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RELAXED CONSISTENCY

• “Relaxed Consistency” is a catch-all term for any 
MCM weaker than TSO	



• GPUs have relaxed consistency (probably)
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XC AXIOMS
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More formally, an XC execution requires the following:

All cores insert their loads, stores, and FENCEs into the order <m respecting:
If L(a) <p FENCE ⇒ L(a) <m FENCE /* Load → FENCE */
If S(a) <p FENCE ⇒ S(a) <m FENCE /* Store → FENCE */
If FENCE <p FENCE ⇒ FENCE <m FENCE /* FENCE → FENCE */
If FENCE <p L(a) ⇒ FENCE <m L(a) /* FENCE → Load */
If FENCE <p S(a) ⇒ FENCE <m S(a) /* FENCE → Store */

All cores insert their loads and stores to the same address into the order <m respecting:
If L(a) <p L'(a) ⇒ L(a) <m L' (a) /* Load → Load to same address */
If L(a) <p S(a) ⇒ L(a) <m S(a)     /* Load → Store to same address */
If S(a) <p S'(a) ⇒ S(a) <m S' (a)   /* Store → Store to same address */

Every load gets its value from the last store before it to the same address:
Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a) or S(a) <p L(a)} /* Like TSO */

We summarize these ordering rules in Table 5.5. This table differs considerably from the 
analogous tables for SC and TSO. Visually, the table shows that ordering is enforced only for 
operations to the same address or if FENCEs are used. Like TSO, if operation 1 is “store C” and 
operation 2 is “load C,” the store can enter the global order after the load, but the load must already 
see the newly stored value.

An implementation that allows only XC executions is an XC implementation.

1.
•
•
•
•
•

2.
•
•
•

3.

TABLE 5.5: XC Ordering Rules. An “X” Denotes an  
Enforced Ordering. An “A” Denotes an Ordering that is  

Enforced Only if the Operations are to the Same Address. A  
“B” Denotes that Bypassing is Required if the Operations are  
to the Same Address. Entries Different from TSO are Shaded  

and Indicated in Bold Font.
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• If S(a) <p S’(a) ==> S(a) <m S’(a) /* Store-->Store to same address */

(3) Every load get its value from the last store before it to the same address:

Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a) or S(a) <p L(a)} /* Like TSO */

We summarize these ordering rules in Table 5-5. This table differs considerably from the analogous

tables for SC and TSO. Visually, the table shows that ordering is enforced only for operations to the same

address or if FENCEs are used. Like TSO, if operation 1 is “store C” and operation 2 is “load C,” the store

can enter the global order after the load, but the load must already see the newly stored value.

An implementation that allows only XC executions is an XC implementation.

5.2.4 Examples Showing XC Operating Correctly
With the formalisms of the last section, we can now reveal why Section 5.2.2’s two examples work

correctly. Figure 5-1(a) shows an XC execution of the example from Table 5-3 in which core C1’s stores

S1 and S2 are reordered, as are core C2’s loads L2 and L3. Neither re-ordering, however, affects the results

of the program. Thus, as far as the programmer can tell, this XC execution is equivalent to the SC execu-

tion depicted in Figure 5-1(b), in which the two pairs of operations are not reordered. 

Similarly, Figure 5-2(a) depicts an execution of the critical section example from Table 5-4 in which

core C1’s loads L1i and stores S1j are reordered with respect to each other, as are core C2’s L2i and stores

S2j. Once again, these re-orderings do not affect the results of the program. Thus, as far as the programmer

TABLE 5-5.  XC ordering rules. An “X” denotes an 
enforced ordering. An “A” denotes an ordering that is 

enforced only if the operations are to the same address. A 
“B” denotes that bypassing is required if the operations are 
to the same address. Entries different from TSO are shaded 

and indicated in bold font.

Operation 2

Load Store RMW FENCE

O
pe

ra
tio

n 
1 Load A A A X

Store B A A X

RMW A A A X

FENCE X X X X
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XC EXAMPLE
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5.2.4 Examples Showing XC Operating Correctly
With the formalisms of the last section, we can now reveal why Section 5.2.2’s two examples work 
correctly. Figure 5.1(a) shows an XC execution of the example from Table 5.3 in which core C1’s 
stores S1 and S2 are reordered, as are core C2’s loads L2 and L3. Neither reordering, however, 
affects the results of the program. Thus, as far as the programmer can tell, this XC execution is 
equivalent to the SC execution depicted in Figure 5.1(b), in which the two pairs of operations are 
not reordered. 

