Rodinia Benchmark Suite

CIS 601 Paper Presentation
3/16/2017
Grayson Honan, Shreyas Shivakumar, Akshay Sriraman
Introduction

- What is Rodinia?
 - Benchmarking suite for heterogeneous computing
 - Applications (inspired by Berkeley’s dwarf taxonomy) and kernels to run on multi-core CPUs (OpenMP), GPUs (CUDA) and *OpenCL*

- Why?
 - Standard benchmark program to compare platforms
 - Identify performance bottlenecks, evaluate solutions and study emerging platforms (GPUs)
 - Illustrate architectural differences between CPUs and GPUs
Introduction

● How?
 ○ By quantitatively measuring parallel communication patterns, synchronization techniques, power consumption and the effect of data layouts and bandwidth limitations
 ○ Each application / kernel is chosen to represent different types of behaviour - *Berkeley Dwarves* (*9 dwarves at the time of writing*)

● Quick Disclaimer : *This paper was written in 2009, and much has changed since. We have tried to include as much up to date information as possible.*
Q1. What are Berkeley Dwarves?
Introduction

- Berkeley Dwarves:
 - Algorithmic method that captures a pattern of computation and/or communication
 - Specified at high levels of abstraction to allow reasoning across a broad range of applications
 - Implementations may be different but the underlying patterns will persist through generations of changes
 - *While they are useful guiding principles, may not sufficiently ensure adequate diversity.
Introduction

List of Dwarfs

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce
8. Combinational Logic
9. Graph Traversal
10. Dynamic Programming
11. Backtrack and Branch-and-Bound
12. Graphical Models
13. Finite State Machines

K-Means

Particle Filters

Back Propagation

Monte Carlo Simulations

Breadth First Search

Knapsack Problem

Huffman Encoding
Introduction

- Observations (GPU)
 - Low ratio of on-chip storage to #threads
 - Compensated for with specialized memory spaces (Shared Memory, Constant Memory, Texture Memory)
 - Lack of persistence in Shared Memory is less efficient for communication between kernels
 - No easy way for run-time load balancing among threads
 - High kernel-call and data-transfer costs
Q2. I see that some of these benchmarks use texture memory too. I thought texture memory was only used for graphics applications. What is texture memory and how does it differ from constant memory?
Texture Memory

- Read only - cached memory
- Traditionally designed for graphics
- Memory is stored on chip, provides higher effective bandwidth
- Used when you read memory often
- Large datasets, spatial locality read access patterns
 - “The first thing to keep in mind is that texture memory is global memory. The only difference is that textures are accessed through a dedicated read-only cache, and that the cache includes hardware filtering which can perform linear floating point interpolation as part of the read process.”
Motivation

- What to expect from a benchmark for GP computing?
 - Supports diverse applications with broad range of communication patterns
 - State-of-the-art algorithms
 - Input sets for testing different situations
- At the time of writing, most of the previous benchmarks focused on serial and parallel applications for conventional GP-CPU architectures rather than heterogeneous architectures.
Motivation

- **Compare two architectures** and identify inherent architectural advantages
- Decide **what hardware features should be included** in the limited area budgets
- Help compiler efforts to **port existing CPU languages/APIs to the GPU** by providing reference implementations
- Provides software developers with **exemplars** for different applications
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Serial / Parallel</th>
<th>GPU / CPU</th>
<th>Purpose</th>
<th>Updated Since</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC</td>
<td>S</td>
<td>CPU</td>
<td>GP-CPU</td>
<td>Yes</td>
</tr>
<tr>
<td>EEMBC</td>
<td>S</td>
<td>CPU</td>
<td>GP-CPU</td>
<td>Yes+</td>
</tr>
<tr>
<td>SPLASH-2</td>
<td>S / P</td>
<td>CPU</td>
<td>GP-CPU</td>
<td>No*</td>
</tr>
<tr>
<td>PARSEC</td>
<td>S / P</td>
<td>CPU</td>
<td>GP-CPU</td>
<td>Yes</td>
</tr>
<tr>
<td>MineBench</td>
<td>S / P</td>
<td>GPU</td>
<td>Data Mining</td>
<td>Yes</td>
</tr>
<tr>
<td>MediaBench</td>
<td>S / P</td>
<td>GPU</td>
<td>Multimedia</td>
<td>Yes</td>
</tr>
<tr>
<td>ALP-Bench</td>
<td>S / P</td>
<td>GPU</td>
<td>Multimedia</td>
<td>No*</td>
</tr>
<tr>
<td>BioParallel</td>
<td>S / P</td>
<td>GPU</td>
<td>Biomedical</td>
<td>No+</td>
</tr>
<tr>
<td>Parboil</td>
<td>S / P</td>
<td>GPU</td>
<td>GP-GPU</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The Rodinia Benchmark Suite

