
The Dual-Path Execution Model for
Efficient GPU Control Flow

Minsoo Rhu, Mattan Erez
HPCA 2013

Presented by DJ Park, Romita Mullick, Hans Giesen

Outline

● Background
○ Stack-based reconvergence
○ Dynamic warp subdivision

● Dual-path execution model
● Evaluation
● Conclusion

Stack-Based Reconvergence

● When the control flow of different threads within a single warp diverges,
execution of concurrent control paths is serialized with every divergence.

● Threads reconverge at the immediate post-dominator(PDOM) instruction of
that branch

Stack-Based Reconvergence

● The way to implement reconvergence: treat control flow execution as a
serial stack

● Each time control diverges, both the taken and not taken paths are pushed
onto a stack (in arbitrary order) and the path at the new top of stack is
executed

● When the control path reaches its reconvergence point, the entry is popped
off of the stack and execution now follows the alternate direction of the
diverging branch.

Reconvergence stack and its operation

Reconvergence stack and its operation

Reconvergence stack and its operation

Reconvergence stack and its operation

Reconvergence stack and its operation

Reconvergence stack and its operation

Reconvergence stack and its operation

Deficiencies:
- SIMD utilization decreases every time control flow diverges
- Execution is serialized

In Figure 2, are the idle slots in between block B the memory I/O
time(cache-miss)?

Yes, cache-miss, long memory latency, etc

Dynamic Warp Subdivision
● Allow warps to interleave the scheduling of instructions from concurrently

executable paths(left and right paths)

● A divergent branch may either utilize the baseline single-path stack, or
instead, ignore the stack and utilize an additional hardware structure, the
warp-split table (WST), which is used to track the
independently-schedulable warp-splits

● Warp-split: independent scheduling entities and are treated equally as
warps by the scheduler (the left and right paths of a divergent)

DWS operation

When BRB-C is executed, the warp is not subdivided
because the number of instructions in block
G(PDOM, and it has 3 insns) is larger than the
subdivision threshold(which is 2 for this case).

DWS operation

BRD-E has a PDOM(F has 1 insn) smaller than the
threshold(2) which allows the warp to be subdivided.

DWS operation

Note that RPC for two entries in warp-split table is G, not F

DWS operation
Compared with baseline architecture: increases parallelism and potential latency hiding

Deficiency: reduced SIMD utilization (the stack could have reconverged nested branches whereas
the WST cannot)

Comparing figure 3 & 4, I am a little confused here. In dual path
method (figure 4), the three threads of block F is executed all at the
same time. However, in DWS (figure 3), lane 1 was executed first. Could
the presenter elaborate the comparison between DWS and dual path
method?

Warp-splits continue executing asynchronously and keep being
subdivided upon future divergent branches until they reach the PDOM
associated with the top of the reconvergence stack

Motivation
● Single Path Execution maximizes SIMD utilization with structured control

flow, but always serializes execution with only a single path schedulable
at any given time

● Dynamic Warp Subdivision can interleave the scheduling of multiple
paths and increase TLP, but this sacrifices SIMD lane utilization

● Goal: matches the utilization and SIMD efficiency of the baseline SPE
while still enhancing TLP in some cases

Dual-Path execution model
● Dual-Path stack structure

○ Idea: instead of pushing the taken and fall-through paths onto the
stack one after the other, in effect serializing their execution, the
two paths are maintained in parallel.

○ Stack entry:
■ PC and active mask value of the left path (Path L)
■ PC and active mask value of the right path (Path R)
■ The RPC (reconvergence PC) of the two paths

Dual-Path execution

Dual-Path execution

Dual-Path execution

Dual-Path execution

Dual-Path execution

Dual-Path execution

Dual-Path execution
Compared with baseline architecture

Scoreboard
● Per-warp scoreboard to track data

dependencies.
● Content-addressable-memory (CAM) structure:

indexed with a register number and a warp ID
which returns whether that register is pending
write-back for that warp

● Once an instruction is scheduled for execution,
the scoreboard is updated to show the
instruction’s destination register as pending.

● The pending P bit set for a register indicates that
register has a pending write and all other
registers dependent on that register must stall

● When the register is written back, the
scoreboard is updated and the pending bit is
cleared.

● A cleared P bit indicates the registers dependent
on this register can proceed

Scoreboard
● In DPE, 2 divergent sub-warps can execute

concurrently. To support concurrent paths per
warp, the scoreboard scope is doubled to keep
track of registers in both left and right paths
separately.

