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ABSTRACT

Cache contention in the form of false sharing and true sharing
arises when threads overshare cache lines at high frequency. Such
oversharing can reduce or negate the performance benefits of par-
allel execution. Prior systems for detecting and repairing cache
contention lack efficiency in detection or repair, contain subtle
memory consistency flaws, or require invasive changes to the pro-
gram environment.

In this paper, we introduce a new way to combat cache line
oversharing via the Thread Memory Isolation (Tmi) system. Tmi
operates completely in userspace, leveraging performance counters
and the Linux ptrace mechanism to tread lightly on monitored
applications, intervening only when necessary. Tmi’s compatible-
by-default design allows it to scale to real-world workloads, unlike
previous proposals. Tmi introduces a novel code-centric consistency
model to handle cross-language memory consistency issues. Tmi
exploits the flexibility of code-centric consistency to efficiently
repair false sharing while preserving strong consistency model
semantics when necessary.

Tmi has minimal impact on programs without oversharing, slow-
ing their execution by just 2% on average. We also evaluate Tmi
on benchmarks with known false sharing, and manually inject a
false sharing bug into the leveldb key-value store from Google.
For these programs, Tmi provides an average speedup of 5.2x and
achieves 88% of the speedup possible with manual source code fixes.
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1 INTRODUCTION

Multicore architectures, which have invaded nearly every market
segment from datacenters to smartphones and credit-card comput-
ers, promise improved performance and energy efficiency compared
to single-core designs. However, parallel code can suffer from many
subtle performance bugs that can quickly sap these potential ben-
efits. In this work we target false sharing bugs, a subtle class of
performance bugs not well-supported by existing tools.

False sharing bugs are widespread, arising both in benchmark
suites like Phoenix [31] and Parsec [4] and also in production-
quality code like the Boost libraries [28], MySQL [32] and the Linux
kernel [5, 8, 9]. False sharing is notoriously difficult to debug be-
cause it is not explicitly visible in the source code, and instead often
arises due to a complex interplay between the compiler, runtime
memory allocator and hardware cache coherence protocol. False
sharing can slow memory accesses by an order of magnitude in our
experiments, and exacts a significant energy penalty for generating
and processing cache coherence traffic.

In this work, we target online repair of false sharing, as with
previous systems [19, 24, 30]. Online repair is particularly attractive
because it requires no programmer intervention, no access to source
code (which may be unavailable or subject to bit-rot), and no system
downtime. We know first-hand of cloud and datacenter workloads
that suffer from false sharing issues and whose execution cannot
be stopped for debugging due to availability requirements.

In this paper we show how to build such an online repair scheme
leveraging access to performance counters from commodity mul-
ticore machines. In contrast with prior work, we seek a system
that satisfies four criteria simultaneously: 1) compatibility with
a commodity hardware and system stack, 2) upholding memory
consistency model semantics, 3) low performance overhead for
programs without false sharing and 4) speedups close to that of
manual fixes for automatically-repaired programs. As Table 1 shows,
existing work falls short along multiple dimensions. The Sheriff
scheme [19] executes each thread as a process, resulting in large
slowdowns for programs with frequent synchronization operations;
Sheriff also does not preserve correct semantics for programs with
C/C++ atomics or inline assembly. Plastic [30] relies on custom OS
or hypervisor support, and uses dynamic binary instrumentation
that limits the effectiveness of its repairs. LASER [24] leverages
performance counters for accurate and low-overhead detection and
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Requirement Sheriff [19] Plastic [30] LASER [24] Tmi
compatible × × ✓ ✓
memory

× ✓ ✓ ✓consistency
overhead w/o 27% 6% 2% 2%contention
% of manual 92% ∼30% 24% 88%speedup
Table 1: Requirements for effective false sharing repair.

preserves program semantics but its repair mechanism is much
slower than manual repairs.

Plastic’s repair mechanism, based on dynamic binary instru-
mentation, is complex and can capture only about 1/3 of the bene-
fit of manual repairs for the sole workload, linear-regression,
on which its repair scheme is activated. LASER’s repair mech-
anism achieves only 1.2x speedups on linear-regression and
histogram. In contrast, Sheriff’s online repair mechanism achieves
nearly all of the performance gains of manual repairs. Unfortu-
nately, Sheriff’s design does not preserve program semantics in
the presence of inline assembly or C/C++ atomic operations ([24],
Section 2.2). We find several uses of such mechanisms among our
benchmarks, including the real-world workload leveldb, and their
use is widespread in popular libraries like glibc. Indiscriminate use
of Sheriff’s repair mechanism can thus lead to invalid execution.

To meet all our requirements simultaneously, we have designed
the Thread Memory Isolation (Tmi) system for combating cache
line oversharing. To ensure high compatibility with existing sys-
tems, we have designed Tmi to operate entirely from userspace on
a standard Linux system stack. Tmi leverages the ptrace and perf
mechanisms to monitor and, when necessary, modify a program’s
execution with minimal overhead. Tmi provides compatibility-by-
default, intervening only if a program exhibits significant false
sharing. Tmi reduces false sharing by dynamically making con-
tended regions of memory thread-private, converting a running
thread into a process so that its virtual address space mapping
can be modified independently of other threads. Tmi focuses false
sharing repair only when and where it is needed, allowing for
the performance gains of manual source code fixes without any
programmer intervention.

The efficiency of Sheriff’s online repair mechanismmotivates un-
derstanding the precise conditions under which its use is permitted.
To uphold memory consistency model guarantees, we pro-
pose a new code-centric memory consistency model which enables
consistency-aware runtime optimizations. Ours is the first work,
we believe, to consider the implications of multiple consistency
models co-existing within a single program. Without code-centric
consistency, a runtime optimization is forced to be conservative,
e.g., providing strong TSO semantics [35] for an entire program
when only parts are written in assembly. With Tmi we demonstrate
that online false sharing repair can leverage code-centric consis-
tency, and we anticipate that future runtime systems and hardware
can benefit as well.

Finally, Tmi leverages lightweight hardware performance

counters available on recent Intel processors to detect false shar-
ing cheaply and without any application modifications, which un-
derpins Tmi’s compatible-by-default design. This helps minimize
performance overheads for programs without contention.

