RELAXED CONSISTENCY

l\@ MORGANNCLAYPOOL PUBLISHERS

A Primer on Memory
Consistency and
Cache Coherence

Daniel J. Sorin
Mark D. Hill
' | David A. Wood

RELAXED CONSISTENCY

» "Relaxed Consistency’’ Is a catch-all term for any
MCM weaker than TSO

» GPUs have relaxed consistency (probably)

XC AXIOMS

TABLE 5.5: XC Ordering Rules. An “X” Denotes an
Enforced Ordering. An “A” Denotes an Ordering that is
Enforced Only if the Operations are to the Same Address. A
“B” Denotes that Bypassing 1s Required if the Operations are
to the Same Address. Entries Different from TSO are Shaded
and Indicated in Bold Font.

Operation 2
Load Store RMW FENCE
i Load A A A X
g Store B A A X
g RMW A A A X
= FENCE X X X %

XC EXAMPLE

program order (<p) of Core Cl1 memory order (<m) program order (<p) of Core C2
: _ e 2
S1: datal = NEW; /* NEW */ L1: 1l = flag: /* 0 */
———————————— i ' 4 e B
~ - — —
, - R ES *
) _SZ._daiaZ__ iEY’/ WEWSE 2 L1:rl =flag; /* 0 */
F1: FENCE - - T T T
—————————————— o L1:rl =flag; /* 0 */
S3: flag = SET; /* SET */ - — - - - - - - — = = = ==
—————————————— >
L1:rl =flag; /* SET */
~ T T FLFENCE T
€+ — — — — — — — — — — — — — -
[.2: r2 = datal; /* NEW */
w® o ———————— -
' &~ o L3: r3 =data2; /* NEW */ v
(a) An XC Execution

4

XC LOCKS NEED FENCES

TABLE 5.6: Synchronization in TSO vs Synchronization in XC.

Code

TSO

XC

acquire lock

RMW: test-and-set L /* read L, write L=1
if L==1, goto RMW */ if lock held, try again

RMW: test-and-set L /* read L, write L=1
if L==1, goto RMW */ if lock held, try again
FENCE

critical sec-
tion

loads and stores

loads and stores

release lock

store L=0

FENCE
store L=0

WHY BOTHER WITH XC!

* coalescing store buffers

i@ re irecdom for OoO execution

« GPUs are similar to XC

DRF => 5C

- the great compromise between architects/compiler writers and
programmers

« definrtion of a data race:

* two accesses to the same memory location from different threads

* at least one access Is a store

* accesses are ‘unsynchronized”

 Data-race-free programs are guaranteed to always have SC
executions

» this guarantee Is probably® provided by all consistency models

v

WHAI COUNITS AS
SYNCHRONIZATION!?

* sync == specially-tagged memory operations
» usually a pair of insns: load/store/RMW + fence

* In most ISAs RMW operations come with a

fence automatically

WRITE ATOMICITY

* write atomicity ;= a core’s store Is logically seen by
all other cores at once

* “Write atomicity allows a core to see the value of
'ts own store before It Is seen by other cores, as
required by XC, causing some to consider ‘write
atomicity’ to be a poor name.” - APMCCC, p. 69

9

CAUSALITY

TABLE 5.9: Causality: If I See a Store and Tell You About It, Must You See It Too?

Core C1 Core C2 Core C3
S1: datal = NEW; /* Initially, datal & data2 =0 */
L1:rl =datal;
Bl1:if (r]1 # NEW) goto L1;
F1: FENCE
S2: data2 = NEW;
P28 = atad
B2:1f (r2 # NEW) goto L2;
F2: FENCE

L3: r3 =datal; /* r3==NEW? */

INDEPENDENT READS,
INDEPENDENT WRITES

TABLE 5.10: IRIW Example: Must Stores Be in Some Order?

Core C1

Core C2

Core C3

Core C4

S1: datal = NEW;

S2: data2 = NEW;

L1:rl =datal; /* NEW */
F1: FENCE
L2: r2 = data2; /* NEW? */

/* Initially, datal & data2 =0 */
L3: r3 =data2; /* NEW */

F2: FENCE

L4: r4 = datal; /* NEW? */

IBM POWER FENCES

* SYNC or HWSYNC ("HW' means “heavy weight ')
orders all accesses X before all accessesY and Is

cumulative.

« LWSYNC ("W means "“light weight™) orders loads In
X before loads In Y, orders loads in X before stores InY,

and orders stores In X before stores in Y. LWSYNC s
cumulative. Note that LWSYNC does not order stores in X
before loads in Y.

BM POWER NON-FENCE

ORDERING

* Power orders accesses IN SOme cases eve

without FENCEs. For example, it load

Valle used to calculate an effective address of @
subsequent load L2, then Power orders load L|

before load L2." - APMCCC, p. 72

 How could it not????

e

1

otalmete!