● There exists a Shadow bit, S, in addition to the
Pending P bit.

● P set indicates the register has a pending write
● P is copied to S when that register reaches a

path divergence/ reconvergence
● While querying scoreboard, a register in a path

checks the P in its own scoreboard or the S in
the other path’s scoreboard.

● If either is set, means the current path must
stall

Scoreboard

Hit vs Miss ?

● Or-ring the scoreboards’ outcomes for each path
● Hit if P in its own path or S in other’s path is set
● Hit indicates path has data dependency and must stall to ensure correct

execution when diverging and reconverging.
● Miss means path has no dependencies and can execute

Scoreboard
Scoreboard inserts stalls under the following scenarios:

1. Before/After Divergence
Path C reads r0, but must stall till r0 is written to by
path A (true RAW dependency)

2. Before/After Reconvergence
Reading r7 on path G must stall till r7 is written on
path F before reconvergence (true RAW dependency)

3. Registers with same register number but on different
concurrent paths are unrelated but will be treated as
false RAW dependency and insert stall

4. If the register number on two different paths is a
destination in both paths concurrently, then writes to
this register number from the two paths are actually
unrelated but will be treated as a false WAW
dependency. The score board will make the writes stall

Scoreboard example
To illustrate how the scoreboard uses the P
and S bits to check these dependencies across
the 2 paths we have the following examples.

Initially, path A on the left path loads r0. Path A
has a pending write and sets P.

Later, when A reaches the BR(B-C) divergence,
P is copied to S

Scoreboard example
When path C on the right path executes, it
checks the S bit of the left path for r0. It finds S
set which tells path C that path A has a
pending write to r0 from pre-divergence.

Hence, C must wait/stall till A writes to r0.

Scoreboard example
Once A is done loading r0, it clears its P and S bits.
C can now proceed with its read of r0.

Next, path B on the left path is loading r1 and sets
P on the left path to indicate a pending write to r1.

When B encounters BR(D-E) divergence, its P gets
copied to S and S gets set.

Path D on the left path checks P on the same left
path for r1 and stalls.

Path E on the right path checks S on the left path
for r1 and stalls.

D and E stalled due to a false RAW hazard because
r1 for D/E is unrelated to r1 for B.

Scoreboard example
Path F on the right path is loading r7 and sets
P.

When F reaches reconvergence, P is copied to
S and S gets set.

Path G on left path checks S on the right path
for r7 and finds it set, indicating a pending
write. Hence, G stalls till S gets cleared.

This introduces a true RAW dependency.

Q. In Figure 7b the Pending bit is set for the register R1. Is it only
cleared when all instructions (B , D and E who are changing R1)
complete?

A. Pending bit is cleared when path B is done writing to r1. When B
completes its write to r1, it clears both Pending and Shadow bits,
indicating to other paths that its no longer having a pending write

Q. I don't think I fully understand what the scoreboard does. What does it
mean to allow threads within the same warp to be issued Back-to-back?

A. The scoreboard is meant to keep track of true or false data dependencies
between registers used in the left and right paths. The scoreboard is
responsible for stalling dependent paths to ensure they get the correct
values.

1 scoreboard structure for each warp. “Back to back” >> consecutive issue
of threads in the warp. Because the left and right paths can actually
execute simultaneously for the diverging sub-group of warps within a
warp. Earlier, each sub-group executed in serial.

Warp Scheduler

● Schedules which ready warp to issue next
● Can have single scheduler or multiple parallel schedulers
● Nvidia’s Fermi GPU has 2 schedulers

S0- Schedules even numbered warps
S1- Schedules odd numbered warps

● DPE added to this further increases parallelism
● For a ready warp, there is a further right path and left path warp
● This doubles the number of ready warp entries competing to be issued

DPE and Scoreboard Benefits
Scoreboard
+ Conservative
- Introduces false dependencies
+ But is much simpler in design and operation
+ Much less hardware overhead and cost

- Non-conservative scoreboards are high cost, more hardware overhead
- Introduce only ~1% performance improvement over conservative ones

DPE
+ Increases parallelism
+ Permits atmost 2 divergent control flow paths to execute concurrently
+ requires only small changes to SPE model in terms of doubling the stack and

scoreboard
+ Low cost
+ SIMD efficiency intact

Benchmarks

● 27 benchmarks
● 14 benchmarks shown here.

Other 13 show identical results
for DPE, DWS and SPE.

