
Computational Limitations on Learning from Examples

LEONARD PITT

University of Illinois, Urbana-Champaign, Urbana, Illinois

AND

LESLIE G. VALIANT

Harvard University, Cambridge, Massachusetts

Abstract. The computational complexity of learning Boolean concepts from examples is investigated.
It is shown for various classes of concept representations that these cannot be learned feasibly in
a distribution-free sense unless R = NP. These classes include (a) disjunctions of two monomials,
(b) Boolean threshold functions, and (c) Boolean formulas in which each variable occurs at most once.
Relationships between learning of heuristics and finding approximate solutions to NP-hard optimization
problems are given.

Categories and Subject Descriptors: F. 1.1 [Computation by Abstract Devices]: Models of Computation-
relations among models; F. 1.2 [Computation by Abstract Devices]: Modes of Computation-probabi-
listic computation; F. 1.3 [Computation by Abstract Devices]: Complexity Classes-reducibility and
completeness; 1.2.6 [Artificial Intelligence]: Learning-concept learning; induction

General Terms: Experimentation, Theory, Verification

Additional Key Words and Phrases: Distribution-free learning, inductive inference, learnability, NP-
completeness

1. Introduction
The problem of inductive inference can be approached from several directions,
and among these the viewpoint of computational complexity, namely, the study of
inherent computational limitations, appears to be a promising one. An important
instance of inference is that of learning a concept from examples and counterex-
amples. In [32] and [33] it was shown that certain classes of concepts represented
as Boolean expressions could be learned in a very strong sense: Whatever the
probability distributions from which the examples and counterexamples were
drawn, an expression from these classes distinguishing the examples from the

This work was done while L. Pitt was at Harvard University, supported by Office of Naval Research
grant N00014-85-K-0445. The work of L. G. Valiant was supported in part by Offtce of Naval
Research grant NOOO14-85-K-0445, a fellowship from the Guggenheim Foundation, National Science
Foundation grant DCR-83-02385, and by the Mathematical Sciences Research Institute, Berkeley,
Calif., under grant DAAG 29-85-K-013.
Authors’ addresses: L. Pitt, Department of Computer Science, University of Illinois, Urbana-Champaign,
Urbana, IL 61801; L. G. Valiant, Aiken Computation Laboratory, Harvard University, Cambridge,
MA 02138.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0004-541 l/88/1000-0965 $01.50

Journal of the Association for Computing Machinery. Vol. 35. No. 4. October 1988, pp. 965-984

966 L. PITT AND L. G. VALIANT

counterexamples with controllable error could be inferred feasibly. The purpose of
the current paper is to indicate limits beyond which learning in this strong sense
cannot be expected. We show that for some richer classes of Boolean concepts,
feasible learning for all distributions is impossible unless R = NP. The proofs
indicate infeasibility for particular distributions only. Learnability for natural
subclasses of distributions is not necessarily excluded.

A concept is defined in terms of its component features, which may themselves
be concepts previously learned or primitive sensory inputs. For example, the
concept elephant may be described in terms of the features (earsize, color, size,
has-trunk, . . .I. We assume that our domain of discourse consists of y1 relevant
features, which we denote by the variables x1, x2, . . . , x,,. Each feature variable Xi
may take on a different range of values. Thus the feature color may be assigned to
any of the values (red, blue, . . .). In this paper we are concerned only with Boolean
features, however. This restriction is not a limitation, as all negative results for the
Boolean case hold for the more general case of multivalued features.

We assume each object in our world is represented by some assignment of the
feature variables (x,) to either 0 or 1. Thus each object is simply a vector ,? E
(0, 11’. A concept C is a subset of the 2” possible vectors. If Z E C, then we say
that .? is an example of the concept, or a positive example. Alternatively, if .? 4 C,
then we say that i is a negative example. It is possible and often important to allow
incompletely specified feature vectors also [32]. Since the negative results of this
paper hold even in the completely specified case, we restrict ourselves to this
simpler case here.

The all-zero vector and all-one vector will be denoted by 6 and 1, respectively.
We let i j,,x denote the vector that is set to 1 only at the positions i, j,
Similarly, 0l.j.. denotes the vector which is 0 only at the positions i, j,

There are many different ways in which a concept may be represented. For
example, a Boolean formulafover the feature variables .? represents the concept
C = (,?:-:f($ = 1). Similarly, a Pascal program, circuit, system of linear equations,
etc., may be viewed as a representation of a concept.

We are interested in algorithms that are capable of learning from examples whole
classes of concepts, since any single concept is trivially learnable by an algorithm
that has a “hardcoded” description of that concept. Whether or not a given class
of concepts is learnable may depend on the knowledge representation chosen.
Hence it is only meaningful to discuss classes of programs as being learnable. By a
program we mean any algorithmic specification with binary output (i.e., a recog-
nition algorithm). A program may be an explicit procedure or some knowledge
representation with an associated evaluation procedure. A class F of such programs
(whether Boolean circuits, formulas, etc.) represents a class %? of concepts if for
each C E ‘57 there is anfE F that is a recognition algorithm for C.

