-measure has been used by other researchers to evaluate constrained clustering (Basu

2005).

precision =
NumPairsCorrectlyPredictedInSameCluster

NumTotalPairsPredictedInSameCluster
(2.11)

recall =
NumPairsCorrectlyPredictedInSameCluster

NumTotalPairsInSameCluster
(2.12)

F-Measure=
2 · precision · recall

precision + recall
(2.13)

2.8.2 Adjusted Rand Index

The adjusted Rand index (Hubert & Arabie 1985) measures the agreement between

the partitions imposed by the class labels and the partitions generated by the clustering. It

is related to the Rand index (Rand 1971), which has previously been used in the evaluation

of constrained clustering (Bar-Hillelet al. 2005; Xinget al. 2003; Wagstaffet al. 2001).

The general form of the adjusted Rand index is:

(2.14) ARI =
Index − ExpectedIndex

MaximumIndex − ExpectedIndex
.

The form of the adjusted Rand index used in the evaluation is based on the confusion matrix

for the clustering, wherecij is the number of data points from theith class placed in thejth
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cluster, andN is the total number of clustered data points (Yeung & Ruzzo 2001):

ari =

∑

i,j

(

cij

2

)

−
[

∑

i

(

ci.

2

)
∑

j

(

c.j

2

)

]

/
(

N

2

)

1
2

[

∑

i

(

ci.

2

)

+
∑

j

(

c.j

2

)

]

−
[

∑

i

(

ci.

2

)
∑

j

(

c.j

2

)

]

/
(

N

2

)

.(2.15)
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N The number of data instances.
n The number of dimensions of each data instance.
K The number of clusters.

xi A data instance,xi ∈ R
n.

X The set of data instancesX = {xi}
N
i=1, xi ∈ R

n.
Xh The set of data instances assigned to clusterh, whereh ∈ {1, . . . , K}.

µh The centroid of the clusterh.
Ah The metric matrix for clusterh.
Σh The covariance matrix for clusterh.

(x′
h, x

′′
h) The points with the greatest separation using theAh metric.

radiush The Mahalanobis distance fromµh to the farthest point assigned to clus-
terh.

µxi
The centroid of the cluster to whichxi belongs.

Axi
The metric matrix of the cluster to whichxi belongs.

Σxi
The covariance matrix for the cluster to whichxi belongs.

(x′
xi

, x′′
xi

) The points with the greatest separation using theAxi
metric.

M The set of must-link constraints.
C The set of cannot-link constraints.

Mh The set of must-link constraints involving points assignedto clusterh.
Ch The set of cannot-link constraints involving points assigned to clusterh.

〈xi, xj, w〉 A constraint between the instancesxi andxj with penalty costw.

[0] Then × n zero matrix.
||xi − µxi

||Axi
The Mahalanobis distance (Equation 2.1) betweenxi andµxi

.
1[expr ] Returns 1 ifexpr evaluates to true, 0 otherwise.

Table 2.1. Summary of notation.



Chapter 3

CLUSTERING WITH PROPAGATED CONSTRAINTS

3.1 Method Overview

The novel method presented in this thesis, called Gaussian Propagated K-Means

(GPK-Means), requires an unlabeled data set, and sets of pairwise must-link and cannot-

link constraints over that data set. Using a Gaussian function and the current cluster es-

timates, the algorithm infers new constraints in the neighborhoods of the original source

constraints, then uses these constraints in clustering to generate new estimates for the clus-

ters. GPK-Means can wrap around any partitional constrained clustering algorithm that

uses weighted constraints; this thesis uses MPCK-Means as the base clustering algorithm.

3.2 The Gaussian Function for Propagating Constraints

For a given constraint〈xA, xB〉, the constraint can potentially be propagated to two

other related points,xi andxj. The weight of this new constraint should fall off smoothly,

as the constraint〈xi, xj〉 moves farther away from〈xA, xB〉. GPK-Means uses a Gaussian

centered at the given constraint〈xA, xB〉 to determine the weight of〈xi, xj〉, because a

Gaussian function will emphasize propagated constraints that are closest to the source con-

straint and will fall off smoothly. Gaussian functions havebeen used similarly for weighting

in other successful applications (Lowe 2004).

18
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The standardd-dimensional Gaussian density function is:

(3.1) N(v, u, σ) = exp

[

−
1

2
(v − u)T σ−1(v − u)

]

,

whereu is thed-dimensional mean andσ is thed × d covariance matrix.

The weight of the propagated constraint should decrease as the pair 〈xi, xj〉 moves

farther from 〈xA, xB〉. Since each data point isn-dimensional, constraint propagation

centers the Gaussian at a point in2n-dimensional space, accounting for thepair of

points. Using a Gaussian allows the weight to fall off smoothly from 1 at the source con-

straint. Under this construction,v =





xi

xj



, andu =





xA

xB



. The weight function

W (xi, xj, xA, xB, ΣxA
, ΣxB

) is given as:

W (xi, xj, xA, xB, ΣxA
, ΣxB

) = N









xi

xj



 ,





xA

xB



 , ΣxAxB



 ,(3.2)

where

ΣxAxB
=





ΣxA
[0]

[0] ΣxB



 ,(3.3)

ΣxA
is the covariance matrix of the cluster containingxA, ΣxB

is the covariance matrix of

the cluster containingxB, and[0] denotes then× n zero matrix. In Equation 3.2, the order

of the pairs〈xi, xj〉 and〈xA, xB〉 is important. To circumvent this problem in applying it

to clustering,W () must be called withxi ≺ xj andxA ≺ xB, where≺ is a total ordering

on all the points.

Note that this construction of the covariance matrixΣxAxB
assumes thatxi andxA are

independent ofxj andxB. Appendix A shows the construction of the covariance matrix
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ΣxAxB
given this independence assumption.

As stated by Bilenko et al. (2004), the inverted metric matrixA−1
h corresponds to

the covariance matrixΣh for the Gaussian mixture component for clusterh. Bar-Hillel et

al. (2005) note that in practice, metric learning typicallyconstructs the metric modulo a

scale factor. This scaling factor does not make a differencein clustering, since clustering

uses relative distances. However, constraint propagationmust haveabsolutedistances in

order to propagate the constraints correctly. The cluster covariance matrices cannot be

generated directly from the data, since MPCK-Means takes theviolated constraints into

account when generating the metric, and the violated constraints depend directly on the

current clustering.