• Uses **Berkeley Dwarves as guidelines** for selecting benchmarks
• **Contains four applications and five kernels**
 ○ CPUs - Parallelized with **OpenMP**
 ○ GPUs - **CUDA**
 ○ **Similarity Score - Mars’ MapReduce API**
• Workloads chosen to exhibit
 ○ Parallelism
 ○ Data access patterns
 ○ Data sharing characteristics
The Rodinia Benchmark Suite

TABLE I

Rodinia Applications and Kernels (DENOTES KERNEL**).**

<table>
<thead>
<tr>
<th>Application / Kernel</th>
<th>Dwarf</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-means</td>
<td>Dense Linear Algebra</td>
<td>Data Mining</td>
</tr>
<tr>
<td>Needleman-Wunsch</td>
<td>Dynamic Programming</td>
<td>Biinformatics</td>
</tr>
<tr>
<td>HotSpot*</td>
<td>Structured Grid</td>
<td>Physics Simulation</td>
</tr>
<tr>
<td>Back Propagation*</td>
<td>Unstructured Grid</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>SRAD</td>
<td>Structured Grid</td>
<td>Image Processing</td>
</tr>
<tr>
<td>Leukocyte Tracking</td>
<td>Structured Grid</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>Breadth-First Search*</td>
<td>Graph Traversal</td>
<td>Graph Algorithms</td>
</tr>
<tr>
<td>Stream Cluster*</td>
<td>Dense Linear Algebra</td>
<td>Data Mining</td>
</tr>
<tr>
<td>Similarity Scores*</td>
<td>MapReduce</td>
<td>Web Mining</td>
</tr>
</tbody>
</table>
The Rodinia Benchmark Suite - Workloads

<table>
<thead>
<tr>
<th>Workload</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte Tracking (LC)</td>
<td>Detect and track rolling leukocytes in video microscopy</td>
</tr>
<tr>
<td>S.R Anisotropic Diffusion (SRAD)</td>
<td>Removing speckles in an image without sacrificing features</td>
</tr>
<tr>
<td>HotSpot (HS)</td>
<td>Thermal simulation tool to estimate processor temperature</td>
</tr>
<tr>
<td>Back Propagation (BP)</td>
<td>Train neural networks by propagating error and updating weights</td>
</tr>
<tr>
<td>Needleman-Wunsch (NW)</td>
<td>DNA sequence alignment by score evaluation</td>
</tr>
<tr>
<td>K-Means (KM)</td>
<td>Clustering by finding centroids and adding points until convergence</td>
</tr>
<tr>
<td>Stream Cluster (SC)</td>
<td>Online clustering with a predetermined number of medians</td>
</tr>
<tr>
<td>Breadth First Search (BFS)</td>
<td>Traverse connected components in a graph</td>
</tr>
<tr>
<td>Similarity Score (SS)</td>
<td>Computing pairwise similarity between pairs of web documents</td>
</tr>
</tbody>
</table>
The Rodinia Benchmark Suite

- **CUDA**
 - GTX 280 GPU | 30 SM, 8 SPs : 240 SPs | 16kB SMPB | 1GB
 - “SM contains 8 SP. These SMs only get one instruction at time which means that the 8 SPs all execute the same instruction. This is done through a warp where the 8 SPs spend 4 clock cycles executing a single instruction”[1]

- **CUDA vs OpenMP**
 - More fine-grained specification of tasks
 - Reductions must be handled manually