Let T be a parameter representing the size of the program fE F to be learned. T
will depend on the representation and the total number of available features. For
example, for a Boolean formulafover y1 variables, T(f) = max(n, size(f)), where
size(f) is the smallest number of symbols needed to write the forrnulaf:

We assume that the learning algorithm has available a black box called EXAM-
PLES(f), with two buttons labeled POS and NEG. If POS (NEG) is pushed, a
positive (negative) example is generated according to some fixed but unknown
probability distribution D+ (D-). We assume nothing about the distributions D+
and D-, except that &;-)=, D’(i) = 1, &+, D-(Z) = 0, &+O D-(g) = 1, and
C/c.;-,=~ DVZ) = 0. Thus EXAMPLES(f) is an errorless source: the probability of a
misclassification is zero.

Computational Limitations on Learning from Examples 967

Definition 1. I. Let F be some class of programs representing concepts. Then F
is learnable from examples iff there exists a polynomial p and a (possibly random-
ized) learning algorithm A that accesses f only via EXAMPLES(f) such that
(VfE F)(VD+, D-)(Vc > 0), the algorithm A halts in time p(T(f), l/c) and
outputs a program g E F that with probability at least 1 - E, has the following
properties:

c. D+(Z) < c
g(i)=0

and

1 D-(a)<~.
‘c&i)= 1

This definition can be understood as follows: We think of nature as providing
examples of the concept to be learned according to some unknown probability
distribution for which we can make no assumptions. Since there may be very
bizarre examples of the concept that occur with low probability, it is unreasonable
to expect the learning algorithm to produce a program that correctly classifies all
examples. Hence a successful program g is one that agrees with the unknown rule
fon most of the distribution. That is, the probability that the program g incorrectly
classifies either a positive or a negative example is at most E in either case. A second
source of error is introduced by the possibility that the particular sequence of
examples provided by nature is highly unrepresentative. In this case it is reasonable
that the program g be highly inaccurate. We require that this occur with probability
at most E. Hence with probability at least 1 - t, g will satisfy the inequalities of
Definition 1.1. A further requirement of the definition is that the run time of the
algorithm be polynomial in the size of the program to be learned, as well as in the
error parameter l/c.

In applications it may be advantageous to allow the learning algorithm to choose
a program from a different class from the one from which the input is taken. For
example, the underlying rule might be a Boolean formula, but we may be satisfied
if the learning algorithm produces a Pascal program that can adequately discrimi-
nate between positive and negative examples. The above definition can be extended
as follows:

Definition 1.2. Let F and G be classes of programs representing concepts. Then
F is learnable from examples by G iff there exists a polynomial p and a (possibly
randomized) learning algorithm A that accesses f only via EXAMPLES(f) such
that (Vf E F)(VD+, D-)(Vt > 0), the algorithm A halts in time p(T(f), l/t) and
outputs a program g E G that with probability at least 1 - E has the following
properties:

2 D+(?)<E
‘q(.?)=O

and

Thus “F is learnable by F” is equivalent to “F is learnable.” In general, the larger
the class F is, the harder the learning task, since the domain of possible programs
is much more varied. On the other hand, for fixed F, the larger the class G is, the

968 L. PITT AND L. G. VALIANT

easier the learning task. Thus we have, immediately from the definitions:

If F is learnable by G, and G c H, then F is learnable by H. In particular, even
if F is not learnable, if F is learnable by G and G is learnable, then F U G is
learnable. Also, it is easy to see that if F is learnable by G, and G is learnable by F,
then F is learnable and G is learnable.

In Section 3 we shall see some examples of F and G where F is not learnable,
but F U G is learnable. Results such as these are reminiscent of the often cited
problem-solving heuristic: Try a different viewpoint or richer representation.

We also consider the situation in which, owing to the application area, a
classification error in one direction (false positive or false negative) would be
catastrophic, and we would like the learning algorithm to produce a rule that
completely avoids this type of error. NFP and NFN abbreviate “no false positive”
and “no false negative,” respectively:

Definition 1.3. Let F be a class of programs representing concepts. Then F is
NFP-learnable (respectively NFN-learnable) from examples iff there exists a poly-
nomial p and a (possibly randomized) learning algorithm A that accessesfonly via
EXAMPLES(f) such that (VJE F)(VD+, D-)(VE > 0), the algorithm A halts in
time p(T(f), l/t) and outputs a program g E F that with probability at least
1 - t has the following properties:

z D+()<c and z D-(i)=0
y(.C)=O &G)=l

(

respectively, C D+(g) = 0 and 1 D-(i) < t .
n(l)=0 g(P)= 1)

We similarly define “F is NFP-learnable by G” and “F” is NFN-learnable
by G.”

Note that the algorithms of [32] and [33] for k-CNF (k-DNF) are NFP (NFN)
in the stronger sense that the probability that C D-(i) = 0 (C D’(i) = 0) is 1 rather
than 1 - c. Here we use this weaker definition, since our negative results (Sec-
tion 6) hold even for this weaker notion.