Constraint propagation generates absolute distances by scaling the metricA−1
h so that

the bulk of the Gaussian fits within the cluster, then using the scaled metric as the covari-

ance matrix for the cluster. The scale is computed by determining the scale factornh that

will place approximately 99% of the first principal component of the Gaussian closer than

the outermost point currently assigned to this cluster. Since the experiments are limited

only to diagonal matrices, this scale factornh can be computed as:

(3.4) nh =
radiush

3σpc1h

,

whereσpc1h
is the standard deviation of the first principal component ofthe Gaussian,

andradiush is the distance from the centroidµh to the farthest point currently assigned to

clusterh. Note that three standard deviations is the offset from the mean that corresponds to

containing roughly 99.7% of the data values in a normal distribution. As the first principal

component is the largest dimension and the covariance matrix is already fit to the cluster,

this will scale the Gaussian such that most (approximately 99%) of the cluster is contained

within the Gaussian. The tails of the Gaussian will not have alarge effect on the clustering,
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since propagated constraints within the tails will be trivial due to their small weight.

Therefore, the covariance matrix for clusterh is:

(3.5) Σh = nhA
−1
h .

The distance that a particular constraint should be propagated varies with the con-

straint’s location within the cluster. For example, a constraint located at the center of a

cluster should ideally be propagated all the way to the cluster’s edges. However, a con-

straint located at the edge of a cluster, if it were propagated the same overall distance,

would extend into neighboring clusters. Constraint propagation uses another scaling factor

sxA
to vary the amount of propagation based on the source constraint’s location in the clus-

ter. The scaling factorsxA
for a particular constraint endpointxA is defined as the value of

a Gaussian centered at the cluster’s centroidµxA
with the cluster’s covariance matrix:

(3.6) sxA
= N(xA, µxA

, nxA
A−1

xA
) .

The final Gaussian weighting functionWeight(xi, xj, xA, xB) used in GPK-Means is

based on Equations 3.2, 3.3, and 3.6 as follows:

(3.7) Weight(xi, xj, xA, xB) = W (xi, xj, xA, xB, sxA
nxA

A−1
xA

, sxB
nxB

A−1
xB

) .

Using this equation, constraint propagation can now determine the weight for the prop-

agated constraint between every pair of data points, and usethese weighted constraints

directly in a constrained clustering algorithm.

By taking advantage of the independence assumptions and using memoization,

Weight(xi, xj, xA, xB) can be calculated efficiently over repeated computations, as shown

in Appendix B.
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3.3 Using the Propagated Constraints in Clustering

Given a data setX , a set of must-link constraintsM, a set of cannot-link constraintsC,

a set of defined clusters{Xh}
K
h=1, and the metric matrices for those clusters{Ah}

K
h=1, con-

straint propagation can now generate new sets of propagatedmust-link constraintsP (M)

and cannot-link constraintsP (C). By construction,M ⊆ P (M) andC ⊆ P (C). Con-

strained clustering algorithms can directly use the data set X and the sets of propagated

constraints,P (M) andP (C), to generate a new clustering and set of metrics.

GPK-Means first gets an initial estimate of the clusters and metrics from the base

clustering algorithm — in this case, MPCK-Means — using the data setX , and the sets of

original constraintsM andC. MPCK-Means outputs a set of defined clusters,{X 0
h}

K
h=1,

and the metric matrices for those clusters,{A0
h}

K
h=1. GPK-Means then propagates the given

constraints using the learned clusters and metrics, and runs MPCK-Means again with the

new sets of propagated constraintsP (M)0 andP (C)0 to generate the clusters{X 1
h}

K
h=1, and

the metrics{A1
h}

K
h=1. Theith run of MPCK-Means usesP (M)i−1 andP (C)i−1. After each

run of MPCK-Means, excluding the initial seed run, GPK-Meanschecks for convergence

between the final objective function values of MPCK-Means. GPK-Means runs repeatedly

in this manner until convergence. The GPK-Means algorithm is given in Figure 3.1.

Due to the complex nature of the Gaussian propagation, it is difficult to use EM (as

used in MPCK-Means) to ensure convergence. GPK-Means is not required to converge,

since there is no strict requirement that the clustering must move closer to the optimal

clustering at each step. MPCK-Means suffers from the same problem under some con-

ditions that occur in practice, and is not theoretically guaranteed to converge in these

cases (Bilenko, Basu, & Mooney 2004). In practice, however, the convergence of both

GPK-Means and MPCK-Means has not been a problem.

The constraint propagation algorithm includes an optionalstep that reduces the set of
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propagated constraints. This thesis refers to performing the optional step asreduced prop-

agationand skipping the optional step asfull propagation. Full propagation allows each

pair of points to have multiple propagated must-link constraints and multiple propagated

cannot-link constraints. Reduced propagation forces the set of propagated constraints to

include, for each pair of points, at most one must-link constraint and one cannot-link con-

straint. The propagated constraint with the maximum weightfor a given pair is selected as

the constraint in both cases.

3.4 Complexity Analysis of GPK-Means

Figure 3.3 examines the complexity of constraint propagation and Figure 3.4 provides

a breakdown of the algorithmic complexity for GPK-Means. Since GPK-Means is com-

posed of repeated runs of a constrained clustering algorithm and constraint propagation,

this section analyzes each component in turn. Only an upper bound on the computational

complexity is provided, because determining an exact lowerbound for any K-Means vari-

ant is an open question (Elkan 2003).

3.4.1 Complexity of Constraint Propagation

This section examines the computational complexity of constraint propagation. Fig-

ure 3.3 shows the computational complexity for the primary steps of thePropagate algo-

rithm given in Figure 3.2.

This analysis assumes that the time taken to compute the Gaussian functionsW () and

N() depends only on the dimensions of the data set, and thereforerepresents the complexity

of these functions asΘ(G(n)) for ann-dimensional data set.G(n) will vary depending on

the specific implementation, but will generally be a low-order polynomial.

The determination of the scale factors for each cluster in Step 1 takesΘ(|X | + Kn)
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time, whereK is the number of clusters andn is the number of dimensions of the data

set. Determining the radius of each cluster takesΘ(|X |) time, and determining the first

principal component for each of theK clusters takesΘ(Kn) time using diagonal metric

matrices. If the farthest point in each cluster is determined and cached during the point

assignment step of MPCK-Means, the complexity of Step 1 reduces toΘ(Kn).