Methodology and Experiment Design

- Is the suite diverse enough? - Diversity Analysis
- Does the style of parallelization and optimization affect different target platforms? - Parallelization and Speedup
- To quantitatively evaluate the communication overhead between GPUs and CPUs - Computation & Communication
- Do synchronization primitives and strategies affect performance? - Synchronization
- Do both approaches (CPU, GPU) affect power-efficiency differently? - Power Consumption
Q5. Does this synchronization refer to synchronizing all the threads only in a block? Also, is this "overhead" occurring because in a kernel, the next task can't be started before all the threads in the previous task are done executing, hence the delay?
Diversity Analysis

- Microarchitecture Independent Workload Characterization (MICA) - A plugin for Linux PIN tool capable of characterizing the kernels independently from its running architecture by monitoring non-hardware features.
- Fairly accurate despite being compiler dependent. **Eg: SSE**
- Diversity of applications under consideration is shown in figure 1.
- GPU speedup - 5.5 to 80.8 times over single core and 1.6 to 26.3 times over quad-core CPUs excluding I/O and initial setup.
- LC, SRAD and HS - compute intensive.
- NW, BFS, KM and SC - memory bandwidth limited. **DS dependent.**
- SC, KM and SRAD mask memory latency with data parallelism.
Fig. 1. Kiviat diagrams representing the eight microarchitecture-independent characteristics of each benchmark.

1. Prob register dependence dist. ≤ 16
2. Branch predictability
3. Percentage arithmetic operations
4. Data working set size (32-byte block)
5. Prob. local store stride = 0
6. Prob. global store stride < 8
7. Prob. local store stride < 8
8. Prob. local store stride ≤ 4096

Fig. 2. The speedup of the GPU implementations over the equivalent single- and four-threaded CPU implementations. The execution time for calculating the speedup is measured on the CPU and GPU for the core part of the computation, excluding the I/O and initial setup. Figure 4 gives a detailed breakdown of each CUDA implementation’s runtime.
Parallelization and Optimization

- After performance, GPU optimizations: CPU-GPU communications & memory coalescing. Neighbouring threads access sequential memory. **Eg: BFS**
- Caching is a good for large read-only data structures.
- If sufficient parallelism is available, then gains from efficient thread-bandwidth usage can mask memory access latencies.

Fig. 3. Incremental performance improvement from adding optimizations
Computation and Communication

- Programs with largest problem sizes have highest miss-rates. True!
- Amdahl’s law!
- Disjoint CPU-GPU address spaces needs translation.
- Moving work to GPU despite higher CPU efficiency can be beneficial if it reduces CPU-GPU communication. (Fig *)
Synchronization (CUDA)

- **Intra-block synchronization**
 - Use `__syncthreads()` to synchronize within a thread block

- **Global (inter-block) synchronization**
 - Multiple kernel launches are required
 - This adds significant overhead

- **Atomic instructions**
 - These have likely improved over time, but authors note bandwidth was poor circa 2009
 - We weren’t able to find a recent paper to update this assessment

- **Conclusion?**
 - Keep synchronization and communication **local to thread blocks whenever possible**
Table II (CUDA Synchronization)

TABLE II

APPLICATION INFORMATION. KN = KERNEL N; C = CONSTANT MEMORY; CA = COALESCED MEMORY ACCESESSES; T = TEXTURE MEMORY; S = SHARED MEMORY.

