
Question 1
What is Lamport's optimization for loads that are enqueued after a
store to the same location?

1.No such optimization is proposed.
2.The load is reordered to before the store for a faster response time.
3.The load returns the value of the store but remains in the queue.
4.The load immediately returns the value from the store and is not

enqueued.

Question 2
Lamport writes "We need only require that all requests *to the same
memory cell* be serviced in the order that they appear in the queue."
Which of the following statements would be true if we defined a
memory cell as a single bit?

1.It would be impossible to obtain mutual exclusion for any number of
threads. E.g., Dekker's algorithm would no longer work.

2.Programming would be more difficult because if two threads write
two different values V0 and V1 to the same byte B in memory, the
resulting value for B could be a mixture of V0 and V1.

3.Sequential consistency would no longer hold.
4.There would be increased memory parallelism as memory requests

to distinct bits could complete in any order.
1

Question 4
Under TSO, write buffers must service requests in FIFO order. The FIFO
order must be consistent with which one of the following orders?

1.program order
2.no order in particular
3.address order

Question 5
When would you need to use a FENCE instruction on a SC processor?

1.never
2.between loads and stores to different addresses
3.when implementing Dekker's algorithm for 3 threads
4.between loads and stores to the same address

Question 6
What is the main advantage of TSO over SC?

1.performance
2.clarity of specification
3.ease of understanding
4.fewer letters in acronym

2

Question 3
Just something to think about for next class: Lamport's scheme allows
memory requests to different memory cells to be handled in an
unordered fashion. But on the processor side, all memory requests
must occur sequentially in program order (due to Requirement R1).

Can we extend Lamport's scheme to perform reordering on the
processor side? That is, if we have two requests A and B and we know
that A and B access distinct memory cells, can we safely reorder the
accesses? Are there only certain conditions under which reordering is
ok, or can we always reorder?

3

InspectedbyNo27@flickr

http://www.flickr.com/photos/ccastro/
http://www.flickr.com/photos/ccastro/

What is Total Store Order?

operational formal

5

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 43

possibly after it in memory order), with option (b) taking precedence (i.e., write buffer bypassing
overrides the rest of the memory system).

(3) Part (1) must be augmented to define FENCEs: /* Change 4: FENCEs Order Every-
thing */

If L(a) p FENCE  L(a) m FENCE /* Load  FENCE */
If S(a) p FENCE  S(a) m FENCE /* Store  FENCE */
If FENCE p FENCE  FENCE m FENCE /* FENCE  FENCE */
If FENCE p L(a)  FENCE m L(a) /* FENCE  Load */
If FENCE p S(a)  FENCE m S(a) /* FENCE  Store */

Because TSO already requires all but the Store  Load order, one can alternatively define
TSO FENCEs as only ordering:

If S(a) p FENCE  S(a) m FENCE /* Store  FENCE */
If FENCE p L(a)  FENCE m L(a) /* FENCE  Load */

We choose to have TSO FENCEs redundantly order everything because doing so does not
hurt and makes them like the FENCEs we define for more relaxed models in the next chapter.

We summarize TSO’s ordering rules in Table 4.4. This table has two important differences
from the analogous table for SC (Table 3.4). First, if Operation #1 is a store and Operation #2 is

•
•
•
•
•

•
•

TABLE 4.4: TSO Ordering Rules. An “X” Denotes an
Enforced Ordering. A “B” Denotes that Bypassing is

Required if the Operations are to the Same Address. Entries
that are Different from the SC Ordering Rules are Shaded

and Shown in Bold.

52

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p FENCE ==> FENCE <m FENCE /* FENCE-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

• If FENCE <p S(a) ==> FENCE <m S(a) /* FENCE-->Store */

Because TSO already requires all but the Store --> Load order, one can alternatively define TSO

FENCEs as only ordering:

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

We choose to have TSO FENCEs redundantly order everything, since doing so doesn’t hurt and makes

them like the FENCEs we define for more relaxed models in the next chapter.

We summarize TSO’s ordering rules in Table 4-4. This table has two important differences from the

analogous table for SC (Table 3-4). First, if Operation #1 is a store and Operation #2 is a load, the entry at

that intersection is a “B” instead of an “X”; if these operations are to the same address, the load must obtain

the value just stored even if the operations enter memory order out of program order. Second, the table

includes FENCEs, which were not necessary in SC; an SC system behaves as if there is already a FENCE

before and after every operation.

We conjecture that the x86 memory model is equivalent to TSO (for normal cacheable memory and

normal instructions). AMD and Intel publicly define the x86 memory model with examples and prose in a

process that is well summarized in Section 2 of Sewell et al. [7]. All examples conform to TSO and all

prose seems consistent with TSO. This equivalence can be proven only if a public, formal description of

TABLE 4-4. TSO ordering rules. An “X” denotes an
enforced ordering. A “B” denotes that bypassing is

required if the operations are to the same address. Entries
that are different from the SC ordering rules are shaded

and shown in bold.

Operation 2

Load Store RMW FENCE

O
pe

ra
tio

n
1 Load X X X X

Store B X X X
RMW X X X X
FENCE X X X X

6

SC sample execution

1 => x;
r1 <= y;

1 => y;
r2 <= x;

7

x == 0 && y == 0

SC sample execution

1 => x;
r1 <= y;

1 => y;
r2 <= x;

can r1 == 0 && r2 == 0?

7

x == 0 && y == 0

Dekker’s algorithm

8

flag[0] = false
flag[1] = false
turn = 0

flag[0] = true;
while (flag[1] == true) {
 if (turn ≠ 0) {
 flag[0] = false;

 while (turn ≠ 0) {}

 flag[0] = true;
 }
}

// critical section

turn = 1;
flag[0] = false;

Flag-based synchronization

// wait for condition
while (!ready) {}

// go for it...

boolean ready = false;

Flag-based synchronization

// wait for condition
while (!ready) {}

// go for it... // initialize...

ready = true;

boolean ready = false;