The complexity ofPropagate() is primarily determined by the main loop in Step 3,

which repeats|C| times, for a set of constraintsC. Computing the scale factors within

this loop (Steps 3a–3b) requires a combined time ofΘ(G(n)), which is dominated by the

complexity of Step 3d. Step 3d loops over every pair of data points, of which there are

Θ(|X |2). For each pair, the step computes the weight of the propagated constraint between

these points inΘ(G(n)) time. For the optional reduction step,Propagate() can track and

keep the constraint with the maximum weight during the weight computation step without

any additional computational cost. This yields a complexity of Θ(|X |2G(n)) for Step 3d,

and therefore a complexity ofΘ(|C||X |2G(n)) for the main loop of Step 3. Since this

dominates the complexity ofΘ(Kn) for Step 1, the overall complexity forPropagate is

Θ(|C||X |2G(n)) for both full and reduced propagation.

3.4.2 Complexity of GPK-Means

Figure 3.4 shows the computational complexity for the primary steps of the GPK-

Means algorithm given in Figure 3.1.

The computational complexity of GPK-Means is highly dependent on the chosen con-

strained clustering algorithm. This analysis assumes thatMPCK-Means has a computa-

tional complexity ofO(CMPCKmeans).1

The initial run of MPCK-Means in Step 1 has complexityO(CMPCKmeans). GPK-

1To the best of my knowledge, no paper on MPCK-Means or any related algorithms analyzes the compu-
tational complexity of this algorithm.
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Means then repeatedly propagates constraints (Steps 3a–3b) with complexityΘ((|M| +

|C|)|X |2G(n)) and runs MPCK-Means (Step 3c) with complexityO(CMPCKmeans) until

convergence. Since the number of iterations taken to converge is not know a priori, letc

represent this number. The initial seed run of MPCK-Means is absorbed in the final com-

plexity, yielding a computational complexity ofO(cCMPCKmeans + c(|M|+ |C|)|X |2G(n))

for GPK-Means.
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Algorithm: GPK-Means

Inputs:

• the data setX ,

• the set of weighted must-link constraintsM,

• the set of weighted cannot-link constraintsC,

• the number of clustersK, and

• the cutoff threshold for propagationg.

Output:

• a disjointK-partitioning{Xh}
K
h=1 of X .

Method:

1. Obtain the initial clustering{X 0
h}

K
h=1, {µ

0
h}

K
h=1, and initial metrics

{A0
h}

K
h=1 by running MPCK-Means withX , M, C, andK.

2. Seti := 0.

3. Repeat until the MPCK-Means objective function values converge:

(a) Propagate the must-link constraints:
P (M)i := Propagate(M, {X i

h}
K
h=1, {A

i
h}

K
h=1, g).

(b) Propagate the cannot-link constraints:
P (C)i := Propagate(C, {X i

h}
K
h=1, {A

i
h}

K
h=1, g).

(c) Set{X i+1
h }K

h=1, {µ
i+1
h }K

h=1, and{Ai+1
h }K

h=1 by running MPCK-
Means withX , P (M)i, P (C)i, andK starting with initial cen-
troids{µi

h}
K
h=1 .

(d) Seti := i + 1 .

4. Return{X i
h}

K
h=1 .

FIG. 3.1. The GPK-Means algorithm.
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Algorithm: Propagate

Inputs:

• the set of weighted constraintsC,

• the disjointK-partitioning of the data{X 0
h}

K
h=1,

• the set of metrics{A0
h}

K
h=1, and

• the cutoff threshold for propagationg.

Output:

• a set of weighted constraints.

Method:

1. Compute the scale factors{nh}
K
h=1 using Equation 3.4.

2. Let the set of propagated constraints be empty:P (C) = {}.

3. For each〈xA, xB, w〉 ∈ C, do:

(a) LetsxA
:= N(xA, µxA

, nxA
A−1

xA
).

(b) LetsxB
:= N(xB, µxB

, nxB
A−1

xB
).

(c) Add the original constraint to the propagated set:
P (C) := P (C)

⋃

{(xA, xB, w)}.

(d) For each pair of data points(xi, xj) such that(xi 6= xA) ∧ (xj 6= xB) ∧ (xi ≺
xj), where≺ is a global ordering to ensure a pair is only checked once, do:

i. Let wij1 = W (xi, xj, xA, xB, sxA
nxA

A−1
xA

, sxB
nxB

A−1
xB

).

ii. Let wij2 = W (xj, xi, xA, xB, sxA
nxA

A−1
xA

, sxB
nxB

A−1
xB

).

iii. Let wij = max (wij1, wij2).

iv. If wij ≥ g, then add the constraint to the propagated set:
P (C) := P (C)

⋃

{〈xi, xj, wijw〉}.

(e) (Optional) Reduce the number of propagated constraints to only the maxi-
mum weighted constraint between each pair of points. For each constraint
〈xi, xj, w〉 such that∃〈xi, xj, w

′〉 ∈ P (C) with w <= w′, P (C) := P (C) −
{〈xi, xj, w〉}.

4. ReturnP (C).

FIG. 3.2. The constraint propagation algorithm.
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Propagate Algorithm:Θ(|C||X |2G(n)).

• Compute the scale factors for each cluster’s Gaussian (step 1):
Θ(Kn).

• Loop over each constraint (step 3):
Θ(|C||X |2G(n)).

– Compute scaling factors (steps 3a–3b):
Θ(G(n)).

– Loop over each pair of data points (step 3d):
Θ(|X |2G(n)).

∗ Computing the constraint weights (steps 3(d)i–3(d)ii):
Θ(G(n)).

FIG. 3.3. The computational complexity of constraint propagation.

GPK-Means Algorithm:O(cCMPCKmeans + c(|M| + |C|)|X |2G(n)).

• Initialize the estimates of the clusters (step 1):
O(CMPCKmeans).

• Repeat until convergence (c iterations) (step 3):
O(cCMPCKmeans + c(|M| + |C|)|X |2G(n)).

– Propagate the constraints (steps 3a–3b):
Θ((|M| + |C|)|X |2G(n)).

– Run MPCK-Means (step 3c):
O(CMPCKmeans).

FIG. 3.4. The computational complexity of the GPK-Means algorithm.



Chapter 4

EXPERIMENTS

4.1 Data Sets

The experiments were conducted using five data sets: the Crabs-Gender, Iris, Digits,

and Letters data sets from the UCI machine learning repository (Newmanet al. 1998);

and the protein data set used by Xing et al. (2003). FollowingBilenko et al. (2004), the

Digits and Letters data sets were reduced to include only theitems{3, 8, 9} and{I, J, L},

respectively. Table 4.1 summarizes the properties of thesedata sets.