FIGURE 5.1: Two Equivalent Executions of Table 5.3’s Program.
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XC LOCKS NEED FENCES
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section, we assume that the XC system consists of dynamically scheduled cores, each of which is 
connected to the memory system by a non-FIFO coalescing write buffer.

In this XC system model, a simple and viable solution would be to borrow the implemen-
tation we used for TSO. Before executing an atomic instruction, the core drains the write buffer, 
obtains the block with read–write coherence permissions, and then performs the load part and the 
store part. Because the block is in a read–write state, the store part performs directly to the cache, 
bypassing the write buffer. Between when the load part performs and the store part performs, if 
such a window exists, the cache controller must not evict the block; if an incoming coherence re-
quest arrives, it must be deferred until the store part of the RMW performs.

Borrowing the TSO solution for implementing RMWs is simple, but it is overly conserva-
tive and sacrifices some performance. Notably, draining the write buffer is not required because XC 
allows both the load part and the store part of the RMW to pass earlier stores. Thus, it is sufficient 
to simply obtain read–write coherence permissions to the block and then perform the load part and 
the store part without relinquishing the block between those two operations.

Other implementations of atomic RMWs are possible, but they are beyond the scope of this 
primer. One important difference between XC and TSO is how atomic RMWs are used to achieve 
synchronization. In Table 5.6, we depict a typical critical section, including lock acquire and lock 
release, for both TSO and XC. With TSO, the atomic RMW is used to attempt to acquire the lock, 
and a store is used to release the lock. With XC, the situation is more complicated. For the acquire, 
XC does not, by default, constrain the RMW from being reordered with respect to the opera-
tions in the critical section. To avoid this situation, a lock acquire must be followed by a FENCE. 
Similarly, the lock release is not, by default, constrained from being reordered with respect to the 
operations before it in the critical section. To avoid this situation, a lock release must be preceded 
by a FENCE.

TABLE 5.6: Synchronization in TSO vs Synchronization in XC.

• 

• 

• 
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WHY BOTHER WITH XC?

• coalescing store buffers	



• more freedom for OoO execution	



• GPUs are similar to XC
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DRF => SC
• the great compromise between architects/compiler writers and 

programmers	


• definition of a data race:	



• two accesses to the same memory location from different threads	


• at least one access is a store	


• accesses are “unsynchronized”	



• Data-race-free programs are guaranteed to always have SC 
executions	


• this guarantee is probably* provided by all consistency models

7



WHAT COUNTS AS 
SYNCHRONIZATION?

• sync == specially-tagged memory operations	



• usually a pair of insns: load/store/RMW + fence	



• in most ISAs RMW operations come with a 
fence automatically
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WRITE ATOMICITY

• write atomicity := a core’s store is logically seen by 
all other cores at once	



• “Write atomicity allows a core to see the value of 
its own store before it is seen by other cores, as 
required by XC, causing some to consider ‘write 
atomicity’ to be a poor name.” - APMCCC, p. 69
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CAUSALITY
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 ACQUIRE → Load, Store (but not Load, Store → ACQUIRE)
 Load, Store → RELEASE (but not RELEASE → Load, Store)
 and SC ordering of ACQUIREs and RELEASEs:
 ACQUIRE → ACQUIRE
 ACQUIRE → RELEASE
 RELEASE → ACQUIRE, and 
 RELEASE → RELEASE

5.5.2  Causality and Write Atomicity
Here we illustrate two subtle properties of relaxed models. The first property, causality, requires that, 
“If I see it and tell you about it, then you will see it too.” For example, consider Table 5.9 where core 
C1 does a store S1 to update data1. Let core C2 spin until it sees the results of S1 (r1==NEW), 
perform FENCE F1, and then do S2 to update data2. Similarly, core C3 spins on load L2 until it 
sees the result of S2 (r2==NEW), performs FENCE F2, and then does L3 to observe store S1. If 
core C3 is guaranteed to observe S1 done (r3==NEW), then causality holds. On the other hand, if 
r3 is 0, causality is violated. 

The second property, write atomicity (also called store atomicity), requires that a core’s store 
is logically seen by all other cores at once. XC is write atomic by definition since its memory order 
(<m) specifies a logically atomic point at which a store takes effect at memory. Before this point, no 
other cores may see the newly stored value. After this point, all other cores must see the new value or 
the value from a later store, but not a value that was clobbered by the store. Write atomicity allows 
a core to see the value of its own store before it is seen by other cores, as required by XC, causing 
some to consider “write atomicity” to be a poor name.