<table>
<thead>
<tr>
<th></th>
<th>KM</th>
<th>NW</th>
<th>HS</th>
<th>BP</th>
<th>SRAD</th>
<th>LC</th>
<th>BFS</th>
<th>SC</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads Per Block</td>
<td>128/256</td>
<td>16</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>128/256</td>
<td>512</td>
<td>512</td>
<td>128</td>
</tr>
<tr>
<td>Kernels</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Barriers</td>
<td>6</td>
<td>70</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Lines of Code</td>
<td>1100</td>
<td>430</td>
<td>340</td>
<td>960</td>
<td>310</td>
<td>4300</td>
<td>290</td>
<td>1300</td>
<td>100</td>
</tr>
<tr>
<td>Optimizations</td>
<td>C/CA/S/T</td>
<td>S</td>
<td>S/Pyramid</td>
<td>S</td>
<td>S</td>
<td>C/CA/T</td>
<td>S</td>
<td>S/CA</td>
<td></td>
</tr>
<tr>
<td>Problem Size</td>
<td>819200 points, 34 features</td>
<td>2048×2048 data points, 500×500 data points, 65536 input nodes, 2048×2048 data points, 219×640 pixels/frame, 10^6 nodes, 65536 points, 256 dimensions, 256 points, 128 features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU Execution Time</td>
<td>20.9 s</td>
<td>395.1 ms</td>
<td>3.6 s</td>
<td>84.2 ms</td>
<td>40.4 s</td>
<td>122.4 s</td>
<td>3.7 s</td>
<td>171.0 s</td>
<td>33.9 ms</td>
</tr>
<tr>
<td>L2 Miss Rate (%)</td>
<td>27.4</td>
<td>41.2</td>
<td>7.0</td>
<td>7.8</td>
<td>1.8</td>
<td>0.06</td>
<td>21.0</td>
<td>8.4</td>
<td>11.7</td>
</tr>
<tr>
<td>Parallel Overhead (%)</td>
<td>14.8</td>
<td>32.4</td>
<td>35.7</td>
<td>33.8</td>
<td>4.1</td>
<td>2.2</td>
<td>29.8</td>
<td>2.6</td>
<td>27.7</td>
</tr>
</tbody>
</table>
NW and SS have among the worst speedups compared to CPU implementations
 ○ This could partially be attributed to the relatively large amount of synchronization needed
 ○ But there are of course other factors at play

Fig. 2. The speedup of the GPU implementations over the equivalent single- and four-threaded CPU implementations. The execution time for calculating the speedup is measured on the CPU and GPU for the core part of the computation, excluding the I/O and initial setup. Figure 4 gives a detailed breakdown of each CUDA implementation’s runtime.
Synchronization (OpenMP)

- Parallel constructs have implicit barriers
 - "Upon completion of the parallel construct, the threads in the team synchronize at an implicit barrier, [...]"[1]

- Programmers also have a rich set of synchronization features
 - e.g. ATOMIC directive
 - #pragma omp atomic expression
 - Parameters: expression - The statement containing the lvalue whose memory location you want to protect against multiple writes.

Table II (OpenMP)

TABLE II
APPLICATION INFORMATION. KN = KERNEL N; C = CONSTANT MEMORY; CA = COALESCED MEMORY ACCESSES; T = TEXTURE MEMORY; S = SHARED MEMORY.

<table>
<thead>
<tr>
<th>KM</th>
<th>NW</th>
<th>HS</th>
<th>BP</th>
<th>SRAD</th>
<th>LC</th>
<th>BFS</th>
<th>SC</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads Per Block</td>
<td>128/256</td>
<td>16</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>128/256</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Kernels</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Barriers</td>
<td>6</td>
<td>70</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lines of Code²</td>
<td>1100</td>
<td>430</td>
<td>340</td>
<td>960</td>
<td>310</td>
<td>4300</td>
<td>290</td>
<td>1300</td>
</tr>
<tr>
<td>Optimizations</td>
<td>C/CA/S/T</td>
<td>S</td>
<td>S/Pyramid</td>
<td>S</td>
<td>S</td>
<td>C/CA/T</td>
<td>S</td>
<td>S/CA</td>
</tr>
<tr>
<td>Problem Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU Execution Time³</td>
<td>1.0 s</td>
<td>33.9 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 Miss Rate (%)</td>
<td>27.4</td>
<td>41.2</td>
<td>7.0</td>
<td>7.8</td>
<td>1.8</td>
<td>0.06</td>
<td>21.0</td>
<td>8.4</td>
</tr>
<tr>
<td>Parallel Overhead (%)</td>
<td>14.8</td>
<td>32.4</td>
<td>35.7</td>
<td>33.8</td>
<td>4.1</td>
<td>2.2</td>
<td>29.8</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Parallel Overhead = \((T_p - T_s) / p \), where \(T_p \) is execution time on \(p \) processors and \(T_s \) is sequential execution time
SRAD and LC are helped dramatically by parallelization

- The authors attribute this to highly independent computations within the SRAD and LC kernels
- But there are of course other factors at play

Fig. 2. The speedup of the GPU implementations over the equivalent single- and four-threaded CPU implementations. The execution time for calculating the speedup is measured on the CPU and GPU for the core part of the computation, excluding the I/O and initial setup. Figure 4 gives a detailed breakdown of each CUDA implementation’s runtime.
Power Consumption

- Power benchmarks were done for each kernel’s three versions: GPU, single CPU core, and four CPU cores
- **Extra power dissipation**
 - Power\textsubscript{idle} - Power\textsubscript{kernel}
 - The authors’ system idles at 186 W, which includes the idle power of the GPU
- The authors seem to be using some notion of average power, although in our opinion, an energy measurement might’ve been more interesting
Figure 5 (Some interesting results)

- In BP, SS, and KM, the GPU consumes less power than the four CPU cores.
 - Why? The answer differs for each kernel, but here are some contributing factors: KM exploits special GPU memory, KM and BP don’t use much shared memory, etc.

