
CS446: Machine Learning Fall 2012

Final Exam

December 11th, 2012

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam. Note that there is an appendix with possibly useful
formulae and computational shortcuts at the end.

• This exam booklet contains five problems, out of which you are expected to answer
four problems of your choice.

• The exam ends at 10:45 AM. You have 75 minutes to earn a total of 100 points. You
can earn 25 additional (bonus) points if you successfully attempt all five problems.

• If you choose to attempt all five problems, the four problems with the highest points
will be considered for your final exam score and the lowest will be considered as bonus.

• Answer each question in the space provided. If you need more room, write on the
reverse side of the paper and indicate that you have done so.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Name (NetID): (1 Point)

Short Questions /24
Support Vector Machines /25
Probability /25
Naive Bayes /25
Expectation Maximization /25

Total /100
Bonus /25
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Short Questions [24 points]

(a) [10 points] We define a class Cr,k,n of r-of-k functions in the following way. Let
X = {0, 1}n. For a chosen set of k relevant variables and a given number r, an r-
of-k function f(x1, . . . , xn) is 1 if and only if at least r of the k relevant attributes
are 1. We assume that 1 ≤ r ≤ k ≤ n.

1. [5 points] Phrase this problem as a problem of learning a Boolean disjunction
over some feature space. Define the feature space and the learning problem.

2. [5 points] Assume you are learning this function using Winnow. What
mistake bound do you obtain?
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(b) [8 points] According to the CDC, Women who smoke are 21 times more likely
to develop lung cancer compared to those who don’t smoke. Furthermore, CDC
tells us that about 10% of the total women smoke. If you learn that a woman has
been diagnosed with lung cancer, and you know nothing else about her, what is
the probability that she is a smoker?
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(c) [6 points] Fill in the blanks with options given below:

(a) δ (b) ε (c) 1/δ (d) 1/ε (e) 1− δ (f) 1− ε

(g) m (h) n (i) size(C) (j) size(H)

(k) number of examples (l) instance size (m) computation time

(n) linear (o) polynomial (p) exponential

A concept class C defined over the instance space X (with instances of length n)
is PAC learnable by learner L using a hypothesis space H if

for all f ∈
{C | H}

for all distributions D over X, and fixed δ, ε ∈ [0, 1], given a sample of m
examples sampled independently according to the distribution D, the learner L
produces with a probability

{at least | at most | equal to} {one of (a) to (f)}

a hypothesis g ∈
{C | H}

with error (ErrorD = PrD[f(x) 6= g(x)])
{at least | at most | equal to} {one of (a) to (f)}

where the
{one of (k) to (m)}

is
{one of (n) to (p)}

in

, , , and
{four of (a) to (j)}

.
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Support Vector Machines [25 points]

We are given the following set of training examples D = {(x(i)
1 , x

(i)
2 , y(i))}, i = 1, . . . ,m,

where x
(i)
j are integer-valued features, and y(i) are binary labels.

x1 x2 y
-2 -4 +
-2 0 +
0 2 +
2 2 -
2 -2 -
0 -4 -

Our objective is to learn a hyperplane w1x1 + w2x2 + b = 0 using the hard-SVM
objective:

minimize
1

2

(
w2

1 + w2
2

)
subject to y(i)

(
w1x

(i)
1 + w2x

(i)
2 + b

)
≥ 1, i = 1, . . . ,m.

Use the grid below to answer the following questions (you will place a few points and
lines on this grid).

−4 −2 0 2 4

−4

−2

0

2

4

x1

x2
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(a) [10 points] Finding the hard-SVM hyperplane:

1. [2 points] Place the training examples on the grid, and indicate the support
vectors.

2. [3 points] Draw the hyperplane produced by the hard-SVM on the grid.

3. [5 points] Find the values of w1, w2, b ∈ R that optimize the hard-SVM
objective.
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(b) [10 points] Experimental evaluation:

1. [2 points] Provide the classification rule used to classify an example with
features x1, x2, using the hyperplane produced by hard-SVM.