TABLE 5.9: Causality: If I See a Store and Tell You About It, Must You See It Too?
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The second property, write atomicity (also called store atomicity), requires that a core’s store is logi-

cally seen by all other cores at once. XC is write atomic by definition since its memory order (<m) speci-

fies a logically atomic point where a store takes effect at memory. Before this point, no other cores may see

the newly stored value. After this point, all other cores must see the new value or the value from a later

store, but not a value that was clobbered by the store. Write atomicity allows a core to see the value of its

own store before it is seen by other cores, as required by XC, causing some to consider “write atomicity” to

be a poor name.

A necessary, but not sufficient, condition for write atomicity is proper handling of the Independent

Read Independent Write (IRIW) example. IRIW is depicted in Table 5-10 where cores C1 and C2 do stores

S1 and S2, respectively. Assume that core C3’s load L1 observes S1 (r1==NEW) and core C4’s L3

observes S2 (r3==NEW). What if C3’s L2 loads 0 (r2==0) and C4’s L4 loads 0 (r4==0)? The former

implies that core C3 sees store S1 before it sees S2, while the latter implies that C4 sees S2 before S1. In

this case, stores S1 and S2 are not just “reordered,” but no order of stores even exists and write atomicity is

violated. The converse is not necessarily true: Proper handling of IRIW does not automatically imply store

atomicity. 

Some more facts (that can make your head hurt and long for SC, TSO, or SC for DRF):

• Write atomicity implies causality. In Table 5-9, for example, core C2 observes store S1, performs a

FENCE, and then does store S2. With write atomicity, this ensures C3 sees store S1 as done.

• Causality does not imply write atomicity. For Table 5-10, assume that cores C1 and C3 are two thread

contexts of a multithreaded core that share a write buffer. Assume the same for cores C2 and C4. Let

TABLE 5-9.  Causality: If I see a store and tell you about it, must you see it too?

Core C1 Core C2 Core C3
S1: data1 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1;
B1: if (r1    NEW) goto L1;
F1: FENCE

S2: data2 = NEW;
L2: r2 = data2;
B2: if (r2    NEW) goto L2;
F2: FENCE

L3: r3 = data1; /* r3==NEW? */

≠

≠
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INDEPENDENT READS, 
INDEPENDENT WRITES
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A necessary, but not sufficient, condition for write atomicity is proper handling of the Inde-
pendent Read Independent Write (IRIW) example. IRIW is depicted in Table 5.10 where cores C1 
and C2 do stores S1 and S2, respectively. Assume that core C3’s load L1 observes S1 (r1==NEW) 
and core C4’s L3 observes S2 (r3==NEW). What if C3’s L2 loads 0 (r2==0) and C4’s L4 loads 0 
(r4==0)? The former implies that core C3 sees store S1 before it sees S2, while the latter implies 
that C4 sees S2 before S1. In this case, stores S1 and S2 are not just “reordered,” but no order of stores 
even exists, and write atomicity is violated. The converse is not necessarily true: proper handling of 
IRIW does not automatically imply store atomicity. Some more facts (that can make your head hurt 
and long for SC, TSO, or SC for DRF):

Write atomicity implies causality. In Table 5.9, for example, core C2 observes store S1, 
performs a FENCE, and then does store S2. With write atomicity, this ensures C3 sees 
store S1 as done.
Causality does not imply write atomicity. For Table 5.10, assume that cores C1 and C3 are 
two thread contexts of a multithreaded core that share a write buffer. Assume the same for 
cores C2 and C4. Let C1 put S1 in the C1–C3 write buffer, so it is observed by C3’s L1 
only. Similarly, C2 puts S2 into the C2–C4 write buffer, so S2 is observed by C4’s L3 only. 
Let both C3 do L2 and C4 do L4 before either store leaves the write buffers. This execu-
tion violates write atomicity. Using the example in Table 5.9, however, one can see that this 
design provides causality.

Finally, the XC memory model is both store atomic and maintains causality. We previously 
argued that XC was store atomic. XC maintains causality because store atomicity implies causality.

