

Explicitly Parallel Programming with Shared-Memory is Insane: At Least Make it Deterministic!

Joe Devie

ark Oskin

Parallel Programming is Hard

Race conditions make life difficult

```
barrier_wait();
x = 1;

return x;

100%6
```

Deterministic parallel execution would be nice!

Wouldn't it be nice if...

- …execution were reproducible on a machine?
 - No more heisenbugs!
 - Run parallel programs forwards and backwards
- ...execution were reproducible across machines?
 - Reduces the parallel testing coverage problem to the single-threaded testing coverage problem
 - Can reproduce bugs found in the field
 - Increases robustness of deployed parallel code

Related Work

- Deterministic, implicitly-parallel languages
 - StreamIt [ASPLOS 2002], Jade [TOPLAS 1998]
 - Typically domain-specific
- Record+replay
 - RecPlay [TOCS 1999], FDR [ISCA 2003],
 Rerun [ISCA 2008], DeLorean [ISCA 2008]
 - Log ordering of memory operations
- Serialize execution (Simics [Computer 2002])

DMP: A Deterministic Multiprocessor

- Determinism: same input yields same output
 - What is "input"?
 - Input is value and timing of 1/O and OS events
- DMP provides deterministic interleaving of memory operations
 - Serialize execution in a consistent, but arbitrary way

Valid Non-deterministic Executions

DMP serializes execution in a consistent way

Serialized Execution

DT

store A store P

store B load A store P' store B

store A

store B

"Deterministic Token" gets passed after every insn

store P'

store P

load A

6 steps

store B

Serialized Execution

DT

store A store P store B load A

store P' store B

store A

n after every insn is expensive

store P

One of uantum instead

store B

serializations

load A

6 steps

store P'

store B

Serialized Execution: Flow of Data

DMP Interface and Implementation

- Interface: deterministically serialized execution
 - Preserves program behavior across runs
- Naïve implementation:
 - Execute insns in round-robin order
 - nx slowdown on n threads :-(
- Better implementation: "OoO superscalar"
 - Serialize only when necessary
 - Serialize only for as long as necessary

Recovering Parallelism

- Parallelize thread-private accesses
 - Sharing Table
- Speculatively parallelize execution
 - Transactional Memory (TM)
- TM + Speculative Value Forwarding
 - TM-Forward
- Smarter Quantum Building

DMP-Sharing Table: Exploiting Thread-private Data

store B load A

- Thread-private accesses can't affect other threads
 - Okay to execute private accesses in parallel
- Sharing Table: locations are Shared or Private
 - Shared = S state, Private = M/E state
 - Need to hold DT to update sharing table

DMP-TM: Leveraging Speculation

store B store P' store A load A store P store B

- Execute quanta as implicit transactions
 - Quanta execute speculatively in parallel
 - Abort+retry if serialization was violated
 - Commit quanta in order (need DT to commit)

DMP-TM Execution

Ordering+isolation = "memory renaming" WAW/WAR are "false" conflicts

DMP-TM-Forward: Speculative Value Forwarding

store A store P

store B load A store P' store B

- Speculatively forward values to "future" quanta
 - Can potentially avoid squashes even with true (RAW) data dependences
 - Must squash yourself if data you were forwarded is overwritten by "past" quantum
 - When you squash, must squash all your consumers

TM-Forward Execution

2# steps

Same serial flow of data, but highly parallel execution!

Recovering Parallelism

- Sharing Table
 - Parallelizes accesses to thread-private data
 - Non-speculative
- TM and TM-Forward
 - Speculation allows for more parallelism
 - "memory renaming" means fewer squashes
- Smarter Quantum Building

Quantum Building

 Building quanta by just counting dynamic insns is simple, but can be slow

```
lock L
store A
unlock L
unlock L
...
```


Naïve Quantum Building: Convoying

Smarter Quantum Building

- Enclose critical sections in a single quantum!
 - Start new quantum after an "unlock"
- Other quantum building strategies in paper

Experimental Methodology

- Simulator using PIN
 - Functionally models effects of serialization
 - Models address conflicts, limited TM buffering
 - Assume 1 IPC, free commits
- SPLASH2 benchmark suite

3 (S)

Non-deterministic events

Conclusions

- Determinism is a Good Thing
 - Simplifies debugging, testing and (potentially) deployment of parallel programs
 - We want sequential behavior with parallel performance
- We show several ways to build efficient DMPs
 - No memory log
 - Competitive performance

Questions?