2. [2 points] What will the error of your classifier be on the training examples
D (expressed as the fraction of training examples misclassified)?

3. [2 points] Draw on the grid, the hyperplane that will be produced by hard-
SVM when you use all training examples except a = (0, 2, +). Using this
hyperplane, will you classify a correctly?

4. [2 points] Draw on the grid, the hyperplane that will be produced by hard-
SVM when you use all training examples except b = (2, 2,−). Using this
hyperplane, will you classify b correctly?

5. [2 points] What will be the average error if you use 6-fold cross validation
on the training set D?

(c) [5 points] Soft-SVM formulation:

1. [3 points] Write the soft-SVM objective below. Circle either min or max.

min

max
+ C .

2. [2 points] For what range of positive C values, will the hyperplane produced
by this soft-SVM objective be most similar to the hyperplane produced by
hard-SVM. Circle one of the following.

very small moderate very large
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Probability [25 points]

You are given the following sample S of data points in order to learn a model. This
question will use this data.

Example A B C
1 1 1 0
2 0 1 1
3 1 0 0
4 0 0 0
5 1 1 0
6 0 0 0
7 1 0 1
8 0 1 1
9 1 1 0
10 0 0 0
11 1 1 1
12 0 0 0

(a) [3 points] What would be your estimate for the probability of the following data
points, given the sample S, if you were not given any information on a model?
(That is, you would estimate the probability directly from the data.)

1. P (A = 1, B = 1, C = 0)

2. P (A = 0, B = 1, C = 1)

3. P (A = 0, B = 0, C = 1)
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(b) [10 points] Consider the following graphical model M over three variables A, B,
and C.

A→ B → C

1. [5 points] What are the parameters you need to estimate in order to com-
pletely define the model M? Circle these parameters from Table 1.

(1) P [A = 1] (5) P [B = 1] (9) P [C = 1]

(2) P [A = 1|B = b] b ∈ {0, 1} (6) P [B = 1|C = c] c ∈ {0, 1} (10) P [C = 1|A = a] a ∈ {0, 1}

(3) P [A = 1|C = c] c ∈ {0, 1} (7) P [B = 1|A = a] a ∈ {0, 1} (11) P [C = 1|B = b] b ∈ {0, 1}

(4) P [A = 1|B,C = b, c]
b, c ∈ {0, 1}

(8) P [B = 1|A,C = a, c]
a, c ∈ {0, 1}

(12) P [C = 1|A,B = a, b]
a, b ∈ {0, 1}

Table 1: Options to choose from to explain model M .

2. [5 points] Use the data to estimate the parameters you have circled in (b).1.
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(c) [6 points] Use the parameters chosen in (b).1 to write down expressions for the
probabilities of the same data points according to model M and compute these
probabilities using the estimated parameters.

1. PM(A = 1, B = 1, C = 0)

2. PM(A = 0, B = 1, C = 1)

3. PM(A = 0, B = 0, C = 1)

(d) [6 points] Use the parameters chosen in (b).1 to write down the expressions for
the following probabilities for model M and compute these probabilities.

1. PM(B = 1)

2. PM(A = 1|B = 0)

3. PM(A = 0|B = 0, C = 0)
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Naive Bayes [25 points]

You would like to study the effects of irrigation, fertilization and pesticide use with
respect to the yield of a farm. Suppose you are provided with a collection D =
{D1, . . . , Dm} of m data points corresponding to m different farms. Each farm has
three binary attributes IsIrrigated (X1), IsFertilized (X2) and UsesPesticide (X3), and
each has either a high yield (V = 1) or a low yield (V = 0). The label is Yield. A
natural model for this is the multi-variate Bernoulli model.

Below is a table representing a specific collection S of data points for 8 farms to
illustrate how a collection might look like.