This paper makes the following contributions:
• The design and implementation of the Tmi system. Tmi ex-
acts just a 2% slowdown for programs without false sharing.
For programs with false sharing, including benchmarks and
a version of leveldb with an injected bug, Tmi provides a
5.2x speedup on average.
• A code-centric consistency model which illuminates the in-
teractions between high-level languages and assembly code,
and allows for consistency-aware runtime optimizations
• Formal demonstration that Tmi’s runtime optimizations pre-
serve required consistency model semantics
• A highly-compatible and low-overhead framework for ad-
justing per-thread virtualmemorymappings inmultithreaded
Linux processes

The rest of this paper is organized as follows. Section 2 provides
background on cache contention and previous online repair mech-
anisms. Section 3 describes Tmi’s implementation on a standard
Linux platform, and discusses its correctness. Section 4 presents an
evaluation of Tmi’s ability to detect and repair false sharing online.
Section 5 discusses related work and Section 6 concludes.

2 BACKGROUND

Modern invalidation-based cache coherence protocols enforce a
single-writer multiple-reader (SWMR) invariant which enforces that
a given cache line can either be writable by a single core or readable
by multiple cores. Cache contention occurs when two or more cores
make repeated, conflicting accesses to a given line, i.e., at least one
of those cores writes to the line. The SWMR invariant causes these
accesses to be serialized which is slow and energy-intensive.

There are two kinds of cache contention: true sharing, when
two cores access overlapping bytes within a cache line, and false
sharing, when cores access disjoint bytes. True sharing typically
arises from lock contention, though contention on regular data is
also possible. False sharing is more subtle, as it manifests whenever
two frequently-accessed locations end up in one cache line, which
can result from opaque compiler or memory allocator decisions.

It is generally more difficult to repair true sharing than false
sharing, as true sharing requires some kind of application modifica-
tion like switching to more scalable data structures. False sharing,
however, can always be resolved by modifying memory layout in
a semantics-preserving way by introducing padding or changing
memory alignment.

2.1 HITM-Based Contention Detection

Intel multicore chips provide visibility into certain coherence pro-
tocol events which are useful for detecting cache contention. AMD
chips provide a similar facility with the Instruction-Based Sam-
pling mechanism [1] that records the microarchitectural events (e.g.,
cachemisses) that instructions experience as theymove through the
pipeline. Because these events emanate directly from the hardware,
they offer a direct language-agnostic view into the cache contention
of a program that can uniformly detect true and false sharing alike.
Tmi leverages Intel’s Precise Event-Based Sampling (PEBS) per-
formance counter mechanism [17], in particular the HITM1 event

1We use the MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM PEBS event.
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Figure 1: A conventional multithreaded execution model and Sher-
iff’s model. With Sheriff, each thread is wrapped in a process. Each
process maintains the same set of virtual pages, mapped to differ-
ent physical pages in each process and in a shared memory region
accessible by all processes.

introduced in the Sandy Bridge microarchitecture in 2011. This
HITM (“HIT Modified”) event occurs when one core’s memory
request hits in a remote core’s private cache, and the line that is hit
in the remote private cache is in the Modified state.

When an instruction i triggers a HITM event, the hardware gen-
erates a PEBS record which is logged to an in-memory buffer. Each
PEBS record contains the virtual memory address accessed by i ,
and the values of the general-purpose registers as of i’s commit (in-
cluding i’s PC). The PEBS record does not directly record whether
the access was a load or store, but this information can be recovered
by disassembling the PC (as we describe in Section 3.1). When the
buffer becomes full of PEBS records, an interrupt notifies an OS
driver to make the records available for userspace client programs.
Recent versions of Linux provide good support for PEBS events via
the perf API [37], which we discuss further in Section 3. Despite
their name, PEBS events are not fully precise as the LASER [24]
paper demonstrates. We have found similar results on our exper-
imental platform, notably that the PC in a PEBS record is more
accurate than the data address and that, while the name of the
HITM event we use implies that only load instructions generate
PEBS records, HITM events caused by stores generate PEBS records
as well though at a lower rate than with loads. In addition to LASER,
Intel’s VTune profiler [10] and Linux’s perf c2c utility [26] also
measure PEBS HITM events, but do not provide a false sharing
repair mechanism as LASER and Tmi do.

2.2 Online Contention Repair

Tmi’s automatic false sharing repair is inspired by prior systems that
replace threads with processes in order to enable process-private
memory mappings. These systems use process-private mappings to
provide efficient false sharing repair [19] and deterministic parallel
execution [2, 20, 23, 29]. In a single process, threads have access

shared 
memory

process 0
thread 0

time →

diff

read-only read-onlytwin rw twin rw

1 2 3 4 5

st v → 0x1

Figure 2: The Sheriff twin page mechanism.

to a shared address space with the same virtual-physical mapping
for all threads. As discussed in the prior section, when threads
access adjacent locations in physical memory, cache contention
can occur. Unlike threads in a process, separate processes are not
required to share the same mappings from virtual pages to physical
pages. A process can freely map the same virtual pages as another
process to a separate physical page. Figure 1 demonstrates how
Sheriff maintains a thread-private physical page for each virtual
page using processes. A shared memory region accessible by all pro-
cesses is also maintained (with separate physical pages) to facilitate
exchanging state between threads (as we discuss below). Running
threads as processes and using process-private memory mappings
eliminates false sharing as two threads that access nearby locations
in the virtual address space (that would normally occupy the same
cache line) will access distinct underlying physical pages, avoiding
any cache line sharing.

While private virtual-memory mappings can protect against
false sharing automatically, this execution model imposes both
performance and compatibility challenges. Keeping memory state
consistent across processes is expensive: it requires communicating
each thread’s memory updates to other threads when synchroniza-
tion occurs. For programs that synchronize frequently, this can
impose large performance overheads. For communicating memory
updates to other processes, Sheriff uses a mechanism called page
twinning to determine what memory a thread has updated. Figure 2
illustrates how twinning works. When a thread first begins execut-
ing, all of its pages are marked read-only 1 . Whenever a thread
writes to a page 2 , copy-on-write is used to create a read-only twin
of the initial version of the page, and a mutable copy of the page
used for subsequent updates 3 . Whenever the memory updates
of a thread need to be determined, the mutable pages are diffed
with their initial versions to determine the bytes that have changed
4 . The twin pages are then cleared and mutable pages marked as
read-only again to track subsequent changes 5 .