5.6 A RELAXED MEMORY MODEL CASE STUDY: IBM POWER
IBM Power implements the Power memory model [17] (see especially Book II’s Chapter 1, Sec-
tion 4.4, and Appendix B). We attempt to give the gist of the Power memory model here, but we 
refer the reader to the Power manual for the definitive presentation, especially for programming 

•

•

TABLE 5.10: IRIW Example: Must Stores Be in Some Order?
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C1 put S1 in the C1-C3 write buffer, so it is observed by C3’s L1 only. Similarly, C2 puts S2 into the

C2-C4 write buffer, so S2 is observed by C4’s L3 only. Let both C3 do L2 and C4 do L4 before either

store leaves the write buffers. This execution violates write atomicity. Using the example in Table 5-9,

however, one can see that this design provides causality.

Finally, the XC memory model is both store atomic and maintains causality. We previously argued that

XC was store atomic. XC maintains causality, because store atomicity implies causality.

5.6  A Relaxed Memory Model Case Study: IBM Power
IBM Power implements the Power memory model [17] (see especially Book II's Chapter 1, Section

4.4, and Appendix B). We attempt to give the gist of the Power memory model here, but we refer the

reader to the Power manual for the definitive presentation, especially for programming Power. We do not

provide an ordering table like Table 5-5 for SC, because we are not confident we could specify all entries

correctly. We discuss normal cacheable memory only (“Memory Coherence” enabled, “Write Through

Required” disabled, and “Caching Inhibited” disabled) and not I/O space, etc. PowerPC [18] represents

earlier versions of the current Power model. On a first pass of this primer, readers may wish to skim or skip

this section; this memory model is significantly more complicated than the models presented thus far in

this primer. 

Power provides a relaxed model that is superficially similar to XC, but with important differences that

include the following. 

First, stores in Power are performed with respect to (w.r.t.) other cores, not w.r.t memory. A store by

core C1 is “performed w.r.t” core C2 when any loads by core C2 to the same address will see the newly

stored value or a value from a later store, but not the previous value that was clobbered by the store. Power

ensures that if core C1 uses FENCES to order store S1 before S2 before S3 then the three stores will be

performed w.r.t every other core Ci in the same order. In the absence of FENCEs, however, core C1’s store

S1 may be performed w.r.t. core C2 but not yet performed w.r.t. to C3. Thus, Power is not guaranteed to

create a total memory order (<m) as did XC.

TABLE 5-10.  IRIW Example: Must Stores Be in Some Order?

Core C1 Core C2 Core C3 Core C4
S1: data1 = NEW; S2: data2 = NEW; /* Initially, data1 & data2 = 0 */

L1: r1 = data1; /* NEW */ L3: r3 = data2; /* NEW */
F1: FENCE F2: FENCE
L2: r2 = data2; /* NEW? */ L4: r4 = data1; /* NEW? */

11



IBM POWER FENCES
• SYNC or HWSYNC (“HW” means “heavy weight”) 

orders all accesses X before all accesses Y and is 
cumulative.	



• LWSYNC (“LW” means “light weight”) orders loads in 
X before loads in Y, orders loads in X before stores in Y, 
and orders stores in X before stores in Y. LWSYNC is 
cumulative. Note that LWSYNC does not order stores in X 
before loads in Y.

12



IBM POWER NON-FENCE 
ORDERING

• “Power orders accesses in some cases even 
without FENCEs. For example, if load L1 obtains a 
value used to calculate an effective address of a 
subsequent load L2, then Power orders load L1 
before load L2.” - APMCCC, p. 72	



• How could it not????

13



C, C++, JAVA

• compiler optimizations need reordering ability	



• e.g., register allocation, loop-invariant code motion	



• these high-level languages have very relaxed MCMs	



• want to leave the door open for future compiler 
optimizations

14



SYNC IN C, C++, JAVA
• C, C++	



• pthread_* from <pthread.h>	



• atomic_* from <stdatomic.h> or <atomic>	



• more on this next week :-)	



• Java	



• volatile field qualifier	



• synchronized blocks	



• fancier stuff in java.util.concurrent package
15



 
 
 

hardware MCM guarantees

C, C++, JAVA => HW

 
 

Java MCM 
guarantees

16

everyone guarantees 
DRF => SC

DRF => SC
if there is a race, 
guarantees vary

with a race, C/C++ 
semantics are undefined

with a race, Java 
preserves type safety



QUESTIONS

• Section 5.3 states that the XC implementation's 
reorder unit must ensure that "loads immediately 
see updates due to their own stores." Doesn't a 
load by definition not write to memory?



