ClS-800-003:

Joe Devietti
9 Jan 2013

OpICS IN

Parallel

Programmability



and now, your host...

¢ devietti@cis

e Office hours: by appointment

e | evine 572



Anatomy of a class

e short presentation on paper(s) - 20 minutes
e discussion questions - 45 minutes

e [optional] context for next research topic - 15 minutes



Course Mechanics (1/2)

® paper presentations

* “reading quizzes” on Blackboard

e a few questions about each paper

e due the morning before class



Course Mechanics (2/2)

e Future Work™ Fridays!

e half a page on an idea related to a paper we've read that week

e due most Fridays, via Blackboard

e | arger future work write-up

® 2 pages

e due at the end of the semester

e Upgrade one of your previous ideas, or something new



Course Mechanics (3/2)

® NO exams Or projects

® NO Sstress!



Sequential Consistency



http://www.maverix.org
http://www.maverix.org

What is sequential consistency”



What is sequential consistency”

operational



What is sequential consistency”

operational mathematical



SC = “the most intuitive memory model”



SC = “the most intuitive memory model”

byte b = 3;



SC = “the most intuitive memory model”

byte b = 3;

long X = G;



SC = “the most intuitive memory model”

byte b = 3;

long X = G;

X++;



SC sample execution

X == 0 && y == 0

X = 1; y = 1;
r ; r

2 =

)
X

10



SC sample execution

X == 0 && y == 0

X = 1; y = 1;
r . r’é = X;

canrl == 0 && r2 == 0%

10



SC sample execution

X == 0 && y == 0

X = 1; y = 1;
r r’é = X;

canrl == 0 && r2 == 0%

X = 1; y = 1;
rl = vy; re = X;
y = 1; x = 1;
reé = X; rl = vy;



SC sample execution

X == 0 && y == 0

X = 1; y = 1;
r r’é = X;

canrl == 0 && r2 == 0%

X = 1; y = 1; X = 13
rl = vy; r2 = Xx; y = 1;
y = 1; X = 1; re = X;
r2 = x; rl =y, rl =vy;

= O X

XL

10



SC sample execution

X == 0 && y == 0

X = 1; y = 1;
r r’é = X;

canrl == 0 && r2 == 0%

X = 1; y = 1; X = 1;
rl = vy; r2 = Xx; y = 1;
y = 1; X = 1; re = X;
r2 = x; rl =y, rl =vy;
y = 1; y = 1;
X = 1; X = 1;
rZ = X; rl = vy;



double-checked locking

class Foo {
private Singleton s = null;
public Singleton getS() {
1f (s == null) {
} S new Singleton();

return s;

¥
}

11



double-checked locking

class Foo {
private,/Singleton s = null;
public"Singleton getS() {
1f (s == null) {
} S new Singleton();

return s;

¥
}

11



Turn-based mutual exclusion

turn = 0;

while (turn != me) {}
// critical section

turn (turn+l) % NUM_THREADS;



Dekker’s algorithm

flag[O]
flag[1]
turn

flag[0] = true;
while (flag[l] == true) {
1f (turn = 0) {
flag[0] = false;

while (turn = 0) {}
flag[0] = true;

}
}
// critical section
turn = 1;
flag[0] = false;

false
false

13



flag[0]

while (flagl[1]

= true;

Dekker’s algorithm

flag[O]
flag[1]
turn

== true) {

it (turn = 0) {
flag[0] = false;

while (turn = 0) {}
flag[0] =

¥
¥

true;

// critical section

turn
flag[0]

1;
false;

false
false

0

flag[1l] = true;
while (flag[0] == true) {
1t (turn = 1) {
flag[l] = false;

while (turn = 1) {}
flag[1l] = true;

}
}
// critical section
turn = 0;
flag[l] = false;

13



How do we implement SC?

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution

14



How do we implement SC?

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution

Processors iIssue memory
requests In program order

a memory module services
requests from a FIFO queue

there may be multiple memory modules

14