The page twinning store buffer (PTSB) approach is an efficient
way of tracking memory updates, requiring essentially only the
fixed costs of the twinning and diffing (paid once per page per
synchronization operation) with zero additional per-access cost.
However, a PTSB breaks the atomicity of an alignedmulti-byte store
instruction, treating the instruction as a sequence of single-byte
stores leading to a violation of single-copy atomicity, sometimes
also called “word tearing” [24]. Note that this notion of atomicity
is distinct from the traditional notion of “store atomicity” in the
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x is aligned on a 2B boundary
initially, x == 0

Thread 0 Thread 1
store x ← 0xAB00 store x ← 0x00CD

assert x != 0xABCD

Figure 3: A simple assembly program that reveals the semantics of
aligned multi-byte stores. For all assembly languages we are aware
of, the assert can never fail. However, it can fail with PTSBs.

consistency model literature2 and for clarity we refer to our notion
as aligned multi-byte store atomicity (AMBSA) throughout this
paper.

Figure 3 shows a program that can break single-copy atomicity in
the presence of PTSBs. The result arises because of the page diffing
process, which cannot detect bytes that have been overwritten with
an identical value. Thus, each thread’s 2-byte store is seen as a
1-byte store. The updates are then merged and x receives a value
that no thread has written. Note that merging must change only
the bytes identified by the diff; updating other bytes is tantamount
to fabricating stores that the program did not perform.

While PTSB semantics violate AMBSA they are nevertheless suf-
ficient in very weak models like regular C11 or C++11 code [3] as
we show in Section 3.4. However, PTSBs violate the memory consis-
tency models of high-level languages like Java and of C/C++ atomic
operations. Even more alarmingly, all of the hardware-level mem-
ory models we are aware of, including x86, SPARC, POWER and
ARM [25, 33, 35, 36], guarantee AMBSA, i.e., that the 2-byte stores
to x are performed atomically because x is suitably aligned. Thus,
a PTSB is incompatible with assembly languages. Inline assembly
is fairly common in C and C++ programs, even if the program in
question does not explicitly use inline assembly. Inline assembly
appears in common glibc functions such as memcpy, and also in
application code from canneal (for atomics), dedup (in the SSL
library), and leveldb (for atomics).

Nevertheless, PTSBs have low performance overheads that allow
for very efficient false sharing repair. Our insight with Tmi is that
we can leverage PTSBs for regular C/C++ regions of code, while
carefully handling other regions to preserve correctness. We next
describe the implementation of the Tmi system and how it preserves
correctness in the presence of inline assembly and C/C++ atomics.

3 THE Tmi SYSTEM

Although false sharing can impact the performance of a parallel
application, not all applications suffer from false sharing, and some
inputs to an application may be more sensitive to false sharing than
others. For example, histogram exhibits a pattern of false sharing
that is dependent on the image input to the application because
different counters are incremented in each thread depending on
the color of the input image’s pixels. Aside from changing inputs,
changes to the memory allocator, operating system environment,

2The traditional notion refers to the fact that a single store may become visible to
some processors before others.

host hardware and nondeterministic thread scheduling can all im-
pact the cache contention behavior of an application. Considering
that many different factors may affect cache contention, several
of which may be specific to a given execution, it is important that
false sharing repair be always-on. Thus, instead of imposing drastic
environmental changes on all programs (such as Sheriff’s threads-
as-processes execution model or Plastic’s custom OS/hypervisor
support), Tmi adopts a compatible-by-default approach. If no false
sharing is detected for an application, the application should execute
with minimal perturbation. If false sharing is detected, the repair
mechanism should enable itself with as few invasive changes to the
application as possible to avoid compatibility pitfalls. Tmi provides
compatible-by-default execution in three ways: 1) by performing
low-overhead false sharing detection via hardware performance
counters, 2) by enabling the repair mechanism only once meaning-
ful false sharing is detected and 3) by targeting repair only at those
regions of memory that actually exhibit false sharing.

3.1 Low-Overhead Detection

Tmi leverages the Linux perf library to monitor HITM events for
running applications. LASER also monitors PEBS HITM events, but
because LASER requires a custom Linux driver, it is more work
to port LASER to a new OS or architecture. In contrast, Tmi uses
existing PEBS support within Linux and uses the existing Linux
perf driver.

When a thread is created, Tmi establishes a perf event buffer
for the thread that accumulates HITM events for that thread. Tmi
also launches a per-application detection thread that consumes
all HITM events produced by running threads and performs false
sharing detection using the generated HITM events. Performing
detection using the perf library only requires intercepting the
pthread_create function to create the HITM event buffers and
launch the per-application detection thread, and so has minimal
overhead.

To improve the accuracy of false sharing detection, Tmi adopts
similar strategies as those used in LASER [24]. To improve the ac-
curacy of false sharing detection, the detection thread performs
a few initialization tasks when it is launched. First, the detection
thread references the /proc/pid/maps address map to filter mem-
ory addresses from system libraries and the stack. This restricts
false sharing detection and repair to the heap and globals of the
running application and any libraries that it has linked. Second,
the detection thread analyzes the application binary using a dis-
assembler to determine which instruction addresses are loads and
stores, and to determine the width of each memory access. This
information is used during false sharing detection to distinguish
true sharing from false sharing. For example, if a 1-byte load to
location L1 followed by 1-byte store to location L2 with L1 , L2
produces a HITM event, the false sharing detector would classify
the HITM event as read-write false sharing.

The perf library provides a period parameter to control how often
hardware events are recorded to the software buffer. A period of n
causes records to be generated after (approximately) every n HITM
events. With n > 1, multiple events to the same address appear as
just one record. As shown in Figure 4, the sample period affects the
overall performance and accuracy of HITM event recording. With
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Figure 4: Performance and precision of HITM events reported by
perf with various sampling periods on leveldb
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application process PA
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application thread 1

time →
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Figure 5: The process and thread organization of an application run-
ning with TMI.

a small period, the performance of some applications may suffer.
However, a larger period leads to lower total event counts. To avoid
under-reporting false sharing and true sharing, Tmi assumes that if
a period of n produces r records, each record corresponds to n/r
actual events.