Name # Instances # Features # Classes
Crabs-Gender 200 5 2
Digits389 317 16 3
Iris 150 4 3
LettersIJL 227 16 3
Protein 116 20 6

Table 4.1. Properties of the data sets.

4.2 Methodology

On each data set, the experiments compared three methods of constrained clustering:

PCK-Means(MPCK-Means without metric learning),MPCK-Means, and GPK-Means.

29
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All experiments were conducted using implementations of these algorithms incorporated

into the Weka machine learning toolkit (Witten & Frank 2000). The PCK-Means and

MPCK-Means algorithms were taken from the University of Texas Weka distribution pro-

vided by Bilenko et al.1 The implementation of GPK-Means is based on the MPCK-Means

algorithm from this distribution.

MPCK-Means can use either a single metric for the entire data set or multiple separate

metrics for each cluster; consequently, so can GPK-Means. The experiments used both a

single diagonal metric and multiple diagonal metrics. All experiments used unit constraint

weights for the initial constraints.

GPK-Means was run with two propagation thresholds on each data set; the propaga-

tion thresholds are listed in each graph’s key. The propagation thresholds were 0.5 and 0.7

for every data set except Protein. Protein required lower propagation thresholds of 0.01 and

0.05 to obtain any effect, because of the sparsity of the dataset.

For each data set, learning curves were generated for each algorithm as the number of

constraints was varied. Each data point on the learning curve was averaged over 50 trials

of 5-fold cross validation. Constraints were selected randomly from the training set (four

folds); the full data set was then clustered; and results were reported for only the test set

(the fifth fold). All algorithms were tested on the same five folds with the same constraints.

The experiments compare each algorithm using the pairwise F-Measure (Section 2.8.1)

and the adjusted Rand index (Section 2.8.2). Significance testing was performed on the re-

sults using 90%, 95%, 97.5%, and 99% confidence levels. Each graph has two components:

an upper graph that displays clustering performance as the number of constraints varies, and

a lower graph that gives the significance level against MPCK-Means for each data point.

1Available on-line at http://www.cs.utexas.edu/users/ml/risc/code/.
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4.3 Clustering Evaluation of GPK-Means Using Full Propagation

This section evaluates the clustering performance of GPK-Means using full propaga-

tion. In this form of GPK-Means, all inferred constraints are used, even if there are multiple

constraints between a pair of points. The experiments evaluated the performance of GPK-

Means with full propagation against MPCK-Means and PCK-Meansusing the pairwise

F-Measure and the adjusted Rand index (ARI).

4.3.1 F-Measure Evaluation of GPK-Means Using Full Propagation

The F-Measure (Section 2.8.1) evaluates the clustering from an information-theoretic

perspective. Figure 4.1 depicts the F-Measure performanceof PCK-Means, MPCK-Means,

and GPK-Means on each data set as the number of constraints varies.

GPK-Means outperforms MPCK-Means and PCK-Means on the Iris and Protein data

sets with a single metric. GPK-Means shows significant improvements in the F-Measure for

a range of low quantities of constraints. As the number of constraints increases, the perfor-

mance of GPK-Means and MPCK-Means becomes indistinguishable. At higher numbers

of constraints, there is no longer a benefit to using the (possibly inaccurate) propagated con-

straints, because there are enough accurate source constraints to yield a high-performance

clustering.

Crabs-Gender and Digits389 also show a benefit with using GPK-Means with single

metrics, but over a much smaller range of constraint values.The improvement on Crabs-

Gender is very slight and appears only with larger numbers ofconstraints (above 100).

Given the marginal improvement with the data set, it appearsthat the Crabs-Gender data

set is very difficult to cluster using a single metric. LetterIJL shows virtually no difference

between using MPCK-Means and GPK-Means.

When using multiple metrics, only the Crabs-Gender and Iris data sets show a benefit
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of using GPK-Means over MPCK-Means. GPK-Means shows a large improvement over

MPCK-Means on Crabs-Gender with multiple metrics. The performance of GPK-Means

is indistinguishable from MPCK-Means on the other data sets with multiple metrics.

PCK-Means did not perform well on any data set, except initially on Protein against

MPCK-Means and GPK-Means using multiple metrics.

Notice the sudden drop in performance as the number of constraints increases on the

Iris data set. This problems occurs with full propagation onIris, because the number of

propagated constraints tends to increase rapidly with the number of source constraints. The

huge numbers of propagated constraints are likely to be inaccurate, and decrease GPK-

Means’ performance. As Section 4.4 will show, reduced propagation avoids this problem,

and reduces the sudden performance drop.

The experiments demonstrate a large performance difference between single and

multiple metrics on several of the data sets. In some cases, using a single metric

is better (e.g. Iris), while in other cases, using multiple metrics is better (e.g. Crabs-

Gender). Multiple metrics are especially useful on data sets where the clusters are different

shapes (Bilenko, Basu, & Mooney 2004). Because the benefit of using multiple metrics

depends on each data set’s underlying clustering, no conclusion can be drawn from these

experiments as to whether using single or multiple metrics is generally better.
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FIG. 4.1. The F-Measure performance of GPK-Means using full propagation. The bottom
section of each graph depicts the significance level of GPK-Means against MPCK-Means.
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FIG. 4.1 (continued). The F-Measure performance of GPK-Means using full propagation.
The bottom section of each graph depicts the significance level of GPK-Means against
MPCK-Means.
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4.3.2 Adjusted Rand Index Evaluation of GPK-Means Using Full Propagation

The adjusted Rand index (ARI) (Section 2.8.2) evaluates the level of agreement be-

tween the true class labels and the clustering. Figure 4.2 depicts the ARI performance of

PCK-Means, MPCK-Means, and GPK-Means with full propagation on each data set as the

number of constraints varies.

The ARI results are similar to the F-Measure results, with GPK-Means having sig-

nificant benefits for low numbers of constraints on the iris data set with both single and

multiple metrics. At higher numbers of constraints, the experiments on Iris with multiple

metrics show the same sudden performance drop as with the F-Measure.