● Of the 14 benchmarks, only half
of them benefit because of
distinct left and right paths

● The other half do not result in
distinct left and right paths that
can be interleaved because
many branches have only an if
clause with no else.

6.1 Interleavable branches

6.1 Non-interleavable branches

6.1 Interleavable vs non-interleavable

6.1 Potential for interleaving

1

2

2

1

1
+

7 / 5 = 1.4

● SPE: AvgPath = 1
● DWS: AvgPath ≥ 1
● DPE

○ Interleavable: 1 < AvgPath ≤ 2
○ Non-interleavable: AvgPath = 1

6.1 Potential for interleaving
DPE: AvgPath 20%
higher on average than
SPE for interleaved
benchmarks.

DWS100: AvgPath 71%
higher

6.1 SIMD lane utilization
DWS50/DWS100
reduce utilization by
48.1%/48.5% for
interleavable and
18.6% and 27.1% for
non-interleavable
benchmarks

Due to overdivision.

6.1 SIMD lane utilization example

DPE

DWS

DPE

6.2 Idle cycles
● DPE reduces idle cycles 19% on average for interleavable benchmarks.
● DWS can reduce idle cycles, but utilization decreases also.

+5%

6.2 Cache misses
Interleaving
disrupts L1
cache access
pattern.

+2%

6.3 Speedup
DPE: 14.9%
improvement for
interleavable
workloads.

DWS
performance
varies.

Decrease of
utilization
outweighs TLP
increase.

-1.1%

6.4 Sensitivity to cache size
Relative IPC
improvement
stable within
±4%/±2% for
L1/L2.

Stencil: Absolute
idle cycles
improvement
same, but relative
differs.

6.4 Sensitivity to warp scheduler
● More aggressive scoreboard increased speedup by 1% (not shown).
● Constrained DPE: Path is only alternated on long-latency instruction.

○ Reduces speedup from 14.9% to 11.7% on average.

6.5 Implementation overhead
● Dual-path stack has negligible overhead w.r.t. single-path stack.

○ DPE needs longer entries (160-bit vs 96-bit).
○ Fewer entries needed for DPE (maximum observed 11 for SPE vs 7 for DPE).

● Addition of shadow bits to scoreboard adds 7-14% to scoreboard storage.
● Doubling number of scoreboards doubles scoreboard power and area.
● Warp scheduler doubles in size because instructions from both branches are

stored.

7 Discussion
● Path forwarding: Shift branch up in stack to fill up entry of branch that

finished.
○ < 2% Performance improvement for interleavable benchmarks.

● DPE for memory divergence
○ Limited benefit expected w.r.t. DWS.

● DPE with a software-managed reconvergence stack
○ Maintain PC and mask in hardware, and RPC in software.
○ A pop instruction informs hardware that a path has ended.

So just like the DWS paper, the two branches are not actually
running in parallel, we are simply interleaving the threads?

Yes

Does this mean the only advantage comes from stalls when
there is no active warps to run?

The SIMD utilization during non-idle cycles is also higher.

It seems like only the most immediate branch divergence
paths can run in parallel. Is this true?

"Most immediate branch divergence path" is a bit vague. You
probably mean "most recent". In the example, B and F could
run in parallel. B diverged a lot earlier than F, so this is not
the case.

Could you explain the relationship between lane utilization
and the number of idle cycles?

Assuming this is about DWS, DWS reduces idle cycles, but
lane utilization is reduced too. That is because idle cycles are
filled with warp subdivision.

I don't understand why the relative performance differs a lot in
different models.

DWS splits more warps than necessary. Split warps take
multiple cycles as opposed to one cycle.

In Section 6.2, the third paragraph talks about counter
intuitive results seen in RAY, LPS, PathFind and HOTSPOT
with the statement "many interleaved warp-splits present a
memory access pattern that performs poorly with the cache
hierarchy". Could you explain this observation?

When you access data using a regular access pattern, a
cache can take advantage of it by prefetching some data.
Interleaved instructions may ruin the access pattern.

They briefly touch upon DPE for memory divergence. Does it
actually seem like a feasible scheme to handle memory
divergence at all? Considering that the parallelism is
restricted to the right and left paths, if one path is hits and the
other is misses how can they even be executed in parallel?

As before, we would not literally be executing paths in
parallel, but we would interleave them.

Why not a quad-path execution model? Or 8 paths, or ...?

Because if-statements have only 2 branches… :-) Anyway, it
is a tradeoff between area and performance. You could also
use the area for more streaming multiprocessors for example.