3.2 Making a Running Thread into a Process

To implement a PTSB, per-thread control over the virtual-to-physical
memory mapping is required. We take inspiration from Sheriff and
use processes to achieve this control from userspace. To provide
compatibility-by-default, Tmi does not convert threads into pro-
cesses until false sharing has been detected. Once false sharing
has been detected, Tmi uses the ptrace library to inject a fork()
call into the running thread to convert the thread to a process. Tmi
performs thread conversion via multiple steps, as shown in Figure 5.

At the beginning of the execution, a monitoring process PM
launches the application process PA. PM performs ptrace opera-
tions on PA such as creating the perf detector thread (Section 3.1)
and managing false sharing repair as described next. If the false
sharing detector determines that repair is necessary, the detector
thread signals PM to bring all application threads in PA to a stop
(Figure 5). PM stops the application threads in PA by attaching to
them with ptrace. After PA’s threads have been stopped, PM con-
verts each thread to a process. PM retrieves and stores the current
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SHARED    RW

SHARED    RW

mutexmutex

Figure 6: The shared memory layout before and after targeted re-
pair with TMI as described in Section 3.2

context (PC and registers) for each thread T . PM then replaces the
current context with the PC of a trampoline function that enables
page protection and calls fork() to create a new process PT . Once
the trampoline function has finished executing in PT , it signals PM
that it is ready to be resumed. PM reinstalls the former context for
thread T into PT . PM then detaches from the new process PT and
allows it to resume its execution at the same instruction address
and with the same register and memory state that thread T had.
Converting a running thread into a process is quite cheap in modern
Linux: less than 1ms in our experiments.

To ensure that applications can transition between threads and
processes seamlessly, PA creates and initializes two memory map-
pings at program start that enable the operations required for the
PTSB. PA creates a shared memory region using shm_open. Stacks,
globals and the heap all live in this shared memory region, allowing
Tmi to support stack sharing and repair false sharing no matter
where it arises among a program’s data. Tmi creates two mem-
ory mappings (using mmap) to this shared memory region. The first
memorymapping is always shared and allows both reads and writes
to all pages. The second mapping is also initially process-shared
but can later be remapped on a per-process basis to change the
sharing and permissions on individual pages. For example, when
Tmi decides to repair false sharing on a page, its permissions in the
second mapping are changed to be process-private (and therefore
copy-on-write) and read only, allowing Tmi to intercept writes to
the repaired page.

Tmi also creates a separate shared memory region that is always
mapped as process-shared and writable (bottom of Figure 6). This
memory region is used to allocate synchronization objects and other
internal state for the Tmi system. Synchronization objects must
always be process-shared in case Tmi needs to repair false sharing.
To prepare for this possibility, all synchronization objects are allo-
cated in process-shared memory, and Tmi replaces synchronization
objects in application memory with a pointer to the process-shared
object. For example, under Tmi, a pthread_mutex_lock struct con-
tains a pointer to our own Tmi-specific lock object which lives in
process-shared memory. This pointer (and the lock it points to) are
created by Tmi’s wrapper of pthread_mutex_init().

3.3 Targeted Page Protection

Once the Tmi detector has detected false sharing, and threads have
been converted into processes, the Tmi repair scheme aims to pro-
vide targeted false sharing repair for the running application. The
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first aspect of this targeted repair scheme enables the PTSB for only
the specific pages that have been identified by the false sharing
detector. This is in contrast with Sheriff [19] which enables a PTSB
for all of virtual memory by default and with LASER [24] which en-
ables a software store-buffer for targeted regions of code. With Tmi,
accesses to pages that have not exhibited false sharing continue
to access shared memory directly at native speed. For PTSB pages,
Tmi prevents false sharing by forcing copy-on-write behavior for
those pages. When a thread T resumes execution as a process PT ,
any PTSB pages that it attempts to write to will be copied-on-write
to a new physical page, preventing false sharing for all accesses
to these protected pages (Section 2.2). Tmi commits a diff of PTSB
pages at synchronization operations. By targeting the PTSB only
to those pages where it is needed, Tmi keeps diff and commit costs
low. The page size also has a significant impact on performance,
which we evaluate in Section 4.4.

3.4 Consistency Model Issues

Tmi must deploy PTSBs judiciously to maximize their performance
benefits while avoiding their semantic pitfalls. We discuss in this
section how Tmi uses PTSBs correctly. First, we identify the condi-
tions under which AMBSA violations are visible. Without loss of
generality, we consider pairwise interactions between two threads,
and assume that all synchronization is expressed via C++ atomics
or assembly code.

Lemma 3.1. For an assembly-free program, if AMBSA for a location
x is broken there is a data race on x .

Proof. Proof by contradiction: assume that AMBSA has been
broken on x but the program is free of data races. Because there is no
assembly code, race-freedom precisely characterizes the behavior
of the entire program. We know that two threads t0 and t1 are
both writing to x – with no or just one thread writing, diffing and
merging preserve written values exactly.

Since the program is race-free, there must be atomic synchro-
nization between the accesses. Assume that the synchronization
uses a lock l to protect x , and that t0 writes first. x ’s initial value
is v0. When t0 writes to x , it writes a value v1. When t0 releases
l , a diff operation will identify the bytes of x that t0 changed and
merge them into the shared memory space S . When t1 acquires l , t1
also empties its PTSB so that t1 will access S for all locations. Thus,
t1 will see v1. t1 then performs its write to x , setting it to v2. While
t1’s write may have used its PTSB, when t1 releases l it will merge
the bytes of x that changed between v2 and v1 into S . Thus, the
final value of S[x] will be v2. But v2 is the value that t1 wrote, so
AMBSA has not been broken. Thus, breaking AMBSA requires a
data race on x . □

3.4.1 Code-Centric Consistency. Code-centric consistency iden-
tifies points in a program’s execution at which the memory consis-
tency model changes, e.g., because the source language has changed
from C11 to x86 assembly. Code-centric consistency is a mechanism
for 1) identifying where these semantic changes occur in the static
code, and 2) adding callbacks at those points to allow appropriate
runtime adaptation. A runtime system designed for code-centric
consistency, such as Tmi, implements these callbacks to modify its

regular atomic x86 asm
regular 1: undefined 1: undefined 3: unknown
atomic 1: undefined 2: atomic 4: unknown
x86 asm 3: unknown 4: unknown 5: TSO

Table 2: Semantics of concurrent conflicting accesses between dif-
ferent code regions. undefined semantics permit any program be-
havior, while unknown semantics have not yet been addressed in
specifications. Shaded cells indicate where TMI permits PTSB use.

behavior to, effectively, implement different consistency models at
different points in time.