GPK-Means with multiple metrics significantly improves theclustering performance

on Crabs-Gender and Iris. There is also an improvement on Crabs-Gender with a single

metric for larger numbers of constraints. Protein also shows an improvement with GPK-

Means, but only with single metrics. Digits389 and LettersIJL show only a small benefit for

limited numbers of constraints. As with the F-Measure, GPK-Means with full propagation

using multiple metrics does not have a significant benefit over MPCK-Means on Digits389,

LetterIJL, and Protein.
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FIG. 4.2. The adjusted Rand index performance of GPK-Means usingfull propagation.
The bottom section of each graph depicts the significance level of GPK-Means against
MPCK-Means.
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FIG. 4.2 (continued). The adjusted Rand index performance of GPK-Means using full
propagation. The bottom section of each graph depicts the significance level of GPK-
Means against MPCK-Means.
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4.3.3 Evaluation of Full Constraint Propagation

Recall that on the Iris data set with multiple metrics, GPK-Means demonstrates a sud-

den decrease in performance as the number of source constraints increases. To investigate

why this occurs, this section examines the number of constraints generated by full propaga-

tion as the number of source constraints increases (Figure 4.3). The counts of propagated

constraints in Figure 4.3excludethe source constraints, and were measured after the last

iteration of constraints propagation in GPK-Means

As the number of source constraints increases, the number ofpropagated constraints

leaps dramatically. For the high-dimensional data sets (Digits389, LetterIJL, and Protein),

the number of propagated constraints remains low (less than3 times the number of source

constraints). The low density of the high-dimensional datacauses the propagation neigh-

borhoods to be very small, resulting in few propagated constraints.

However, for the low-dimensional data sets (Crabs-Gender and Iris), the high density

results in many propagated constraints, up to several hundred times the number of source

constraints. Using multiple metrics appears to reduce the amount of propagation, because

the per-cluster covariance matrices are more accurate to each cluster. With full propagation,

multiple different constraints may propagate to the same pair of data points. Therefore,

each pair of data points may be constrained multiple times, each with a different weight.

The effect of these constraints is cumulative, and they act as one constraint with a cost equal

to the sum of the multiple constraint weights. The weight of the summed constraint may

be disproportionately high compared to the weight of the source constraints. Section 5.1

discusses this issue in more detail.

The huge number of constraints likely contains many which are inaccurate, resulting

in decreased clustering performance. Also, this increasesthe computational cost of MPCK-

Means, resulting in a longer run-time for the constrained clustering step of GPK-Means.
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FIG. 4.3. The number of constraints inferred by GPK-Means usingfull propagation. Note
that the countsexcludethe original source constraints.
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FIG. 4.3 (continued). The number of constraints inferred by GPK-Means using full propa-
gation. Note that the countsexcludethe original source constraints.
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4.4 Clustering Evaluation of GPK-Means Using Reduced Propagation

The propagation reduction step was introduced into the GPK-Means algorithm to pre-

vent the problem of each pair of data points having multiple associated constraints. This

problem occurs frequently in the low-dimensional data setswith larger numbers of con-

straints, since the propagation neighborhoods are dense. With reduced propagation, if there

are multiple inferred (or source) constraints of a particular type between a pair of points,

GPK-Means uses only the constraint with the maximum weight.This limits the number of

constraints involving a pair of points to be two, one must-link constraint and one cannot-

link constraint. This also limits the total number of propagated constraints to be less than

or equal toN2 − N , whereN is the number of data points.N2 − N corresponds to two

constraints for every pair of data points.

GPK-Means allows a pair of points to be both must-linked and cannot-linked at the

same time, since the weight of a must-link constraint between the pair of points is not

necessarily one minus the weight of the cannot-link constraint between those points, and

vice versa. In practice however, if two points are must-linked with large weight, then the

weight of a cannot-link constraint between them is likely tobe small. The reverse is also

true.

Section 4.4.1 examines the performance of GPK-Means with reduced propagation

against MPCK-Means and PCK-Means using the pairwise F-Measure and the adjusted

Rand index (ARI).

4.4.1 F-Measure and Adjusted Rand Index Evaluation of GPK-Means Using

Reduced Propagation

Figures 4.4 and 4.5 depict the F-Measure performance and adjusted Rand index perfor-

mance, respectively, of PCK-Means, MPCK-Means, and GPK-Means with reduced propa-
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gation on each data set as the number of constraints varies.

The F-Measure and adjusted Rand index performance GPK-Meansusing reduced

propagation is about the same as GPK-Means using full propagation. It actually shows

an improvement over full propagation on Iris with multiple metrics, and a very slight im-

provement on Protein with multiple metrics. However, reduced propagation decreases the

performance of GPK-Means on Crabs-Gender with multiple metrics; GPK-Means with

reduced propagation is still significantly better than MPCK-Means on Crabs-Gender for

larger quantities of constraints. The most important aspect of Figures 4.4 and 4.5 is that

they show a reduction in the severe performance decrease with GPK-Means on the Iris data

set. A slight decrease still occurs, since the likelihood ofinaccurate propagated constraints

increases as the number of constraints increases. The increased number of inaccurate con-

straints degrades the clustering quality. However, the decrease is not as sudden or as severe

as with full propagation.
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FIG. 4.4. The F-Measure of GPK-Means using reduced propagation. The bottom section
of each graph depicts the significance level of GPK-Means against MPCK-Means.
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FIG. 4.4 (continued). The F-Measure of GPK-Means using reducedpropagation. The
bottom section of each graph depicts the significance level of GPK-Means against MPCK-
Means.



