


Explicitly Parallel Programming with
Shared-Memory is Insane:
At Least Make it Deterministic!




Parallel Programming is Hard

« Race conditions make life difficult

barrier wait(); barrier wait();

X = 1; X = 2;

return Xx;

1008 180%

Deterministic parallel execution would be nice!
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Wouldn't it be nice If...

e ...execution were reproducible on a machine?

- No more heisenbugs!
- Run parallel programs forwards and backwards

o ...execution were reproducible across machines?

- Reduces the parallel testing coverage problem to the
single-threaded testing coverage problem

- Can reproduce bugs found in the field
- Increases robustness of deployed parallel code
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Related Work

« Deterministic, implicitly-parallel languages
~ Streamlt [ASPLOS 2002], Jade [TOPLAS 1998]
- Typically domain-specific

« Record+replay

- RecPlay [TOCS 1999], FDR [ISCA 2003],
Rerun [ISCA 2008], DelLorean [ISCA 2008]

l0g of memory operations




DMP: A Deterministic
Multiprocessor

« Determinism: same input yields same output
- What is “input”?

- Input is value @
DMP provides

meme®F operat

-~~~ Serialize exec
arbitrary way




Valid Non-deterministic Executions

lock,
‘ ~ scheduling decision QVLP({’ cKs Ihe

race condition, Ng \Yf} Lﬁﬂ)}{)n
every tlme

DMP serializes execution

i

In a consistent way
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Serialized Execution

store A store P'

store P store B

“Deterministic Token”
gets passed
store B after every insn

store P'

store A

store P

load A
6 steps
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Serialized Execution

store A

store P

store A n after every insn is expensive
. One of
store P fter each n-insn quanmlgggﬁ%

store B serializations

load A

6 steps
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Serialized Execution: Flow of Data

A particular serialization
store A enforces

* a particular flow of data

‘store P
store B

DMP enforces the same
serialization across program runs

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
10 Qs




DMP Interface and Implementation

* Interface: deterministically serialized execution
- Preserves program behavior across runs
* Naive implementation:

- Execute insns in round-robin order

- nx slowdown on n threads :-(
« Better implementation: “Oo0O superscalar”

— Serialize only when necessary

- Serialize only for as long as necessary
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Recovering Parallelism

» Parallelize thread-private accesses

— Sharing

Speculatively parallelize execution

- Transactional Memory (TM)
 TM + Speculative Value Forwarding
= IM-Forward
e Smarter Quantum Building
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DMP-Sharing Table:

Exploiting Thread-priv%
store A store B
=

load A

» Thread-private accesses can't affect other threads
- Okay to execute private accesses in parallel
« Sharing Table: locations are Shared or Private

- Shared = S state, Private = M/E state
- Need to hold DT to update sharing table
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DMP-TM: Leveraging Speculation

store A

store P

« Execute quanta as implicit transactions

- Quanta execute speculatively in parallel
« Abort+retry if serialization was violated
- Commit quanta in order (need DT to commit)
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Ordering+isolation = “memory renaming”
WAW/WAR are “false” conflicts




DMP-TM-Forward;:
Speculative Value Forwarding

store A store B

store P = 1oad A

« Speculatively forward values to “future” quanta

- Can potentially avoid squashes even with true
(RAW) data dependences

- Must squash yourself if data you were forwarded is
overwritten by “past” quantum

- When you squash, must squash all your consumers
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TM-Forward Execution

24 @ steps

Same serial flow of data,
but highly parallel execution!
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Recovering Parallelism

e Sharing Table

- Parallelizes accesses to thread-private data
- Non-speculative

« TM and TM-Forward

- Speculation allows for more parallelism
- “memory renaming” means fewer squashes

« Smarter Quantum Building
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Quantum Building

» Building quanta by just counting dynamic insns
IS simple, but can be slow

lock L lock L
store A store A
unlock L unlock L

3,



Naive Quantum Building: Convoying

lock L

store A
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Smarter Quantum Building

» Enclose critical sections in a single quantum!
- Start new quantum after an “unlock”

« Other quantum building strategies in paper

lock L lock L
store A store A
unlock L unlock L

3,



Experimental Methodology

« Simulator using PIN

- Functionally models effects of serialization
- Models address conflicts, limited TM buffering
- Assume 1 IPC, free commits

« SPLASH2 benchmark suite
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Runtime Overhead
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Runtime Overhead
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Runtime Overhead
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Runtime Overhead
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Non-deterministic events

Network I/O

File 1/0O

Thread
Scheduling

IPC
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Conclusions

e Determinism is a Good Thing

- Simplifies debugging, testing and (potentially)
deployment of parallel programs

- We want sequential behavior with parallel
performance

* We show several ways to build efficient DMPs

- No memory log
- Competitive performance
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Questions?
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