To argue for Tmi’s correct use of PTSBs, we consider the different
interactions that can arise between concurrent threads.We partition
code regions into regular, atomic and assembly regions. Table 2
shows the semantics of concurrent, conflicting accesses between
different regions, where concurrent conflicting accesses are defined
as two accesses from two distinct threads, where at least one access
is a write. This is very similar to the notion of a data race, but
more general to handle the case of conflicting atomic operations
which are defined to be data-race-free. From Table 2, there are five
(numbered) cases of interacting code regions to consider, which
we discuss below. Note that the case of data-race-free code is not
represented in Table 2, but in such programs PTSB use remains
invisible per Lemma Theorem 3.1.

Case 1: Undefined Semantics Lemma 3.1 shows that viola-
tions of AMBSA require a data race. In C++ a data race results in
undefined behavior. Breaking AMBSA, and the use of PTSBs, is
thus permissible in the presence of races. In addition to permitting
PTSB usage, undefined semantics grant substantial flexibility to
the implementation of the merge operation, e.g., it does not require
synchronization.

Case 2: Atomic Semantics All interactions between atomic
operations are considered race-free, so undefined semantics are not
permitted. As all atomic operations explicitly guarantee atomicity
[15], AMBSA is required and PTSBs are not permitted for atomic
code. Tmi guarantees that PTSBs are flushed before, and disabled
during, each atomic region. Atomics operate directly on shared
memory where the compiler’s implementation of the C++ memory
model ensures correctness. We make a finer distinction between
memory_order_relaxed and stronger memory orders: relaxed
does not require memory ordering, only atomicity. Thus, as long as
relaxed atomics operate directly on shared pages, their atomicity
semantics will be satisfied, and relaxed atomics needn’t induce a
PTSB flush.

As far as we are aware, existing memory consistency models do
not specify the semantics of interactions between assembly code
and regular code. We believe this is an important direction for
future work as many real-world programs are multi-lingual with
a mixture of, say, C++ and assembly. Next we propose informal
semantics for these cases.

Case 3: Assembly Code and Regular Code In the spirit of
the C++ consistency model, we can permit undefined semantics
for conflicting accesses between regular code and assembly code.
However, Tmi still flushes and disables the PTSB for uniformity with
other cases, though undefined semantics make this unnecessary.
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Case 4: Assembly Code and Atomic Code We adopt non-
undefined semantics in this case. One can imagine a sophisticated
lock-free algorithm where some cases are handled with atomics
but others require the precise control of assembly. It is thus highly
desirable to avoid undefined semantics in this case. Tmi ensures
that PTSBs are disabled during all assembly-atomic interactions,
so correctness is again provided by the C++ memory model (once
it is extended to this case). This approach is conservative: a more
sophisticated analysis of the assembly code within a given region
could, along the lines of relaxed atomics, deem a PTSB flush un-
necessary because, e.g., the region operates only on thread-local
data.

Case 5: TSO Semantics Interactions within assembly code are
precisely specified by the semantics of the assembly language in
question. None of the assembly languages we are aware of permit
AMBSA violations. Thus, PTSBs are not permitted within assembly
code.

3.4.2 Implementing Code-Centric Consistency. Code-centric con-
sistency requires callbacks to identify the start and end of atomic
and assembly regions. Identifying these regions in a binary is un-
fortunately impossible in general. memory_order_seq_cst loads
on x86 are just plain loads, and assembly code regions are always
inlined by construction. Instead, we have implemented a straight-
forward instrumentation pass in LLVM that adds the necessary
code-centric consistency callbacks fully automatically. We note
that recompilation is not strictly necessary. With access to source
code, a simple static analysis could create a list of callbacks to insert,
allowing existing binaries to be rewritten statically, or at load time
via binary code probe injection [7] to avoid any overhead when
Tmi is disabled.

In our current implementation, these callbacks are library func-
tion calls. The functions called are NOPs by default. Runtime sys-
tems that leverage code-centric consistency, such as Tmi, instruct
the loader to replace the callbacks’ implementations with runtime-
specific versions. While we explore only one particular use of these
callbacks in this paper, we envision them being useful for a vari-
ety of other software and hardware systems that operate on na-
tive code. Runtime systems that dynamically optimize native code,
like DynamoRIO [6], could use our proposed callbacks to perform
more aggressive optimizations while ensuring correct consistency
semantics. A future processor could use these callbacks to relax
consistency guarantees in the common case, providing stronger
semantics only when necessary.

4 EVALUATION

We evaluate Tmi’s false sharing detection and false sharing repair
mechanisms. We demonstrate that Tmi is compatible with many
applications and can perform false sharing detection at low runtime
overhead. We show that for most benchmarks, Tmi’s false sharing
detector requires little additional memory relative to the baseline.
On benchmarks with known false sharing, we show that Tmi is able
to repair the existing false sharing and automatically improve the
performance of the application. Additionally, we detail the runtime
cost of enabling Tmi’s false sharing repair mechanisms. We also
demonstrate the performance tradeoff in enabling huge pages for
both detection and repair.

4.1 Experimental Setup

We evaluate the Tmi system using two Haswell systems. For repair
experiments, we use a 4-core Haswell system with 32 GB of mem-
ory and an Intel Core i7-4770K running at 3.4 GHz that matches the
repair experiments presented by LASER [24], as it was not feasible
to run LASER on another machine due to system-specific require-
ments for its HITM detector. For detection experiments, we use an
8-core Haswell system with 32 GB of memory and an Intel Core
i7-5960X running at 3.0 GHz. We used gcc version 4.9.2 with -O3
optimizations on Ubuntu Linux 14.04. We present performance data
as an average of 25 runs.