45

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

ad
ju

st
ed

 R
an

d 
in

de
x

PCK-Means
MPCK-Means
GPK-Means 0.5
GPK-Means 0.7

0.950
0.900

0 50 100 150 200C
on

fid
en

ce

number of constraints

(a) Crabs-Gender - Single Metric

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

ad
ju

st
ed

 R
an

d 
in

de
x

PCK-Means
MPCK-Means
GPK-Means 0.5
GPK-Means 0.7

0.950
0.900

0 50 100 150 200C
on

fid
en

ce

number of constraints

(b) Crabs-Gender - Multiple Metrics

0.450

0.500

0.550

0.600

0.650

0.700

ad
ju

st
ed

 R
an

d 
in

de
x

PCK-Means
MPCK-Means
GPK-Means 0.5
GPK-Means 0.7

0.950
0.900

0 50 100 150 200C
on

fid
en

ce

number of constraints

(c) Digits389 - Single Metric

0.450

0.500

0.550

0.600

0.650

0.700

ad
ju

st
ed

 R
an

d 
in

de
x

PCK-Means
MPCK-Means
GPK-Means 0.5
GPK-Means 0.7

0.950
0.900

0 50 100 150 200C
on

fid
en

ce

number of constraints

(d) Digits389 - Multiple Metrics

0.650

0.700

0.750

0.800

0.850

0.900

ad
ju

st
ed

 R
an

d 
in

de
x

PCK-Means
MPCK-Means
GPK-Means 0.5
GPK-Means 0.7

0.950
0.900

0 50 100 150 200C
on

fid
en

ce

number of constraints

(e) Iris - Single Metric

0.650

0.700

0.750

0.800

0.850

0.900

ad
ju

st
ed

 R
an

d 
in

de
x

PCK-Means
MPCK-Means
GPK-Means 0.5
GPK-Means 0.7

0.950
0.900

0 50 100 150 200C
on

fid
en

ce

number of constraints

(f) Iris - Multiple Metrics

FIG. 4.5. The adjusted Rand index performance of GPK-Means usingreduced propagation.
The bottom section of each graph depicts the significance level of GPK-Means against
MPCK-Means.
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FIG. 4.5 (continued). The adjusted Rand index performance of GPK-Means using reduced
propagation. The bottom section of each graph depicts the significance level of GPK-Means
against MPCK-Means.
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4.4.2 Evaluation of Reduced Constraint Propagation

Figure 4.6 depicts the number of propagated constraints under reduced propagation

as the number of source constraints was varied. The quantities of propagated constraints

reported in Figure 4.6excludethe original constraints, and were measured after the last

iteration of constraints propagation in GPK-Means.

As discussed in Section 4.4, the number of propagated constraints under reduced prop-

agation is less than or equal toN2 − N . The results in Figure 4.6 are consistent with this

bound.

Figure 4.6 omits the plot of the number of propagated constraints for Digits389 be-

cause of an interesting effect with reduced propagation—there were zero propagated con-

straints for Digits389 after deducting the source constraints, using both single and multiple

metrics. The Gaussian Propagation actuallyreducedthe number of constraints by eliminat-

ing multiple constraints between the same pair of data points. This reduction seems to have

improved the clustering quality on Digits389. Since the clustering performance with full

propagation is approximately the same as with reduced propagation, it may be the case that

all of the propagations occurred between a small set of already constrained points, caus-

ing the performance increase. This atypical case is worthy of further study, but this thesis

leaves it to future work.
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FIG. 4.6. The number of constraints inferred by GPK-Means usingreduced propagation.
Note that the countsexcludethe original source constraints.
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FIG. 4.6 (continued). The number of constraints inferred by GPK-Means using reduced
propagation. Note that the countsexcludethe original source constraints.
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4.5 Clustering Time Evaluation

GPK-Means runs multiple iterations of MPCK-Means and constraint propagation.

The MPCK-Means implementation by Bilenko et al. runs in under one second, so GPK-

Means must take a minimum of several seconds. To determine whether GPK-Means could

be used in a reasonable amount of time, this section examinesthe run-time of GPK-Means

as the number of constraints was varied. The results were averaged over 20 trials of 5-fold

cross-validation on the Iris data set. The experiment was conducted on a low-loaded 2.4

GHz Pentium 4 with hyper-threading running Linux. Figure 4.7 shows the empirical run-

time of GPK-Means using full propagation and GPK-Means using reduced propagation.

Full and reduced propagation have approximately the same empirical run-time, with

only slight differences. Reduced propagation incurs a smalloverhead with keeping only

the highest weighted constraints, but MPCK-Means runs faster under reduced propagation,

because it is given fewer constraints than full propagation. These differences balance out,

resulting in approximately the same run-time.

While the empirical run-time of GPK-Means appears much higher than MPCK-

Means, the extra computational cost is inexpensive compared to that of obtaining more

constraints. Consider the news article clustering scenariogiven in Chapter 1. Most peo-

ple would gladly use GPK-Means and wait a few extra seconds (or minutes), rather than

use MPCK-Means and have to read several more articles. With the cost of obtaining more

constraints in mind, GPK-Means’ run-time is reasonable forpractical use.

The discussion of future work (Section 5.5) includes ideas for improving the run-time

of GPK-Means using sampling, and by eliminating unnecessary weight computations.
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FIG. 4.7. Clustering time for GPK-Means using full and reduced propagation. All experi-
ments were conducted on a low-loaded 2.4 GHz Pentium 4HT and averaged over 20 trials
of 5-fold cross-validation.



Chapter 5

DISCUSSION

5.1 Full Versus Reduced Propagation

Full propagation and reduced propagation have approximately the same clustering

performance and empirical run-time. Reduced propagation shows a slight performance im-

provement on the Iris and Protein data sets, and a performance decrease on Crabs-Gender.

The largest benefit of it is a limit on the number of propagatedconstraints.

Full propagation allows multiple constraints between the same pair of points, which

seems unreasonable at first. However, the multiple constraints between a pair of points

could be interpreted as a single constraint between the pairwith a weight equal to the sum

of the multiple constraint weights. It is not possible to violate a subset of the multiple

constraints, so they act and contribute as one.

The weight of the single (summed) constraint could be higherthan the weight of

any original source constraint. This is reasonable if the source constraints are uniformly

distributed, but if they are concentrated in an area, constraints in that area will augment

each other’s weight. Reduced propagation limits the constraint weight, so that only the

source constraints are given the highest weight in a neighborhood.

Since the benefit of reduced propagation varies between datasets, further study is

necessary to determine whether reduced propagation shouldbe used over full propagation.
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5.2 Benefits of Constraint Propagation

Constraint propagation is most useful when the number of source constraints is small,

as shown in the results for the Iris and Protein data sets. This thesis focuses on providing

a high-quality clustering with small numbers of constraints, and constraint propagation is

capable of doing that.

With larger numbers of source constraints, it is better to use the accurate source con-

straints than the (possibly inaccurate) propagated constraints. The accurate source con-

straints will yield a higher-quality clustering in most cases. Also, the cost of constraint

propagation increases with the number of source constraints, making constraint propaga-

tion with larger numbers of source constraints prohibitively expensive.

Constraint propagation assumes that the constraints are representative of their local

neighborhood. In situations where constraints are used to constrain outliers or atypical

instances, this assumption is incorrect and constraint propagation may decrease clustering

performance.

5.3 Using GPK-Means with Other Algorithms

GPK-Means is capable of using any base constrained clustering algorithm that sup-

ports weighted constraints. It is possible to use it with an algorithm that supports only

unweighted constraints by inferring constraints if they are above the given threshold, and

ignoring the actual weight of the constraint. Such a modification to the GPK-Means algo-

rithm and an analysis of its performance is left to future work.