O+ AV

» compiler optimizations need reordering abllity
* e.g, register allocation, loop-invariant code motion
* these high-level languages have very relaxed MCMs

» want to leave the door open for future compiler
optimizations

SYNC IN C, C++, JAVA

s AGH T an

» pthread_* from <pthread.h>

* atomic_* from <stdatomic.h> or <atomic>
* more on this next week :-)

* Java

- volatile field qualifier

* synchronized blocks

» fancier stuff in java.util.concurrent package

15

1+ AVA=> 1S

DRF => 5C

Java MCM
guarantees

hardware MCM guarantees

everyone guarantees
DRE=—"1"

T there s aisdas)
guarantees vary

with a race, C/C
semantics are undefined

with a race, Java
preserves type safety

QUESTIONS

* Section 5.3 states that the XC implementation’s
reorder unit must ensure that "loads immediately

see updates due to their own stores.” Doesn't a

load by definition not write to memory!?

COMPILERVS HW FENCES

» How does a complier enforce FENC
a FENCE instruction know when eac

ordered!

-ENCEs (if load LI o
effective address or

* In Power Memory Model, accesses can
btains a value usec

Power orders load L

3

before store S2). In this case, w

data dependency detected and Instructions ordered?

speculative!

- Instructions! How does
N operation Is done or

be made without
to calculate an
fa value of a subsequent store 52, then

nen Is the

S

SYNCHRONIZATION
EONFLICTS

» On page 66 & 6/: Are conflicting synchronization
operations what we want for synchronization?

Could you explain the rules in more detall!

* What are transitive conflicts in synchronization
operations! It was defined on page 6/. Can you

please give an example!?

DRF => SC DEFINITIONS (1/2)

Some memory operations are tagged as synchronization (“synchronization operations”),
while the rest are tagged daza by default (“data operations”). Synchronization operations
include lock acquires and releases.

Two data operations Di and Dj conflict if they are from different cores (threads) (i.e., not
ordered by program order), access the same memory location, and at least one is a store.
‘Two synchronization operations Si and Sj conffict if they are from different cores (threads),
access the same memory location (e.g., the same lock), and the two synchronization opera-
tions are not compatible (e.g., acquire and release of a spinlock are not compatible, whereas

two read_locks on a reader—writer lock are compatible).

20

DRF => SC DEFINITIONS (2/2)

Two synchronization operations Si and Sj fransitively conflict if either Si and Sj conflict or
if Si conflicts with some synchronization operation Sk, Sk <p Sk' (i.e., Sk is earlier than Sk'
in a core K’s program order), and Sk' transitively conflicts with S;.

‘Two data operations Di and Dj race if they conflict and they appear in the global memory
order without an intervening pair of transitively conflicting synchronization operations by
the same cores (threads) i and j. In other words, a pair of conflicting data operations Di <m
Dj are 7ot a data race if and only if there exists a pair of transitively conflicting synchroniza-
tion operations S1 and 5j such that Di <m S1 <m 5j <m D;.

An SC execution is data-race-free (DRF) if no data operations race.

A program is DRF if all its SC executions are DREF.

A memory consistency model supports “SC for DRF programs” if all executions of all
DRF programs are SC executions. This support usually requires some special actions for

synchronization operations.

DR =>WIrF

* Why is it that once a data race occurs, SC i1s no longer valid in

DRF and how do you reason about the undecidable halting

problem even If its unsolvable

* Why Is It the case that after data races, execution may no

longer obey SCY Isn't the XC model still providing the illusion

of SC, within the constraints of the program as it was written

(1.e., there may be a fence missing tha

- would enforce the

behavior that the programmer expec

of view It Is still following the rules)?

red, but from XC's point

MCM TRANSLATION

- What would a programmer have to do to implement a

stronger consistency model in code on a processor with

weaker consistency!

 The paper mentions that with sufficient FENCES, a
relaxed model like XC can appear to look like SC. At

what point does FENCEs become pro

expensive and how can you qualitative
impact of a FENCE!

nibrtively

y asses the

s lSEt

* Why hasn't Intel or AM
model similar to "SC for

Py MCOCM SPECES

D not adopted a consistency
DRF" vet? If implemented

properly, It has the benefits of both SC as well as XC.

R

specifications anc

@ e XC au

etot

CONS

ne difficulty In comparing Power w.rit. Alpha, ARM,

ne difficulty In formalizing their

B (€]

ing them Into proofs!

PERFORMANCE

» Considering HWSYNC" (IBM Power) basically synchronizes all
cores, what Is the performance impact compared to FENCE

in other memory consistency models! How much lighter are
R EN@ Rstructions compared to FENCE ¢

» How does RC performance compare against 150
berformance for languages with a SC memory model such as
Java volatiles? WWhen running mostly Java code, do the required
fences with RC (lets say on ARM) diminish substantially the
power and cost savings versus x36!

MCMs IN PRACTICE

* Has anyone ever studies the decrease In programmer

broductivity resulting from the non-inturtiveness of RCY

» At the end of 5.3, the authors discuss how they argued for a
return to 150 or SC, but state that that did not happen. |
thought previously we stated that Intel architecture uses a

150-like memory model and relaxed models like Alpha died
out. What are the authors referencing here when they say that
architectures moved away from simpler consistency models!

QUESTIONS

* Some limits on relaxed memory ordering are present to prevent
"astonishing” programmers, who typically expect sequential intra-thread
execution. Are there programming models that don't presume sequentially
executing threads that might be more amendable to very relaxed memory
models?

* Do there exist any inter-core hardware synchronization instructions in
modern architectures such as x86¢ e.g. shared hardware locks or
semaphores!

» Would any of the previously discussed memory consistency models have
benefits iIn GPU's!

