CoreDet:

A Compiler and Runtime System for

Deterministic Multithreaded

Execution

Tom Bergan

Owen Anderson, Joe Devietti, Luis Ceze, Dan Grossman

"

*‘iil
§‘5I|

3¢

§
i
i
b

i

H
<

i

i
€

U

0]

‘ ¢

global x=0
Thread | Thread 2

atomicity violation |5

We’re not trying to make these bugs
g0 away

We’re trying to make them come back!

|

Z

3

global x=0
Thread | Thread 2

no bug BUG!

| he Problem VVith

* Shared-memory access interleavings are a hidden
source of nondeterminism

hard to test
hard to debug

hard to replicate

hard to test
V' test inputs, not interleavings

V' software behaves as tested

hard to debug
Y no more heisenbugs!

Y’ reproduce bugs from the field

hard to replicate
v easy to synchronize replicas

Deterministic Multi

Goal: deterministic execution ...

*of arbitrary multithreaded programs
*without sacrificing scalability

Eliminate shared-memory nondeterminism
*execution is a function of inputs (including 1/O)

DMP [prior work, ASPLOS’09]:
*hardware architecture for determinism
*using ownership-tracking and transactions

LorebDet

CoreDet: deterministic execution ...

*of arbitrary, unmodified C/C++ pthreads programs
*without special hardware
*without sacrificing scalability

LorebDet

CoreDet: deterministic execution ...

*of arbitrary, unmodified C/C++ pthreads programs
*without special hardware

*without sacrificing scalability

CoreDet: deterministic execution ...

*of arbitrary, unmodified C/C++ pthreads programs
*without special hardware
*without sacrificing scalability

Contributions:
*new algorithm for deterministic execution
ruses store-buffering and relaxed memory consistency

® compiler (LLVM pass) and a runtime library
» static optimizations
» dealing with external code

|10

Related VWork

Record + I/ aAanda ‘ MNNMD ‘ﬂ....-r\nb‘
helps with ... Replay FDR, Rerun [ISCA’03,08]:
. testing] O - F)ff:nedreplay (for debugging)
- in hardware -
ebuoaing? ® sync-only
-+ - AEDUEEINE: ~ @ determinism
Y RespecM’lO]:
... replication! /
- online replay (for replicas)
assumes race | o _in software
free! ‘
needs hw! usually no yes no
FDR, Rerun,|[ASPLOS'09 | [ASPLOS'0
examples:| 1 o7

Dutline
Recap of DMP [ASPLOS 0]

DMP-Ownership
DMP-TM

What’s wrong with doing these in software!

CoreDet: less complexity than DMP-TM
with comparable scalability
DMP-Buffering not sequentially consistent!

Performance Evaluation

12

quantum

13

quantum

Thread 2

| 4

r N\
TI I > ‘4—>
T2 N - .
T3 ‘i< ‘!

time — end of round

Execution is completely serialized

|5

ASFLOS 07

T \confliét!

T2 | / >

T3 ¢ ’

To recover parallelism ...
... must resolve conflicts deterministically

by partitioning ownership (DMP-Ownership)
by using transactions (DMP-TM)

|6

MOT Parallel Serial

A N

X owned-byTl‘
y sharec’ r ::'
T2 S —
Z | owned-by T
time — end of round

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

|7

time — end of round

Start with DMP-Serial, then add transactions ...

|18

implicit
transactions commit

/—f i\ﬁ L W
T2 | £
T3 > B —
time —

Execution is parallel and transactional

19

Can we implement DMP-Ownership in CoreDet!?

V' yes (we have!)
X sub-optimal scalability
(too conservative about what can run in parallel)

Can we implement DMP-TM in CoreDet!?

X not efficiently
why not use STM!?

20

What’s wrong with STM!?

DMP-TM breaks important STM assumptions,
specifically ...

|) Transactions are rare
2) Transactions are short
3) Transactions are scoped

void foo() {

An unscoped transaction: begin_ transaction()
return

}

21

Speculation makes things hard

Good scalability by allowing parallel updates of

;:.\ :4_)

Py f S

CoreDet’s Insight:

Enable parallel updates without requiring speculation

22

Jutline

Recap of DMP [ASPLOS0%];

DMP-Ownership
DMP-TM

What’s wrong with DMP in software!
CoreDet:

DMP-Buffering

Performance Evaluation

23

Parallel Commiberial

o N 7 N
TI -1 ¢ ‘W o—y D ———
T2 k > = N D ——

time — end of round

24

| Global Memory

Parallel Commit Serial

W
TI j¢ * :I 0—:) 4—)
T2 ke > '. 1 —
T3 |1 * L Y “ >
time — end of round

Parallel mode: buffer all stores (no communication)

25

| Global Memory |
‘\ "y r Parallel Commit Serial
| r = \.f” 7 —
Tl I * [0—) ——
T2} L T B S
x=

: “ : :' .
L

ime _Stores are reqrderefnd

Parallel mode: buffer all stores (no communication)
Commit mode: deterministically publish store buffers

26

| Global Memory |

| . | Parallel Commit Serial
|
| (read/write) _ o ~ e ———
To | SR \;‘ —
time — end of round

Parallel mode: buffer all stores (no communication)
Commit mode: deterministically publish store buffers
Serial mode: used for synchronization (e.g. atomic ops)

27

Parallel mode: buffer stores locally

* ends at synchronization (atomic ops and fences), and quantum boundaries

Commit mode: publish local store buffers

* logically serial for determinism
* executes in parallel for performance

Serial mode: used for synchronization (e.g. atomic ops)

28

Dekker’s Algorithm
(there is a data race)

29

30

I9||eJed

JILWIOD

This is deterministic ...