Most existing constrained clustering algorithms tend to focus on using “perfect” con-

straints, without errors in the relative labeling. MPCK-Means falls into this category. The

constraints inferred by GPK-Means’ propagation method arelikely to be inaccurate. While

MPCK-Means assumes only accurate constraints, GPK-Means uses it successfully with



54

possibly inaccurate propagated constraints.

Very little work on constrained clustering has focused on using imperfect constraints;

this is left as an open question in many papers’ future work sections. GPK-Means may

work better with constrained clustering methods designed for imperfect constraints; they

could easily replace MPCK-Means in GPK-Means.

5.4 Comparison of GPK-Means with Other Methods

This section compares GPK-Means to several other constrained clustering methods

from a theoretical standpoint.

5.4.1 Bilenko et al.’s MPCK-Means

The primary difference between GPK-Means and MPCK-Means (Bilenko, Basu, &

Mooney 2004) is in how each uses constraints. MPCK-Means assumes that constraint vio-

lations occur based on the clustering of individual points.Points are assigned individually

to clusters in order to minimize the objective function, which is partially based on constraint

violations.

In contrast, GPK-Means makes an explicit assumption that constraints are representa-

tive of their local neighborhood. The amount each neighborhood is constrained is directly

based on its location in the current clustering. The effect of a constraint extends out into

space, constraining two neighborhoods rather than two individual instances.

Note that GPK-Means with a propagation threshold ofg = 1 corresponds to two runs

of MPCK-Means, with the second run seeded by the centroids discovered by the first run.

This correspondence holds under the assumption that for alldata instances that are equal in

feature space, either it is the case that none of those instances are involved in a constraint, or

it is the case that all of those instances are involved in a constraint with some other instance
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xj. To illustrate the need for this assumption, consider a clustering task wherex1 andx2

have the same location in feature space, andx1 is involved in a constraint withx3, butx2 is

not, violating the assumption. GPK-Means withg = 1 would add a constraint betweenx2

andx3, so it would no longer correspond directly to two runs of MPCK-Means.

5.4.2 Klein et al.’s Constrained Complete-Link Clustering

Klein et al.’s (2002) method for constrained complete-linkclustering warps a simi-

larity matrix of the data in response to constraints, pulling must-linked points closer, and

pushing cannot-linked constraints away. Unlike other methods that learn a distance metric,

Klein et al.’s method is based on distances between individual instances.

Similar to Klein et al.’s approach, GPK-Means consider individual pairs of instances

during constraint propagation. These individual pairs arepulled together or pushed apart in

response to the source constraint. By propagating the effectof a source constraint to nearby

pairs, the source constraint affects a neighborhood, similar to Klein et al.’s approach. The

effect on the neighborhood increases as the constraint moves closer to the center of the

cluster.

However, once the effect is propagated to the local neighborhood, GPK-Means still

relies on the underlying constrained clustering algorithmto generate the clustering. In the

experimental setup, MPCK-Means learns a distance metric, sothe effect of the propagated

constraint is limited to adjusting the centroids and contributing to the distance metric. This

lessens the effect of the constraints on the neighborhood, because the effects on all neigh-

borhoods are combined together into a distance metric. Klein et al.’s method keeps the

effects of the constraints separate, and allows them to interact only via the distances be-

tween the points.

Said another way, Klein et al.’s method can be thought of pinching a rubber sheet,

pulling must-linked points to touch and cannot-linked points as far apart as possible. Points
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in between the constrained points adjust their distances based on the warping of the space.

The distance between any two points is the shortest path through this space, which is

warped based on thecombinationof individual constraints. Constraint propagation takes

the rubber sheet and places weights in a greater-dimensional version of it to sink the neigh-

borhoods of each must-link constraint together, and pull the neighborhoods of cannot-link

constraints apart. The effect of these weighted neighborhoods is then combined together

to form a distance metric that governs the distance between any two points based on the

averageof many constraints.

5.4.3 Bar-Hillel et al.’s Relevant Component Analysis

Bar-Hillel et al.’s (2005) application of RCA to constrained clustering learns a Maha-

lanobis distance metric based on the clusters defined by the equivalence sets. It estimates

this distance metric as the covariance matrix for these equivalence sets. Essentially, it as-

sumes that the equivalence sets are representative of the actual clusters, and estimates a

metric based on the clusters defined by the equivalence sets.RCA does not do any form of

iterative refinement; it generates the metric from only the labeled data. Clustering can then

be performed using the unlabeled data transformed by the metric.

GPK-Means, in contrast, uses the best estimate of the clustering (from both the con-

straintsand the unlabeled data) to determine how to propagate the constraints to the nearby

neighborhoods. It interprets constraints as affecting a neighborhood, rather than acting as a

sample for a cluster. Those neighborhoods are based on the current clustering, rather than

just the estimates of the clustering from the labeled data.

GPK-Means could wrap around RCA, using RCA to learn the metric defined by the

constraints and then K-Means to generate the clustering. This would require a relatively

straightforward modification of the RCA algorithm to use weighted points in estimating

the distance metric.
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5.5 Future Work

The results have revealed several aspects of GPK-Means which could use improve-

ment. The Gaussian constraint propagation does not work very well on high-dimensional

data sets. It propagates relatively few constraints, most likely due to the decreased density

of the high-dimensional data. Future work includes exploring the use of dimensionality

reduction in the propagation step to avoid this problem and improve the clustering quality

of GPK-Means on high-dimensional data sets.

The method used to scale the metrics to the cluster could alsobe at fault for the poor

performance on high-dimensional data sets. Using a different method for scaling the met-

rics to the cluster could improve the performance of GPK-Means, and possibly eliminate

the need for a propagation threshold.

GPK-Means could use RCA with dimensionality reduction to learn the metric, in-

stead of MPCK-Means. By using RCA, GPK-Means would gain the benefits of built-in

dimensionality reduction, and possible elimination of themetric scale problem.

This thesis investigated propagating constraints with a Gaussian function, with encour-

aging results. Another area of future work involves exploring other methods of propagating

constraints, such as by Euclidean distance.

Constraint propagation by considering each pair of data points for each constraint is

computationally expensive; sampling could potentially reduce the cost of constraint prop-

agation while yielding the same performance. Constraint propagation currently considers

many pairs of data points which are far apart, and therefore makes a large number of un-

necessary computations. Tracking point distances, as in the method used by Elkan (2003)

to accelerate K-Means, will eliminate many unnecessary computations and will accelerate

constraint propagation.



