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WarpLevelLock

✤ fences go right next to the critical section

__device__ void lock() { 
  while (atomicCAS((int*)&theLock, LOCK_FREE,LOCK_HELD) 
  ; 
  __threadfence(); 
} 
!
__device__ void unlock() { 
  __threadfence(); 
  atomicExch((int*)&theLock, LOCK_FREE); 
}
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WarpLevelLock

✤ always use atomic operations on the lock location
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ThreadLevelLock

✤ beware assumptions about which threads are active

for (int w = 0; w < warpSize; w++) { 
  if (w == threadIdx.x % warpSize) { 
    warpLock.lock(); 
    fun(); 
    warpLock.unlock(); 
  } 
}
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SpinBarrier pseudocode

shared count : integer := P 
shared sense : Boolean := true 
processor private local_sense : Boolean := true 
   
procedure central_barrier 
  // each proc toggles its own sense 
  local_sense := not local_sense 
  if fetch_and_decrement(&count) = 1: 
    count := P 
    // last proc toggles global sense 
    sense := local_sense 
  else: 
    repeat until sense = local_sense

How should local_sense be implemented?
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Common SpinBarrier issues

✤ extraneous atomics, __threadfences!

✤ insufficient locking
__device__ virtual void wait() { 
  warpLock.lock(); 
     bool localSense = !sense; 
  arrived++; 
  if (arrived >= m_expected) { 
   arrived = 0; 
   sense = localSense; 
  } 
  warpLock.unlock(); 
!
  while (sense != localSense); 
 }
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__device__ virtual void wait() { 
  lock(); 
  bool localSense = !sense; 
  arrived += 1; 
!
  if (arrived == m_expected) { 
    arrived = 0; 
    sense = localSense; 
    unlock(); 
    return; 
  } else { 
    unlock(); 
    while (1) { 
      lock(); 
      if (sense == localSense) { 
        unlock(); 
        return; 
      } 
      unlock(); 
    } 
  } 
}

SpinBarrier
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2-Level Barrier (1 __syncthreads)

✤ no data races here, but doesn’t synchronize client code 
as expected

__device__ virtual void wait() { 
  if (threadIdx.x == 0) { 
    SpinBarrier::wait(); 
  } 
  __syncthreads(); 
}
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2-Level Barrier (2 __syncthreads)

✤ works as expected

__device__ virtual void wait() { 
  __syncthreads(); 
  if (threadIdx.x == 0) { 
    SpinBarrier::wait(); 
  } 
  __syncthreads(); 
}
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A Low-Overhead Mechanism for Detecting Data Races in GPU Programs
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GRace overview

✤ detects shared memory races between __syncthreads 
calls!

✤ ignores other synchronization (atomics, fences) and 
device memory!

✤ assumes consistent access granularity?
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Background

✤ Where do the race detector programs that implement 
mechanisms like GRace run? Do they run on CPU in 
parallel with the GPU kernel being executed?!

✤ Can you go over the layout of warpTable? Is it 
indexed/keyed by the address of the instruction 
performing a memory operation, or by (threadId, 
memoryAddress)?
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False Positives

✤ Shouldn't they also use comparisons that show the 
possible false positives in GRace?
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Intra-warp races

✤ In the intra-warp race detection algorithm, they 
completely disregard read memory accesses and are 
only concerned with write-write data race. Why are 
they not dealing with read-write data race? How will 
intra-warp detection algorithm work if we take into 
account control flow divergence?
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Usage Model

✤ How do you create "bug-triggering inputs and parameters" 
if you don't really know about data races on GPUs and 
want to use GRace to help you finding them?!

✤ Why do both GRace and cuda-memcheck only consider 
data races in shared memory accesses? Is it that much more 
work to detect them in global accesses? These tools seem to 
be targeted at already "tuned" code where the assumption 
is that you're heavily using shared memory (and that the 
global sync portion is relatively simple/race-free).
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Static Analysis

✤ How does the static analyzer handle aliasing? Will aliasing cause 
the  static analyzer to miss races?!

✤ The static analysis component of GRace appears to be limited to 
cases where memory addresses are defined in terms of tid (the 
thread ID) and i (some loop index). There exist more sophisticated 
data-flow analysis techniques that would enable more sophisticated 
reasoning about possible values of memory addresses in the code. 
(One heavy-duty example would be a framework like KLEE, which 
is specific to LLVM.) Do you know why the authors didn't use these 
techniques? Do you think it would be possible to implement them 
without substantial refactoring of their static analysis algorithm?
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Scalability

✤ Both the schemes GRace-stmt (device memory scope) 
and GRace-addr (shared memory scope) perform well 
only with a small number of statements being 
instrumented and executed. Are there any other tools 
that are more scalable and work well larger number of 
statements?!

✤ Can this be sped up by adding any hardware features? !

✤ Are there any thread count, memory size constraints?
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Evaluation

✤ What is EM clustering?!

✤ The paper only shows that GRace-stmt and GRace-addr for 
only 3 applications out of which B-tool (the previous work) 
could not be evaluated for 'scan' because of new hardware 
and software. Isn't this a weak proof that GRace is better in 
performance than B-tool?!

✤ Are three kernels really sufficient to test GRace? Why did 
they pick these kernels in particular and shouldn't a more 
comprehensive battery of smaller tests be used?
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