
MISC. CUDA TOPICS
2D arrays, performance profiling



2D ARRAYS IN CUDA
// host code 

int A[10][20] = …; 

A[5][6] = 17; 

cudaMemcpy(d_A, A, …); 

// device code 

__device__ kernel(d_A) { 

   d_A[5][6] = 17; 

}
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2D ARRAYS IN CUDA

• 2 problems

• don’t know array bounds: d_A is an int*

• rows beyond the first may not be optimally 
aligned
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pitch

2D ARRAYS IN CUDA

row 1 row 2 row 3

Conventional C memory layout

CUDA pitched memory

row 1 row 2 row 3
pitch

misalignment can harm global memory coalescing
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CUDA PITCHED MEMORY
• 2D array indexing involves row, column and pitch 

• How do we index a pitched 2D array?
int* i = (int*)((char*)BaseAddr + Row * Pitch) + Col;

cudaError_t cudaMalloc3D(cudaPitchedPtr* pitchedDevPtr,        
          cudaExtent extent)

cudaExtent make_cudaExtent(  
 size_t w, // bytes  
 size_t h, size_t d) // elements
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CUDA PITCHED MEMORY

• Must use pitch-aware memcpy/memset
cudaError_t cudaMemcpy2D(  
  void* dst,  
  size_t dpitch, // bytes  
  const void* src,  
  size_t spitch, size_t width, // bytes  
  size_t height, // rows  
  cudaMemcpyKind kind)
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CUDA PITCHED MEMORY 
GOTCHAS

• pitch is always specified in bytes 

• height/depth are specified in elements

• in terms of rows/2D slices, respectively

• cudaMallocArray and friends use the Texture Cache

• optimized layout for graphics textures that uses a space-filling 
curve for memory layout

• https://en.wikipedia.org/wiki/Z-order_curve
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WHEN CAN I STOP 
OPTIMIZING?

• Our GPUs: Nvidia GK104 (~GeForce 600)

• (global) memory bandwidth: 160 GB/s

• compute bandwidth: 1536 “CUDA cores” x 
800MHz = 1.2 TFlops (~2.4TFlops with FMA)

• are we memory or compute limited?
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ARITHMETIC INTENSITY
• GK104 ideal flop-to-byte ratio = 1200/160 = 7.5

• what is blurGlobal’s behavior?

• 5600 fliop per thread

• 450 mop per thread (4B each!)

• ~3.1 fliop-to-byte ratio
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ROOFLINE ANALYSIS44 3. FROM PRINCIPLES TO PRACTICE: ANALYSIS AND TUNING
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(a) Roofline analysis helps to bound performance and
distinguish between memory bandwidth vs. compute-
boundedness.

Threads per multiprocessor

G
flo

p/
s

25

50

75

100

125

150

175

200

225

250

275

300

325

350

�

�

�

�

�

�

�

�
� � �

32 64 128 256 512

Code
� Baseline

Rsqrtf

(b) An empirical test on an NVIDIA C1060 to estimate
compute-bound performance for the specific instruction
mix of interest.

Figure 3.4: Setting an optimization goal. As discussed in Section 3.5, we expect that by tuning q, we
can make Algorithm 1 compute-bound with a flop:byte ratio of at least 10.

3.5 SETTING AN OPTIMIZATION GOAL
Our first-order task is to use our concurrency and I/O analysis to set an optimization goal.

For instance, consider that a typical GPU today is capable of about 1 Tflop/s with a bandwidth
of about 100 GB/s, or an “ideal” flop-to-byte balance ratio of about 10 flops per byte. For something
like a gravitational or electrostatic potential, κ ≈ 11 flops as shown in Listing 3.1.Thus, if the data is
single-precision (4 bytes per word), then to match 10 flops per byte we need q ≥ (10 flops / byte) ×
(464 bytes)/(11 flops) ≈ 422 points, or about 1.6 KB in order to be compute-limited rather than
bandwidth limited. This capacity is well within the typical local store size on a GPU multiprocessor,
therefore we should expect it may be possible to be compute-limited, although we will need to tune
q empirically to ensure such a large value does not put us too far away from the true overall time
minimizer (recall Figure 3.3).

We begin by considering a pure CPU baseline implementation, running on a dual-socket Intel
x86 platform based on Nehalem processors, parallelized using OpenMP and explicit SIMD (SSE)
vectorization.For this code,we observe performance between 60–90 billion floating-point operations
per second (Gflop/s) in single-precision. As it happens, this is very close to single-precision peak for
our platform, as Figure 3.4(a) confirms.

For our GPU implementation, which we said previously should be compute-limited, we can
construct a microbenchmark that contains only the compute operations of lines 12–15 of Listing 3.1.
That is, this microbenchmark omits any memory references, in order to estimate the maximum
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HOW FAST IS blurShared?

• 4096 x 3072 pixels = 12.6M pixels * 5600 fliop/
pixel = 70 Gfliop

• blurShared runs in 50ms = 0.05s

• 70 Gfliop / 0.05s = 1.4 Tfliops 

• not too shabby!
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WHEN CAN I STOP 
OPTIMIZING?

• max Flops/Fliops depends on what 
instructions you/compiler use

• memory bandwidth depends on 
which memory you use
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CUDA PROFILING LINKS
• Nvidia’s Nsight profiler (integrated into Visual Studio) is pretty slick

• Video tutorial: https://www.youtube.com/watch?
v=vt7Hvj4oviQ&feature=player_detailpage

• memory coalescing discussion starts at 41:40

• http://docs.nvidia.com/gameworks/index.html#developertools/desktop/
nsight/analysis_tools_overview.htm%3FTocPath%3DDeveloper%2520Tools
%7CDesktop%2520Developer%2520Tools%7CNVIDIA%2520Nsight
%2520Visual%2520Studio%2520Edition%7CNVIDIA%2520Nsight
%2520Visual%2520Studio%2520Edition%25205.2%7CAnalysis%2520Tools
%7C_____0 
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