
Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing
on CPU and GPU

Omar Navarro Leija and Richard Zang

Throughput
Computing
Applications

What are throughput computing
applications?
● Applications that handle “big data”.
● Applications that feature data level parallelism.
● Applications that can process data independently and out

of order.
● Applications that should complete in a timely manner.

Why do we need such
applications?
● The authors predicted in 2009 that there would soon be

exabytes (10^18 bytes) of data in the world.
● According to Northeastern, in 2016, we produce 2.5

exabytes every single day.

Overview

Main Points of Paper

“We reexamine a number of claims, that GPUs perform 10X to
1000X better than CPUs on a number of throughput
kernels/applications.”

“After tuning the code for BOTH CPU and GPU, we find the
GPU only performs 2.5X better than CPU.”

“This puts CPU and GPU roughly in the same performance
ballpark for throughput computing.”

Performance Results

Hardware Comparison

Benchmarks

Benchmarks

Platform Optimization
Guide

CPU Optimizations

Kernels can linearly scale with number of cores. Use cache
blocking to fit working set in cache.

Cache blocking: “The key idea behind blocking is to exploit the inherent data reuse
available in the application by ensuring that data remains in cache across multiple uses.”
-Intel https://software.intel.com/en-us/articles/cache-blocking-techniques

https://software.intel.com/en-us/articles/cache-blocking-techniques

GPU Optimization

Global inter-thread synchronization is very costly! Requires
kernel termination and launch overhead. For some
benchmarks, they used “constraint reordering to minimize
conflicts among neighboring constraints, which are global
synchronization points.”

Optimization: Use the shared buffers to reduce bandwidth
consumption.

Hardware
Recommendations

High Compute Flops And
Memory Bandwidth
To increase flops:
● Increase core count. This increase is limited by the die area.
● Increase SIMD width. This increase is not limited by die area

but needs regular memory access.
To increase memory bandwidth:
● Increase memory capacity; this is limited by the costs of

memory compared to the bulk capacity we see with CPU
RAM.

● Develop better memory technology.

Large Cache

Each streaming multiprocessor has its own cache which
should be able to hold the entire working set of data.

Working set size can scale with the data set, the number of
cores or threads, and cache sizes will need to grow to
accommodate future workloads.

Gather/Scatter

The authors hypothesize that gather/scatter support can
greatly increase the speed of certain workloads.

To enable gather/scatter:

● Implement in hardware, although this would be difficult
● Implement in software using memory banks
● Use shuffle instructions to share data

Efficient Synchronization and
Cache Coherence
Better synchronization is needed for CPUs and GPUS because
current solutions do not scale well with additional cores and
increased SIMD width.

Barrier costs can become less trivial as the number of cores
increase and the workload per thread decreases.

Fixed Functional Units

Create fixed functional units to accelerate commonly used
operations.

● Transcendental operations
● Texture mapping/sampling units
● Encryption/Decryption

History &
Controversy

Changes in Hardware Since 2009
Intel i7 960
Clock Speed: 3.2 GHz
Cores: 4
L2 Cache: 4x 256 KB
L3 Cache: 8MB
Released: October 2009

GTX 280
SM Cores: 8
SIMD Lane Width: 8
CUDA Cores: 280
L2 Cache: 1 MB
Memory Bandwidth: 141.7 GB/sec
1 GB Memory
Released: June 2008

Intel i7 7700
Clock Speed: 3.6 GHz
Cores: 4
L2 Cache: 4x 256 KB
L3 Cache: 8MB
Released: January 2017

GTX 1080
SM Cores: 20
SIMD Lane Width: 16
CUDA Cores: 2560
L2 Cache: 2 MB
Memory Bandwidth: 320 GB/sec
8 GB Memory
Released: May 2016

Nvidia’s Response

GPUS ARE ONLY UP TO 14 TIMES FASTER THAN CPUS” SAYS
INTEL

“It’s a rare day in the world of technology when a company you compete
with stands up at an important conference and declares that your
technology is *only* up to 14 times faster than theirs.”

https://blogs.nvidia.com/blog/2010/06/23/gpus-are-only-up-to-14-times-fa
ster-than-cpus-says-intel/

https://blogs.nvidia.com/blog/2010/06/23/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel/
https://blogs.nvidia.com/blog/2010/06/23/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel/
https://blogs.nvidia.com/blog/2010/06/23/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel/

Criticism

CPU World Article: “Intel: 2-year-old Nvidia GPU Outperforms 3.2GHz
Core I7”

The GTX280 had been out for two years when the paper compared
them. It has been noted this is Nvidia’s fault for delaying the release of
their GTX380.

http://www.pcworld.com/article/199758/Intel_2_year_old_Nvidia_GPU.ht
ml
https://arstechnica.com/business/2010/06/intel-scores-own-goal-against-
core-i7-in-nvidia-spat/

http://www.pcworld.com/article/199758/Intel_2_year_old_Nvidia_GPU.html
http://www.pcworld.com/article/199758/Intel_2_year_old_Nvidia_GPU.html
http://www.pcworld.com/article/199758/Intel_2_year_old_Nvidia_GPU.html

Questions

Question Time

Could you explain the features compared in Table 2,
especially SP SIMD Width and DP SIMD width?

Question Time

What exactly is the difference between SIMD and
thread-level parallelism?

Question Time

What is rationale for choosing Intel i7-960 and GTX280? Why
is it a fair comparison?

Question Time

Why is the external memory bandwidth of GTX280 greater
than i7? Is a GPU's memory bandwidth generally greater than
CPU's?

Question Time

When the speedup of GPU is not very significant, is it feasible
to divide the work and have the GPU and CPU to work
together? Is it scalable?

Question Time

The hardware optimization suggestions seem to heavily rely
on the features or characteristics of specific throughput
computing kernels. Is this sound design for CPUs and
GPGPUs, to have hardware optimization that is application
specific?

Question Time

The paper shows that with careful optimization, GPU
demonstrates only averaged 2.5x speed up on throughput
computing. However, it is widely believed that GPU can be
highly suitable for high performance computing. Is it the fact
that most of the CPU computing programs are not well
optimized? or other metrics of computing other than
throughput are crucial?

Question Time

On a general note, CPUs can be overclocked upto 4.1GHz. In
such a state, what can be the potential performance
difference between CPUs and GPUs (power consumption
aside)?

Question Time

In 5.1 the paper mentioned that memory bandwidth on CPUs
is low as compared to GPUs. Would better hardware
optimization on memory access significantly improve CPUs
throughput performance? If so, would CPUs be as capable as
GPUs on certain tasks which require intense memory access?

Question Time

In 5.1 the paper mentioned that memory bandwidth on CPUs
is low as compared to GPUs. Would better hardware
optimization on memory access significantly improve CPUs
throughput performance? If so, would CPUs be as capable as
GPUs on certain tasks which require intense memory access?

Question Time

Do you think there are high throughput workloads that would
allow a CPU to outperform a GPU when synchronization is
introduced?

Question Time

Will the speedup rate vary when the test programs are
applied to larger scale of data? Should the Gustafson's law be
considered?

Question Time

Is using cache bank per thread in a warp a gather/scatter
method provided by hardware in GPUs?

Question Time

Could you please elaborate on and illustrate the section that
states that Reduction operations do not scale with increasing
thread count and data level parallelism?

Question Time

What’s the difference between “general shuffle and swizzle
instructions” and “gather/scatter operations”? How are they
related? It seems like we saw something related to
gather/scatter with the transpose example in class (i.e. going
through shared memory to write back to global memory
densely)?