COMPILER VS HW FENCES
• How does a complier enforce FENCE instructions? How does 

a FENCE instruction know when each operation is done or 
ordered?	



• In Power Memory Model, accesses can be made without 
FENCEs (if load L1 obtains a value used to calculate an 
effective address or data value of a subsequent store S2, then 
Power orders load L1 before store S2). In this case, when is the 
data dependency detected and instructions ordered? Is it 
speculative? 



SYNCHRONIZATION 
CONFLICTS

• On page 66 & 67: Are conflicting synchronization 
operations what we want for synchronization? 
Could you explain the rules in more detail?	



• What are transitive conflicts in synchronization 
operations? It was defined on page 67. Can you 
please give an example?



DRF => SC DEFINITIONS (1/2)

66 A PRIMER ON MEMORY CONSISTENCY AND CACHE COHERENCE

it (no concurrent loads).” Moreover, the XC outcomes are the same as would be allowed under SC. 
“SC for DRF” generalizes from these two examples to claim:

Either an execution has data races that expose XC’s reordering of loads or stores, or 
the XC execution is data-race-free and indistinguishable from an SC execution.

A more concrete understanding of “SC for DRF” requires some definitions:

Some memory operations are tagged as synchronization (“synchronization operations”), 
while the rest are tagged data by default (“data operations”). Synchronization operations 
include lock acquires and releases. 
Two data operations Di and Dj conflict if they are from different cores (threads) (i.e., not 
ordered by program order), access the same memory location, and at least one is a store.
Two synchronization operations Si and Sj conflict if they are from different cores (threads), 
access the same memory location (e.g., the same lock), and the two synchronization opera-
tions are not compatible (e.g., acquire and release of a spinlock are not compatible, whereas 
two read_locks on a reader–writer lock are compatible).

•
•

•

•

•

TABLE 5.8: Example with Two Outcomes for XC Without a Data Race, Just Like SC.
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• Two synchronization operations Si and Sj transitively conflict if either Si and Sj conflict or if Si con-

flicts with some synchronization operation Sk, Sk <p Sk' (i.e., Sk is earlier than Sk’ in a core K’s pro-

gram order), and Sk' transitively conflicts with Sj.

• Two data operations Di and Dj race if they conflict and they appear in the global memory order with-

out an intervening pair of transitively conflicting synchronization operations by the same cores

(threads) i and j. In other words, a pair of conflicting data operations Di <m Dj are not a data race if

and only if there exists a pair of transitively conflicting synchronization operations Si and Sj such that

Di <m Si <m Sj <m Dj.

• An SC execution is data-race-free (DRF) if no data operations race.

• A program is DRF if all its SC executions are DRF.

• A memory consistency model supports “SC for DRF programs” if all executions of all DRF programs

are SC executions. This support usually requires some special actions for synchronization operations.

Consider the memory model XC. Require that the programmer or low-level software ensures that all

synchronization operations are preceded and succeeded by FENCEs, as they are in Table 5-8. 

With FENCEs around synchronization operations, XC supports SC for DRF programs. While a proof

is beyond the scope of this work, the intuition behind this result follows from the examples in Table 5-7

and Table 5-8 discussed above.

TABLE 5-8.  Example with Two Outcomes for XC without a Data Race, just like SC

Core C1 Core C2 Comments
F11: FENCE /* Initially, data1 & data2 = 0 */
A11: acquire(lock)
F12: FENCE
S1: data1 = NEW;
S2: data2 = NEW;
F13: FENCE
R11: release(lock) F21: FENCE
F14: FENCE A21: acquire(lock)

F22: FENCE
L1: r2 = data2;
L2: r1 = data1; /* Two Possible Outcomes under XC:
F23: FENCE (r1, r2) = 
R22: release(lock) (0, 0) or (NEW, NEW) 
F24: FENCE Same as with SC */

20



DRF => SC DEFINITIONS (2/2)
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Two synchronization operations Si and Sj transitively conflict if either Si and Sj conflict or 
if Si conflicts with some synchronization operation Sk, Sk <p Sk' (i.e., Sk is earlier than Sk' 
in a core K’s program order), and Sk' transitively conflicts with Sj.
Two data operations Di and Dj race if they conflict and they appear in the global memory 
order without an intervening pair of transitively conflicting synchronization operations by 
the same cores (threads) i and j. In other words, a pair of conflicting data operations Di <m 
Dj are not a data race if and only if there exists a pair of transitively conflicting synchroniza-
tion operations Si and Sj such that Di <m Si <m Sj <m Dj.
An SC execution is data-race-free (DRF) if no data operations race.
A program is DRF if all its SC executions are DRF.
A memory consistency model supports “SC for DRF programs” if all executions of all 
DRF programs are SC executions. This support usually requires some special actions for 
synchronization operations.