Chapter 6

CONCLUSION

This thesis investigated propagating constraints to nearby points using a Gaussian

function, with encouraging results. Clustering with the propagated constraints yielded

higher-quality clusterings than clustering with only the original constraints on several data

sets. Constraint propagation appears especially useful when there are few source con-

straints.

Constraint propagation does not appear to do well in high-dimensional data sets, pos-

sibly due to the low density of the propagation neighborhoods. Dimensionality reduction

may improve the clustering quality. Constraint propagationwhen given high numbers of

constraints does not perform as well as standard constrained clustering, since the given

constraints are more accurate than the propagated constraints. However, in most cases,

constraint propagation does not significantly degrade the clustering quality.

The results in this thesis support further exploration of constraint propagation and the

development of methods for clustering with propagated constraints. Constraint propagation

may be expensive compared to standard constrained clustering algorithms, but the cost is

low compared to that of obtaining many constraints. Clustering with propagated constraints

is capable of providing a high-quality clustering when given few source constraints; other

constrained clustering algorithms perform poorly on this task.
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Appendix A

CONSTRUCTION OF THE COVARIANCE MATRIX

FOR CONSTRAINT PROPAGATION

This Appendix shows how to construct the covariance matrix given as Equation 3.3

with the assumption that the two endpoints of a constraint are independent.

ΣxAxB
=





ΣxA
[0]

[0] ΣxB



(3.3)

Recall thatΣxAxB
is a 2n × 2n matrix. Let v =





xi

xj



, andu =





xA

xB



. The

(g, h)th elementσgh of the covariance matrixΣxAxB
is the covariance of thegth andhth

elements ofv. That is,σgh = σhg = E[(vg − ug)(vh − uh)], for g, h = 1 . . . 2n. For

g = h, σgh = σ2
g , which is the variance ofvg. ExpandingΣxAxB

from this definition yields

Equation A.1.

As shown by the solid black lines in Equation A.1,ΣxAxB
can be divided into four

quadrants. In the construction of the Gaussian weighting function, this thesis assumes that

xi is independent ofxj, so their covariance is 0. Therefore, in the construction ofthe co-

variance matrix,σgh = 0 andσhg = 0, for g = 1 . . . n andh = (n + 1) . . . 2n. All elements
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of the lower left quadrant and the upper right right quadrantgo to zero, therefore, these

quadrants can be replaced by then × n zero matrix. The upper left quadrant corresponds

to the covariance matrixΣxA
, and the lower right quadrant corresponds toΣxB

.

ΣxAxB
=













































σ2
1 σ12 . . . σ1n σ1(n+1) σ1(n+2) . . . σ1(2n)

σ21 σ2
2 . . . σ2n σ2(n+1) σ2(n+2) . . . σ2(2n)

...
...

. ..
...

...
...

. . .
...

σn1 σn2 . . . σ2
n σn(n+1) σn(n+2) . . . σn(2n)

σ(n+1)1 σ(n+1)2 . . . σ(n+1)n σ2
(n+1) σ(n+1)(n+2) . . . σ(n+1)(2n)

σ(n+2)1 σ(n+2)2 . . . σ(n+2)n σ(n+2)(n+1) σ2
(n+2) . . . σ(n+2)(2n)
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...
...

.. .
...

...
...

.. .
...

σn1 σn2 . . . σ2
n 0 0 . . . 0
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,(A.2)

=





ΣxA
[0]

[0] ΣxB



 .(3.3)



Appendix B

EFFICIENT COMPUTATION OF PROPAGATED

CONSTRAINT WEIGHTS

This Appendix demonstrates how to efficiently computeWeight(xi, xj, xA, xB)

(Equation 3.7) by taking advantage of the independence assumptions in the construction

of ΣxAxB
(Equation 3.3). For convenience, here are the relevant equations:

N(v, u, σ) = exp

[

−
1

2
(v − u)T σ−1(v − u)

]

,(3.1)

W (xi, xj, xA, xB, ΣxA
, ΣxB

) = N









xi

xj



 ,





xA

xB



 , ΣxAxB



 ,(3.2)

ΣxAxB
=





ΣxA
[0]

[0] ΣxB



 ,(3.3)

nh =
radiush

3σpc1h

,(3.4)

sxA
= N(xA, µxA

, nxA
A−1

xA
) ,(3.6)

Weight(xi, xj, xA, xB) = W (xi, xj, xA, xB, sxA
nxA

A−1
xA

, sxB
nxB

A−1
xB

) .(3.7)

Recall that each data instance hasn dimensions, and thatΣxAxB
is a2n × 2n matrix.
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Let v =





xi

xj



, andu =





xA

xB



. Since the experiments are restricted to diagonal metric

matrices,ΣxAxB
is diagonal.

By definition, for a diagonal2n × 2n (sinceΣxAxB
is 2n × 2n) covariance matrixσ ,

N(v, u, σ) = exp

[

−
1

2
(v − u)T σ−1(v − u)

]

,(B.1)

= exp

[

−
1

2

2n
∑

k=1

(

vk − uk

σk

)2
]

.(B.2)

Let σ = ΣxAxB
. Expanding

∑2n

k=1(
vk−uk

σk
)2 yields:

2n
∑

k=1

(

vk − uk

σk

)2

=
n
∑

k=1

(

vk − uk

σk

)2

+
2n
∑

k=(n+1)

(

vk − uk

σk

)2

,(B.3)

=
n
∑

k=1

(

xik − xAk

ΣxAk

)2

+
n
∑

k=1

(

xjk
− xBk

ΣxB k

)2

,(B.4)

= (xi − xA)T Σ−1
xA

(xi − xA) + (xj − xB)T Σ−1
xB

(xj − xB) .(B.5)

By substituting back into the Gaussian equation,

N









xi

xj



 ,





xA

xB



 ,





ΣxA
[0]

[0] ΣxB









= exp

[

−
1

2
(xi − xA)T Σ−1

xA
(xi − xA) −

1

2
(xj − xB)T Σ−1

xB
(xj − xB)

]

.

(B.6)

The complexity of this computation over repeated evaluations can be reduced by mem-

oizing the computations ofΣxA
= sxA

nxA
AxA

, and Σ−1
xA

. The computationnhAh

can be calculated once for each cluster, and cached for future use. The computation

−1
2
(xi − xA)T Σ−1

xA
(xi − xA) can also be memoized for efficient lookup asxj varies. From

experience, this memoization has significantly accelerated constraint propagation.
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