We evaluate Tmi on the Phoenix 1.0 [31], PARSEC 3.0 [4] and
Splash2x [38] benchmark suites, and leveldb 1.20. We use the
native inputs for Parsec and Splash2x. We use the largest avail-
able inputs for Phoenix and extend histogram’s inputs by 60x
and linear-regression’s input by 100x to increase their running
times to over a minute. For histogram, we examine two inputs:
its standard large.bmp image (which we refer to as histogram)
and an alternative image (histogramfs) that accentuates the false
sharing present in the code. We exclude cholesky because its run-
time is just 400ms on our system and it is not possible to scale
its inputs. We also evaluate three microbenchmarks that target
the boost C++ library v1.62 (the latest version). spinlockpool
targets a well-known false sharing bug in boost::spinlock [28].
shptr-relaxed and shptr-lock perform reference-counted smart
pointer operations on one memory page while false sharing occurs
on a separate memory page. The reference count updates are syn-
chronized using either relaxed atomic operations (the default for
modern platforms) or mutex locks, respectively. These microbench-
marks demonstrate how code-centric consistency enables sound
performance optimizations in runtime systems like Tmi.

For all detection and repair experiments, we configured perf
to use a sample period of 100 events. We use a modified version
of the Lockless Allocator [14]. On our benchmarks, the Lockless
Allocator outperformed the glibc allocator by 16% on average. We
use the Lockless Allocator in our pthreads baseline to account for
these speedups.

4.2 False Sharing Detection

Tmi’s false sharing detector aims to have a low runtime overhead
and to provide compatibility with existing parallel applications.
Figure 7 shows the runtime overheads of sheriff-detect, tmi-alloc, and
tmi-detect as compared to the baseline of pthreads execution using
the Lockless Allocator. For the few benchmarks that it is compatible
with, sheriff-detect shows the runtime performance of the Sheriff
false sharing detection tool. This tool is incompatible with the native
inputs for most of the benchmarks even with modified parameters
to accommodate the additional required heap space. sheriff-detect
requires threads to run as processes at all times and page protects all
of memory, leading to incompatibility withmany of the benchmarks.
Overall, Sheriff works with just 11 of our 35 workloads.

tmi-alloc shows the overhead of replacing the Lockless Allo-
cator’s requests for system memory with memory from Tmi’s
process-shared memory. With huge pages enabled, tmi-alloc per-
forms slightly better than the baseline Lockless allocator with a
1% speedup. tmi-detect includes tmi-alloc and additional overheads
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Figure 7: Performance of TMI’s allocator and false sharing detection compared to sheriff-detect. All bars are normalized to pthreads execution
using the Lockless allocator (lower is better). TMI-alloc redirects all memory alloctions to TMI’s process-shared memory. TMI-detect enables
all other necessary features of TMI’s false sharing detector (Section 3).

including replacing thread synchronization with process-shared
synchronization, monitoring HITM events using perf, and per-
forming false sharing detection using the recorded HITM events.
dedup, kmeans, histogram, and leveldb are all sensitive to perf’s
sample period parameter because each of these benchmarks con-
tains either true sharing or false sharing. The runtime overhead of
these benchmarks can be reduced by using a larger sample period
(e.g. 1000) at the cost of lower accuracy detection, as demonstrated
in Figure 4. Overall, tmi-detect exhibits an average runtime over-
head of 2% with a maximum overhead of 17% on kmeans. Tmi’s
compatible-by-default design allows it to run with a wide range of
benchmarks, including the large-scale open-source key-value store
leveldb. Tmi detects minor amounts of false sharing in leveldb
in a std::deque that is used as a queue for writes to the database.
Unfortunately, the operations on this queue are heavily synchro-
nized, and thus the performance gains from repairing this false
sharing would be negligible. leveldb exhibits roughly 10x more
HITM events attributable to true sharing rather than false sharing.

Figure 8 shows the memory overheads (on a logarithmic scale)
for tmi-detect compared to the baseline memory usage. For most
benchmarks, the memory overhead for Tmi is relatively small com-
pared to the baseline. The Phoenix benchmarks and a few of the
Splash2 benchmarks have small baseline memory usage around 10
MB. For these benchmarks, Tmi adds only about 90MB of memory
overhead for the perf event buffers and false sharing detector data
structures. Aside from these benchmarks with very small memory
usage, Tmi requires 19% more memory than baseline execution. The
majority of the memory overheads can be attributed to the false
sharing detector’s data structures. In order to perform accurate de-
tection, the false sharing detector records disassembly information
about the target application’s static load and store instructions and
records information about dynamic memory operations as well.
fluidanimate and water-spatial both have high memory over-
heads due to synchronization because Tmi must replace (via an

extra indirection) the fine-grained locks used by these benchmarks
with process-shared locks. The memory overheads for perf stem
from a per-thread buffer for HITM events. For the benchmarks in
which Tmi repairs false sharing, additional memory overhead is
required for twin pages and buffered page state, but these costs are
small due to Tmi’s targeted page protection.

4.3 False Sharing Repair

Tmi is able to automatically repair known false sharing bugs in
the Phoenix and Splash benchmark suites. histogram, linear-re-
gression, stringmatch, and lu-ncb all exhibit false sharing that
leads to noticable performance degradation. All of these bench-
marks contain structures that produce over 100,000 HITM events
per second. histogram contains false sharing in thread-private
histogram counters that can be located on the same cache-line.
linear-regression repeatedly accesses an args array that is not
64-byte aligned by default. stringmatch accesses two thread-private
structures, cur_word and cur_word_final, that can partially over-
lap on the same cache line. lu-ncb exhibits false sharing in the array
input to its daxpy implementation. For lu-ncb, Tmi does not need
to repair the false sharing because it is automatically repaired by
changing the allocator. This behavior is common in all of the false
sharing repair mechanisms that we tested. To evaluate Tmi’s per-
formance on real-world code, we injected a false sharing bug into
Google’s leveldb key-value store. By default, each thread main-
tains a local count of operations performed; in our buggy version
these are packed into a single cache line. This bug is emblematic of
many of the false sharing bugs we have seen in other programs.