Consider the memory model XC. Require that the programmer or low-level software en-
sures that all synchronization operations are preceded and succeeded by FENCEs, as they are in  
Table 5.8.

With FENCEs around synchronization operations, XC supports SC for DRF programs. 
While a proof is beyond the scope of this work, the intuition behind this result follows from the 
examples in Table 5.7 and Table 5.8 discussed above.

Supporting SC for DRF programs allows many programmers to reason about their programs 
with SC and not the more complex rules of XC and, at the same time, benefit from any hardware 
performance improvements or simplifications XC enables over SC. The catch—and isn’t there al-
ways a catch?—is that correctly placing FENCEs can be challenging:

It is undecidable to determine exactly which memory operations can race and therefore 
must be tagged as synchronization. Figure 5.4 depicts an execution in which core C2’s 
store should be tagged as synchronization—which determines whether FENCEs are ac-
tually necessary—only if one can determine whether C1’s initial block of code does not 
halt, which is, of course, undecidable. Undecidability can be avoided by adding FENCEs 
whenever one is unsure whether a FENCE is needed. This is always correct, but may hurt 
performance. In the limit, one can surround all memory operations by FENCEs to ensure 
SC behavior for any program.
Finally, programs may have data races that violate DRF due to bugs, non-blocking data 
structures, etc. The bad news is that, after data races, the execution may no longer obey SC, 
forcing programmers to reason about the underlying relaxed memory model (e.g., XC). 

•

•

•
•
•

•

•



DR => WTF
• Why is it that once a data race occurs, SC is no longer valid in 

DRF and how do you reason about the undecidable halting 
problem even if its unsolvable	



• Why is it the case that after data races, execution may no 
longer obey SC? Isn't the XC model still providing the illusion 
of SC, within the constraints of the program as it was written 
(i.e., there may be a fence missing that would enforce the 
behavior that the programmer expected, but from XC's point 
of view it is still following the rules)?



MCM TRANSLATION
• What would a programmer have to do to implement a 

stronger consistency model in code on a processor with 
weaker consistency? 	



• The paper mentions that with sufficient FENCES, a 
relaxed model like XC can appear to look like SC. At 
what point does FENCEs become prohibitively 
expensive and how can you qualitatively asses the 
impact of a FENCE? 



HW MCM SPECS

• Why hasn't Intel or AMD not adopted a consistency 
model similar to "SC for DRF" yet? If implemented 
properly, it has the benefits of both SC as well as XC.	



• Is the difficulty in comparing Power w.r.t. Alpha, ARM, 
RMO, and XC due to the difficulty in formalizing their 
specifications and constructing them into proofs?



PERFORMANCE
• Considering `HWSYNC` (IBM Power) basically synchronizes all 

cores, what is the performance impact compared to `FENCE` 
in other memory consistency models? How much lighter are 
`LWSYNC` instructions compared to `FENCE`?	



• How does RC performance compare against TSO 
performance for languages with a SC memory model such as 
Java volatiles? When running mostly Java code, do the required 
fences with RC (lets say on ARM) diminish substantially the 
power and cost savings versus x86?



MCMs IN PRACTICE

• Has anyone ever studies the decrease in programmer 
productivity resulting from the non-intuitiveness of RC?	



• At the end of 5.3, the authors discuss how they argued for a 
return to TSO or SC, but state that that did not happen. I 
thought previously we stated that Intel architecture uses a 
TSO-like memory model and relaxed models like Alpha died 
out. What are the authors referencing here when they say that 
architectures moved away from simpler consistency models?



QUESTIONS
• Some limits on relaxed memory ordering are present to prevent 

"astonishing" programmers, who typically expect sequential intra-thread 
execution. Are there programming models that don't presume sequentially 
executing threads that might be more amendable to very relaxed memory 
models?	



• Do there exist any inter-core hardware synchronization instructions in 
modern architectures such as x86? e.g. shared hardware locks or 
semaphores?	



• Would any of the previously discussed memory consistency models have 
benefits in GPU’s?