31

... but not sequentially consistent
(cycle in the happens-before graph)

I9||eJed

JILWIOD

32

Dekker’s Algorithm (again)
Let’s remove the data race...

33

Dekker’s Algorithm
(no data race)

34

serial

parallel +

Synchronization commit

happens sequentially

~

serial

parallel +
commit

commit
35

serial

Synchronization parallel +
. ¥
is a full fence commi

serial

parallel +
commit

commit
36

serial

Synchronization parallel +
. ¥
is a full fence commi

=t [D)
—rd b ‘15
III %II
.

parallel +
commit

DMP-Buttering: Parallel Commit

=

For determinism, the commit order must be deterministic
i.e. logically serial

For performance, the commit must happen in parallel

Basic idea:
*Publish store buffers in parallel
*Preserve the commit order on collisions

38

Global Memory

addr value
value ‘ addr value

addr

Thread |

Basic idea:
*Publish store buffers in parallel
*Preserve the commit order on collisions

C pea4y L

Basic idea:
*Publish store buffers in parallel
*Preserve the commit order on collisions

Detecting collisions

*keep global record of published locations

*locks to serialize writes

i

commit

0xC

table

0xD

—

 §

* bloom filter to reduce locking overhead

5/

40

Jutline

Recap of DMP [ASPLOS 0]

DMP-Ownership
DMP-TM

What’s wrong with DMP in software!
CoreDet:

DMP-Buffering

Performance Evaluation

41

Three algorithms implemented in CoreDet:

DMP-Ownership
DMP-Buffering

DMP-PartialBuffering
- a h)’bl"id of DMP-Ownership and DMP-Buffering

- decides dynamically which data to buffer

42

EXperiment

PARSEC and SPLASH?2 benchmark suites

8-core Intel Xeon

scaled inputs to run for about a minute

Goal: in comparison to nondeterministic execution ...

What is the scalability?

What are the overheads!?

43

Speedup over same strategy with 2 cores

2.5

speedu B 4 threads
P P \ B 8 threads

Nondet Dmp-O Dmp-B Dmp-PB Nondet Dmp-O Dmp-B Dmp-PB

splash mean parsec mean

44

Runtime relative to Nondet with the same number of threads
6

5 /5.2x slowdown = i:::::::
" 8 threads

4

3

2

|

0

Dmp-O Dmp-B Dmp-PB Dmp-O Dmp-B Dmp-PB

splash mean parsec mean
45

VVrap Up

CoreDet

*cuarantees determinism in software of arbitrary
C/C++ multithreaded programs

DMP-Buffering
*uses a relaxed memory consistency model
*scales comparably to nondeterministic execution

46

Compiler details
®static optimizations
*forming balanced quanta

Runtime details

*dealing with external libraries
*threading libraries

*memory allocation

Evaluation
*more detailed performance characterization

47

Questions!

the CoreDet source code is available at
http://sampa.cs.washington.edu

48

http://sampa.cs.washington.edu

(backup slides)

49

50

51

I9|eJed

SR

Synchronization, e.g. 1ock(), must happen in serial mode
*These are atomic ops
*There is an implied fence (must flush store buffers)

JIWWOD

52

_oreDet: Implementation

A compiler (LLVM pass)
® instruments the code with calls to the runtime
® static optimizations to remove instrumentation
- escape analysis
- redundancy analysis

A runtime library
* scheduling threads
* tracks interthread communication
® deterministic wrappers for ...
- pthreads
- malloc

53

Juantum Formation

~

“Just” instruction counting

Tension between:

*Perfect counting, for maximal balance
-e.g. every basic block

*Minimal counting, for minimal overhead
-e.g. only backedges and recursive calls

Heuristic compromise:

(
|
\

N\ /

s | 50)

* Accesses to thread-local (non-escaping) objects

* Redundant accesses

y
Z

* % *** don’t need to instrument this

° X €% @

55

* Accesses to thread-local (non-escaping) objects

DMP-Buffering: requires unification-based points-to

analysis
int local;

int *p“i:fii;) ? &local : &global;
i must access through the store buffer

* Redundant accesses

y
Z

* % *** don’t need to instrument this

° X «>~—T o

56

* Accesses to thread-local (non-escaping) objects

DMP-Buffering: requires unification-based points-to

analysis
int local;

int *p“z:fii;) ? &local : &global;
i must access through the store buffer

® Redundant accesses

y
Z

® X e o o
® X e O

57

* Accesses to thread-local (non-escaping) objects

DMP-Buffering: requires unification-based points-to

analysis
int local;
int *p =N...) ? &local : &global;

* Redundant accesses

y
Z

[J X e o o

_don’t need to instrument this

° X ©«o—C ©

DMP-Buffering: this does not apply

58

We do not instrument external shared libraries, such
as the system libc
| .External calls must be serialized

Preventing over-serialization:

*We check indirect calls at runtime

*We provide deterministic wrappers for common libc
functions, e.g. memcpy and malloc

*We do not serialize pure 1ibc functions, e.g. sqrt

59