On each of these benchmarks, Tmi is able to automatically re-
pair false sharing to provide a performance benefit to the parallel
application. Figure 9 shows the runtime speedup provided by Tmi
on each of these benchmarks. Each column is normalized to the
baseline runtime using pthreads and the Lockless Allocator. For
each benchmark, we force the discovered false sharing behavior
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Figure 8: Memory overheads for TMI. Bars are absolute value in MB (log scale). Lower is better.
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Figure 9: Speedup over pthreads (higher is better) for benchmarks
where TMI automatically repairs false sharing.

by requiring a mis-aligned allocation when appropriate. manual
shows the performance benefit of manually fixing the false sharing
in each of the benchmarks. Tmi provides significant speedups on
benchmarks as well as a 3.8x speedup on the real-world leveldb
program, providing 88% of the performance benefit of manual in-
strumentation completely automatically.

The sheriff-protect bars in Figure 9 show the runtime speedup
provided by the Sheriff repair tool. In most cases, Tmi performs
similarly to Sheriff. Sheriff offers slightly higher performance bene-
fits on some benchmarks because it begins preventing false shar-
ing as soon as the application starts up whereas Tmi does not
begin preventing false sharing until it reaches a threshold speci-
fied by the detector. However, Sheriff suffers from compatibility
issues due to this design decision and does not work on lu-ncb,
leveldb or shptr-relaxed. LASER is able to repair false sharing
on histogramfs, linear-regression, and lu-ncb, but it only at-
tains 24% of the manual speedup on the benchmarks that it repairs.
LASER is unable to provide a speedup on histogram (standard in-
put) or stringmatch due to its expensive repair mechanism. LASER
does not enable repair on the Boost microbenchmarks because
LASER’s TSO consistency is too restrictive to efficiently handle
their frequent synchronization operations.

The right part of Figure 9 shows microbenchmark results. spin-
lockpool exhibits false sharing on an array of pthread_mutex_-
locks that are redirected by Tmi in order to enable the conversion
from threads to processes (Section 3.2). Tmi adds a level of indi-
rection to a new pthread_mutex_lock that is cache-line sized to
avoid false sharing, automatically fixing the false sharing present
in boost::spinlockpool.

shptr-relaxed exhibits false sharing along with occasional
smart pointer manipulation, using C++ relaxed atomic operations to
increment reference counts (Boost’s default for modern platforms).
Thanks to code-centric consistency, Tmi is able to fully leverage
these relaxed atomic operations, executing them without forcing a
PTSB flush. Thus, the PTSB can continue to prevent false sharing
on other memory pages not targeted by the relaxed atomics. Tmi
repairs false sharing in shptr-relaxed with a speedup of 4.43x.

shptr-lock demonstrates the overheads of fixing false sharing
without code-centric consistency. In this version, the smart pointer
reference counts are protected by a pthread mutex. This forces
the PTSB to be flushed on every lock acquire and release, negating
almost all of the performance benefits of fixing the false sharing. Tmi
exhibits a speedup of just 1.04x on shptr-lock. The performance
gain in shptr-relaxed over shptr-lock demonstrates what can
be achieved with the consistency-aware optimizations that code-
centric consistency enables.

We examined the cost of applying false sharing repair to all pro-
grammemorywith code-centric consistency enabled, to better high-
light store buffer overheads. For some benchmarks with false shar-
ing, this PTSB-everywhere approach does not change performance.
However, histogram and histogramfs suffered from additional
performance overheads when the PTSB is used indiscriminately.
histogram suffers a 36% slowdown with PTSB-everywhere, instead
of a 29% speedup with Tmi. histogramfs exhibits a 3.26x speedup
with PTSB-everywhere but Tmi achieves a 6.27x speedup instead.
This shows that the PTSB-everywhere approach can have signifi-
cant performance implications, which further motivates Tmi’s tar-
geted false sharing repair.

Table 3 characterizes the false sharing repair performed by Tmi.
The “Unrepaired” column lists the application runtime before false
sharing is detected. While Tmi constantly receives HITM events,
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App Unrepaired (s) T2P (µs) Commits/s
histogram 1 73 1.25
histogramfs 1 112 0.79

lreg 1 138 0.65
stringmatch 1 114 0.64

leveldb 2 161 2.04
spinlockpool 1 93 0.38
shptr-relaxed 1 179 3.68
shptr-lock 1 179 33.99

Table 3: Characterization of TMI’s false sharing repair
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Figure 10: Performance overheads (lower is better) of using 4KB
standard sized pages versus 2MB huge pages for process-shared,
file-backed memory allocation

analyzing these events to find false sharing (Section 3.1) occurs once
per second. Once false sharing is detected, Tmi converts threads to
processes and begins to repair the false sharing. The amount of time
necessary for this conversion is shown in the Threads-to-Process
(T2P) column. As shown, threads can be converted to processes in
under 200 microseconds for all applications. The Commits/s column
shows the rate of synchronization events in each application, which
cause the PTSB to commit. While commits are a prime source of
overhead, Tmi is able to provide a speedup across a wide range
of commit frequencies. However, in the pathological shptr-lock
microbenchmark frequent commits limit the speedup to just 4%.

4.4 Huge Pages

Most standard memory allocators service memory requests with
process-private memory from either sbrk or an anonymous (ze-
roed) mmap. Tmi’s allocator provides memory from a shared and file-
backed mmap in order to enable permission and mapping changes
during execution. Unlike process-private anonymous mappings,
shared file-backed mappings must carry their changes through to
the underlying file. Using the default 4KB pages, we found that
canneal, reverse-index, fft, fmm, ocean-ncp, and radix all ex-
hibited a large number of page faults that lead to some perfor-
mance degradation. These benchmarks all require relatively large
amounts of memory, ranging from 1GB for canneal to 27GB for
ocean-ncp. To reduce this overhead, we enabled huge pages using
the MAP_HUGETLB and MAP_HUGE_2MB flags. By using huge pages,
we reduce the number of page faults and reduce the pressure on the
TLB. Figure 10 compares the runtime performance of using 4KB
versus 2MB pages for Tmi’s allocator. Enabling huge pages provides
a 6% speedup over the standard page size.