# IsIrrigated (X1) IsFertilized (X2) UsesPesticide (X3) Yield (V )

1 No (0) Yes (1) No (0) High (1)
2 Yes (1) Yes (1) No (0) High (1)
3 No (0) Yes (1) No (0) Low (0)
4 No (0) Yes (1) No (0) High (1)
5 No (0) No (0) Yes (1) Low (0)
6 Yes (1) No (0) Yes (1) Low (0)
7 No (0) No (0) No (0) Low (0)
8 No (0) Yes (1) No (0) High (1)

(a) [6 points] Circle all the parameters from the table below that you will need
to estimate in order to completely define the model. You may assume that i ∈
{1, 2, 3} for all entries in the table.

(1) αi = Pr(Xi = 1) (7) β = Pr(V = 1)
(2) γi = Pr(Xi = 0) (8) ϕ = Pr(V = 0)
(3) pi = Pr(Xi = 1 | V = 1) (9) qi = Pr(V = 1 | Xi = 1)
(4) ri = Pr(Xi = 0 | V = 1) (10) si = Pr(V = 0 | Xi = 1)
(5) ti = Pr(Xi = 1 | V = 0) (11) ui = Pr(V = 1 | Xi = 0)
(6) wi = Pr(Xi = 0 | V = 0) (12) yi = Pr(V = 0 | Xi = 0)

(b) [3 points] How many independent parameters do you have to estimate to learn
this model?
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(c) [5 points] Write explicitly the näıve Bayes classifier for this model as a function
of the model parameters selected in (a):

Pr(V = v | X1 = x1, X2 = x2, X3 = x3)

=

(d) [5 points] Write the expression for L, the log likelihood of the entire data set D,
using the parameters that you have identified in (a).

(e) [6 points] We would like to train a Näıve Bayes classifier on S to help us predict
the yield on a new farm S9.

1. [3 points] What is the decision rule for the Näıve Bayes classifier trained on
S?
vNB =

2. [3 points] Predict the yield for the following farm using the decision rule
written earlier.

# IsIrrigated (X1) IsFertilized (X2) UsesPesticide (X3) Yield (V )

9 Yes (1) Yes (1) Yes (1) ?

12



Expectation Maximization [25 points]

Assume that a set of 3-dimensional points (x, y, z) is generated according to the fol-
lowing probabilistic generative model over Boolean variables X, Y, Z ∈ {0, 1}:

Y ← X → Z

(a) [4 points] What parameters from Table 2 will you need to estimate in order to
completely define the model?

(1) P(X=1) (2) P(Y=1) (3) P(Z=1)
(4) P(X|Y=b) (5) P(X|Z=b) (6) P(Y|X=b) (7) P(Y|Z=b)
(8) P(Z|X=b) (9) P(Z|Y=b) (10) P(X|Y=b,Z=c) (11) 3

Table 2: Options to choose from. b, c ∈ {0, 1}.

(b) [4 points] You are given a sample of m data points sampled independently at
random. However, when the observations are given to you, the value of X is always
omitted. Hence, you get to see {(y1, z1), . . . , (ym, zm)}. In order to estimate the
parameters you identified in part (a), in the course of this question you will derive
update rules for them via the EM algorithm for the given model.

Express Pr(yj, zj) for an observed sample (yj, zj) in terms of the unknown pa-
rameters.
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(c) [4 points] Let pj
i = Pr(X = i | yj, zj) be the probability that hidden variable X

has the value i ∈ {0, 1} for an observation (yj, zj), j ∈ {1, . . . ,m}. Express pj
i in

terms of the unknown parameters.

(d) [4 points] Let (xj, yj, zj) represent the completed jth example, j ∈ {1, . . . ,m}.
Derive an expression for the expected log likelihood (LL) of the completed data
set {(xj, yj, zj)}mj=1, given the parameters in (a).
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(e) [9 points] Maximize LL, and determine update rules for any two unknown pa-
rameters of your choice (from those you identified in part (a)).
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Some formulae you may need

• P (A, B) = P (A|B)P (B)

• Entropy(S) = −p+ log(p+)−p− log(p−) = −
k∑

i=1

pi log(pi), where k is number of values

• Gain(S, A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

• log
(a

b

)
= log(a)− log(b)

• log2(3) ≈ 3

2
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This page is intentionally left blank. You may use it as additional space for some of the solutions.
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