


Explicitly Parallel Programming with
Shared-Memory is Insane:
At Least Make it Deterministic!




Parallel Programming is Hard

« Race conditions make life difficult

barrier wait(); barrier wait();

X = 1; X = 2;

return Xx;

1008 180%

Deterministic parallel execution would be nice!

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
3 Qe




Wouldn't it be nice If...

e ...execution were reproducible on a machine?

- No more heisenbugs!
- Run parallel programs forwards and backwards

o ...execution were reproducible across machines?

- Reduces the parallel testing coverage problem to the
single-threaded testing coverage problem

- Can reproduce bugs found in the field
- Increases robustness of deployed parallel code

’ Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
4 e




Related Work

« Deterministic, implicitly-parallel languages
~ Streamlt [ASPLOS 2002], Jade [TOPLAS 1998]
- Typically domain-specific

« Record+replay

- RecPlay [TOCS 1999], FDR [ISCA 2003],
Rerun [ISCA 2008], DelLorean [ISCA 2008]

l0g of memory operations




DMP: A Deterministic
Multiprocessor

« Determinism: same input yields same output
- What is “input”?

- Input is value @
DMP provides

meme®F operat

-~~~ Serialize exec
arbitrary way




Valid Non-deterministic Executions

lock,
‘ ~ scheduling decision QVLP({’ cKs Ihe

race condition, Ng \Yf} Lﬁﬂ)}{)n
every tlme

DMP serializes execution

i

In a consistent way

g Deterministic Multiprocessors — Joe Devietti —




Serialized Execution

store A store P'

store P store B

“Deterministic Token”
gets passed
store B after every insn

store P'

store A

store P

load A
6 steps

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008
8 Al m




Serialized Execution

store A

store P

store A n after every insn is expensive
. One of
store P fter each n-insn quanmlgggﬁ%

store B serializations

load A

6 steps

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




Serialized Execution: Flow of Data

A particular serialization
store A enforces

* a particular flow of data

‘store P
store B

DMP enforces the same
serialization across program runs

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
10 Qs




DMP Interface and Implementation

* Interface: deterministically serialized execution
- Preserves program behavior across runs
* Naive implementation:

- Execute insns in round-robin order

- nx slowdown on n threads :-(
« Better implementation: “Oo0O superscalar”

— Serialize only when necessary

- Serialize only for as long as necessary
’ Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




Recovering Parallelism

» Parallelize thread-private accesses

— Sharing

Speculatively parallelize execution

- Transactional Memory (TM)
 TM + Speculative Value Forwarding
= IM-Forward
e Smarter Quantum Building

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
12 Qs




DMP-Sharing Table:

Exploiting Thread-priv%
store A store B
=

load A

» Thread-private accesses can't affect other threads
- Okay to execute private accesses in parallel
« Sharing Table: locations are Shared or Private

- Shared = S state, Private = M/E state
- Need to hold DT to update sharing table

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 {777




DMP-TM: Leveraging Speculation

store A

store P

« Execute quanta as implicit transactions

- Quanta execute speculatively in parallel
« Abort+retry if serialization was violated
- Commit quanta in order (need DT to commit)

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
14 Qxetr






Ordering+isolation = “memory renaming”
WAW/WAR are “false” conflicts




DMP-TM-Forward;:
Speculative Value Forwarding

store A store B

store P = 1oad A

« Speculatively forward values to “future” quanta

- Can potentially avoid squashes even with true
(RAW) data dependences

- Must squash yourself if data you were forwarded is
overwritten by “past” quantum

- When you squash, must squash all your consumers

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




TM-Forward Execution

24 @ steps

Same serial flow of data,
but highly parallel execution!

Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 “




Recovering Parallelism

e Sharing Table

- Parallelizes accesses to thread-private data
- Non-speculative

« TM and TM-Forward

- Speculation allows for more parallelism
- “memory renaming” means fewer squashes

« Smarter Quantum Building

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
19 Qs




Quantum Building

» Building quanta by just counting dynamic insns
IS simple, but can be slow

lock L lock L
store A store A
unlock L unlock L

3,



Naive Quantum Building: Convoying

lock L

store A

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
21 et




Smarter Quantum Building

» Enclose critical sections in a single quantum!
- Start new quantum after an “unlock”

« Other quantum building strategies in paper

lock L lock L
store A store A
unlock L unlock L

3,



Experimental Methodology

« Simulator using PIN

- Functionally models effects of serialization
- Models address conflicts, limited TM buffering
- Assume 1 IPC, free commits

« SPLASH2 benchmark suite

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (11T



Runtime Overhead

4 water-ns

4 volrend

4 radix

4 ocean-nc

benchmark

4 ocean-c

4 lu-nc

[l SharingTable

B TM-Forward
B Serial
(00]

B T™M

4 |u-c

OWOoOWwoWwoWnaonow

Qo w o
O MN~NN®©OWLWOLISTITONNN— —
u

0 <
o o

uolNoaxa [9]eJed 211SIUILWIS)BP-UOU O] PaZIjew.lou awiunl

00
o
o
Q\|
S
O
Ry
5]
_
.L-_m
Q
>
)
QO
o
@)
)
_
(9)]
S
@)
7))
7))
O
@)
@)
S
Qo
=
)
=
O
-
Bp
=
&
S
O]
e
)
Q




Runtime Overhead

S 8.0
= 7.5
S 7.0 B TM-Forward
S 65 W T™
% 6.0 [l SharingTable
S 55 M Serial
o
o 5.0
% 45
C
g 4.0
I5 3.5
8 3.0
S 2.5
c 20
e
5 1.5
8 10
T 05
=
o 0.0
8 N B~ 0 N B~ 0 N &~ 0 N B~ 0 N B~ 00 N B~ 00 N B~ N B~
o —_ —
E (@) (@) o~ < s
£ 3 : 3 3 3 S o]
C Q Q x @ ('_E
= : : 2 :
o) (7]
benchmark

Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




Runtime Overhead

8.0

7.5

7.0 M TM-Forward
6.5 B T™

C

oU-UB820

N

8
8
[

XIpel

c
2
-

-

o

x

()
o
‘©

—

®

o
9
-+—
2
£

=

(-

()
-—

(]
2

c

o]

c

®]
-
e

()
N
'©

=

—

o]

c

()
£
-+

c

-]

—

6.0 [l SharingTable
55 M Serial
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
N B~ 0 N b~ A~ 0 N >~
= 3 < 5
O -] =
(@) @
3

0-Uesd0

benchmark

Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




Runtime Overhead

7.0 B TM-Forward
6.5 B T™

6.0 [l SharingTable
55 M Serial

|

Sl ol ol

8
[4
8
[

XIpel
8

W
on
ou-n|

c
e
-

3

O

Q

x

O}
9
©

—

@©

o
2
-
2
£

=

—

0}
-+—

(]
?

c

o

c

o}
-
©
N
‘©

=

—

o

c

0}
iS
-—

c

>

[

PUSI[OA 1

SN ESN
o

S 5
] —
2 @
? 1
o @

oU-UB820

benchmark

Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




Non-deterministic events

Network I/O

File 1/0O

Thread
Scheduling

IPC

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008




Conclusions

e Determinism is a Good Thing

- Simplifies debugging, testing and (potentially)
deployment of parallel programs

- We want sequential behavior with parallel
performance

* We show several ways to build efficient DMPs

- No memory log
- Competitive performance

’ Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
09 e




Questions?

g Deterministic Multiprocessors — Joe Devietti — SHCMP 2008 (17T
30 et



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