a b

c d

a c

b d

c b

a d

c c

a d

T0: swap(b,c)

time →

T1: swap(a,c)

diff and 
merge

Figure 11: Atomic swaps in canneal that require code-centric consis-
tency. In the pictured example, element c is replicated and element
b is lost. (netlist.cpp:84)

T 0 T 1
while (flag) {} flag = false;

pthread_bar_wait(); pthread_bar_wait();

Figure 12: Racy code in cholesky that executes incorrectly without
code-centric consistency. T 0’s version of flag never updates to true.
(Simplified from mf.C:135-156)

Using huge pages has other performance ramifications for Tmi.
When repair is enabled, Tmi must perform a diff and merge on each
page that has been modified at each synchronization operation.
With huge pages, this requires scanning and merging 2MB of mem-
ory instead of 4KB. We optimize huge page commit by comparing
4KB regions of the 2MB page using memcmp before comparing the
individual bytes. While 4KB pages reduce commit costs by about
5x, commit with huge pages took 10ms or less on our benchmarks,
so using huge pages is an overall win.

4.5 Code-Centric Consistency

As described in Section 3.4, Tmi preserves memory consistency se-
mantics for assembly language and atomics by disabling the PTSB
of the thread executing these kinds of code. Figure 11 demonstrates
how atomic swaps can produce an incorrect final result in canneal
in the presence of a PTSB. Without code-centric consistency, the
use of a PTSB prevents the atomic swaps from immediately syn-
chronizing to shared memory, which in turn leads to lost or du-
plicated elements in the grid. Figure 12 shows another case from
cholesky, from the splash2 suite, in which the use of a PTSB
without code-centric consistency can lead to unexpected results.
This code marks flag with the C volatile keyword, which is in-
sufficient for correct synchronization behavior in the current C
standard but was common practice in older C programs. Without
code-centric consistency, the value of flag may never be updated
in T 0’s private memory, T 0 will never exit the while loop, and the
program hangs. Code-centric consistency can take account of the
volatile keyword and provide the SC semantics that the original
programmer intended. Even though there is technically a data race
on flag, modern versions of gcc also eventually update flag to
shared memory, allowing the code to terminate. Beyond correctness
and performance, code-centric consistency also provides a good
match for programmer expectations.

Aside from these two specific instances, we found inline assembly
in multiple applications that might require code-centric consistency.
canneal and leveldb contain 6 and 8 instances of inline assembly
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code, respectively, for their atomic pointer implementations. dedup
contains 7 instances of inline assembly code from openssl. Multiple
splash2 benchmarks use custom, flag-based synchronization.

Tmi does not identify significant enough false sharing in any
of these benchmarks to trigger its repair mechanisms. The func-
tion hooks required to identify the start and end of assembly code
regions are included in all our experiments and incur negligible
performance overheads. On the simlarge input, sheriff-detect causes
canneal to produce an incorrect result. sheriff-detect and sheriff-
protect hang on cholesky. Tmi is able to perform false sharing
detection on all of these benchmarks without causing incorrect
results.

5 RELATEDWORK

The most closely-related work to Tmi are systems that detect and
automatically repair false sharing at runtime. The Plastic [30], Sher-
iff [19], and LASER [24] systems represent the state-of-the-art in
false sharing detection and repair for unmanaged code. Remix [11]
also performs online false sharing repair, but only for programs
running on the JVM which provides significant extra flexibility.

The Plastic system [30] provides byte-granularity virtual-to-
physical memory mapping, allowing adjacent virtual bytes to map
to disjoint physical bytes. Plastic relies on custom OS/hypervisor
support and dynamic binary instrumentation to implement this
mapping. We were unable to obtain Plastic’s source code for a direct
comparison.

We explain the operation of Sheriff’s [19] false sharing repair
mechanism in Section 2.2 and provide an extensive comparison
against it in Section 4.

LASER [24] performs false sharing detection in a similar manner
to Tmi by using HITM performance counters. LASER also preserves
the memory consistency semantics of applications by using a soft-
ware store-buffer to repair false sharing. However, LASER’s repair
mechanism provides only a fraction of the performance benefit that
Tmi can provide, as we show in Section 4.

Some schemes focus exclusively on false sharing detection, re-
lying on programmers to implement the repair via source code
changes. These systems typically rely on extensive program instru-
mentation, e.g., via full-system simulation [34], dynamic binary
instrumentation as in Pluto [13] and Liu [18], memory shadowing
along with dynamic instrumentation like the Dynamic Cache Con-
tention Detection scheme [39] or extensive compiler instrumenta-
tion as with Predator [22]. Such instrumentation-based approaches
typically incur significant performance overheads, but they can
provide a clear view of the program’s cache contention behavior.
Predator even predicts false sharing behavior on alternate machines
with larger or smaller cache lines. The Cheetah system [21] uses
performance counters (different from those used by Tmi) to de-
tect false sharing with low overhead and to predict the speedup of
manual fixes.

Tmi’s use of HITM performance counters for performance de-
bugging is shared with prior work. Intel’s VTune profiler [10] and
Linux’s perf c2c utility [26] use the same PEBS events as Tmi, but
do not provide false sharing repair. The Plastic scheme [30] uses
HITM counters (not PEBS events) to identify whether programs
suffer from cache contention, but requires other mechanisms to

localize the contention. [16] uses machine learning to correlate
performance counter results with false sharing, but uses non-PEBS
counters and provides no repair mechanism. In [12], HITM counts
are used to determine samples for low-overhead data race detection.
The TimeWarp system [27] uses HITM counts to infer the presence
of software-based clocks that can be used to construct side-channel
attacks even if access to high-resolution OS timers is disabled. If
these prior schemes were extended to use PEBS HITM events, it is
likely that greater accuracy could be achieved.

6 CONCLUSION

Tmi detects and repairs false sharing in parallel applications with
low overhead and high compatibility. Tmi avoids the memory con-
sistency pitfalls of prior approaches, and we present proofs of the
correctness of Tmi’s repair mechanism. Tmi introduces a novel
technique for performing false sharing detection without page pro-
tection and enabling the repair scheme only when necessary.
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