Fig. 5. Extra power dissipation of each benchmark implementation in comparison to the system’s idle power (186 W).
Figure 5 (Some interesting results)

- In BP, SS, and KM, the GPU consumes less power than the four CPU cores.
- For NW, the CPU and the GPU consume similar amounts of power.

Fig. 5. Extra power dissipation of each benchmark implementation in comparison to the system’s idle power (186 W).
Figure 5 (Some interesting results)

- **Speedup per watt**
 - It’s mostly more efficient to run on GPU
 - e.g., SRAD dissipates 24% more power on GPU than on four-core CPU, but speedup over multicore is 5.0
 - **NW** efficiency is **roughly the same** in GPU and CPU
 - Why? NW presents little parallelism within its diagonal strip access pattern

![Graph showing power dissipation for different benchmarks]

Fig. 5. Extra power dissipation of each benchmark implementation in comparison to the system’s idle power (186 W).
A small side note...

- Can someone explain this to me?
 - Smallest difference in efficiency occurs when running KM (difference of 0.0027)
 - Did the authors mean KM?
 - This seems to make sense, if you consider the speedup for KM was only 1.6x!
Can you briefly describe what causes the GPU to require more energy for the execution of their workloads?
Can you briefly describe what causes the GPU to require more energy for the execution of their workloads?

In general, GPUs are executing the workload faster and more efficiently (see previous speedup per watt slide). Like any trade off, we don’t get this speedup for free: we’re paying for the speedup with additional power dissipation.
Discussion (CUDA)

- Data structure mapping
 - Programmers must map their application’s data structures to the CUDA domain (CUDA loves matrices)

- Global memory fence
 - The lack of a global memory fence forces programmers to launch multiple kernel to synchronize (costly overhead)

- Memory transfer
 - Disjoint memory spaces adds to overhead, but CUDA does provide a streaming interface
 - Overlaps computations with memory transfers

- Offloading Decision
 - It isn't always intuitive what to run on a GPU

- Resource considerations
 - Per-thread storage is tiny in the register file, texture cache, and shared memory
In the "Memory Transfer" section, it’s stated that batch kernel calls can work efficiently only if "there is no CPU code between GPU kernel calls, and there are multiple independent streams of work." How could intermediate CPU code execution affect the kernel calls since they are being executed in different hardware?
In the "Memory Transfer" section, it's stated that batch kernel calls can work efficiently only if "there is no CPU code between GPU kernel calls, and there are multiple independent streams of work." How could intermediate CPU code execution effect the kernel calls since they are being executed in different hardware?

We think the key phrase here is “work efficiently”... You can introduce intermediate CPU code, but this wouldn’t always hide the memory transfer as efficiently.

Discussion (OpenMP)

- Compiler directives, library routines, etc. give programmers control over parallelism
- Programmers still must determine what to parallelize
- Programmers still must avoid data races
Discussion (OpenCL)

- **OpenCL platform and memory models** are very similar to CUDA
- If Rodinia applications were implemented in OpenCL, many of the same lessons and optimizations could be applied
 - Today, we have good OpenCL support in Rodinia
Discussion (PGI generated GPU code)

- Paper recommendation: **Directive-Based Compilers for GPUs**
 - Swapnil Ghike, Ruben Gran, Maria J. Garzaran, and David Padua, 2015
 - “In terms of performance, the versions compiled Cray performed faster than the ones of PGI compiler for 8 out of 15 Rodinia benchmarks. In comparison to fine-tuned CUDA versions, 6 out of 15 heterogeneous versions ran over the 85% of the CUDA performance. This shows the potential of these heterogeneous directives-based compilers to produce efficient code and at the same time increase programmer productivity.”