Also note that for all of the classes of concepts we consider, and for all classes
where testing the consistency of a program with an example can be done in
polynomial time, there is a trivial polynomial-time algorithm for learning the class
of concepts according to the above definition if it is assumed that P = NP: The
algorithm simply takes sufficiently many randomly generated examples from Df
and D- and then, using an oracle for NP, tests whether any concept representation
of a certain size in the class is consistent with the generated examples. The number
of examples required can be deduced easily from [lo]. Thus if P = NP, then most
reasonable concept classes will be learnable. To prove nonlearnability we must
therefore rely on the ubiquitous assumption that P # NP. Actually, since our
learning algorithms are allowed to be randomized, our results will rely on the
assumption that R # NP, where R is the class of sets accepted in random polynomial
time [191.’

One of the main techniques in this paper is to reduce known NP-complete
problems to the problem of finding a representation of a concept that is consistent
with certain sample data. It is then shown that, if the class of concepts is learnable,

’ A set S is accepted in random polynomial time iff there exists a randomized algorithm A such that
on all inputs A is guaranteed to halt in polynomial time, and such that, if x @ S, ,4(x) = “no” and
if x E .S, then Pr[A (x) = “yes”] 2 4.

-

Computational Limitations on Learning from Examples 969

the NP-complete problem can be solved in random polynomial time. Thus all of
our nonlearnability results are of the form; “F is not learnable unless R = NP.”
For the rest of the paper we drop the phrase “unless R = NP,” and simply write
“F is not learnable.”

The rest of this paper is organized as follows: In Section 2 we briefly review some
previous work relative to this model of concept learning. In Sections 3-5 we prove
that some restricted classes of Boolean functions are not learnable. We show in
Section 6 that even learning of heuristics (rules that account for some of the positive
examples) may be intractable, and we conclude with a brief review and some open
problems in Section 7. In the remainder of this section we define most of the
concept classes with which we are concerned.

A CNF formula is a Boolean formula in conjunctive normal form: a product of
clauses, where each clause is a sum of literals. A literal is either a variable xj or its
negation X. For example: (xl + %)(x3 + x6 + x9)(55; + x4 + x8).

A DNF formula is a Boolean formula in disjunctive normal form: a sum of
terms, where each term iS a product of literals. For example, x1x3x4 + x2x9 +
%X7X8.

A monomial is a single term; a product of literals.
For each integer k 2 1 we define the following classes of Boolean formulas (and

corresponding concept classes):

k-CNF. The class of CNF formulas with at most k literals in each clause.
k-DNF. The class of DNF formulas with at most k literals in each term.
k-clause-CNF. The class of CNF formulas with at most k clauses.
k-term-DNF. The class of DNF formulas with at most k terms.
p-formulas. The class of arbitrary Boolean formulas that contain each variable at

most once.
monotone formulas. The class of formulas containing only positive literals.

We are also interested in threshold operators that are not usually concisely
representable as Boolean formulas. For example, a common decision rule might
be: It is an elephant iff it has at least 5 of the following 12 features: trunk, big ears,
large, grey, While we might also allow weights to be given to each feature
reflecting its relative importance, it turns out that intractability appears already in
the {O, 1) case:

Boolean threshold functions. The class of concepts represented by zero-one linear
inequalities: that is, for each concept C there is a vector ? E (0, 1] n and an integer
yrOsuchthatC=(Z:?.Z?y].

2. Previous Work
Machine learning has been studied from a number of different vantage points. As
a branch of artificial intelligence, it has been investigated widely, although usually
in a less formal setting. (See [26] for a survey.) Among more formal approaches,
the literature of inductive inference [7, 81 includes investigations into the inference
of recursive functions, automata, formal languages, etc. Work has been done on
(1) probabilistic aspects of inference [15, 16, 23,27,28, 30, 341, (2) approximate
inference [11, 13,29, 311, and (3) inference within the limitations of feasible
computation [l-4,20]. However, what distinguishes the approach taken here is the

970 L. PITT AND L. G. VALIANT

definition of learnability (introduced in [32]) which, by incorporating all three of
the aspects above, allows some nontrivial program classes to be learnable in a
strong but plausible sense.

In [32] it was shown that k-CNF is NFP-learnable (and hence learnable) from
positive examples only. The main idea was that the formula can be constructed
from a conjunct of a set of clauses whose cardinality is at most polynomial in the
size of the variable set. Each such clause can be included (with high likelihood) in
the conjunct being learned, provided that it does not violate any of a polynomial
number of positive samples generated by the underlying distribution. An immediate
consequence, by a kind of duality (see Section 3.4), is that k-DNF is NFN-learnable
from negative examples only [33]. Since every monomial is a I-CNF formula,
monomials are NFP-learnable from positive examples only. Note that a monomial
is a 1 -term-DNF expression. We show in the next section that the sum of any other
fixed number of monomials is not learnable.

In [33] it is shown that “heuristic monomials,” or rules of thumb for DNF
expressions to be learned, are difficult to find. We discuss this further and extend
the results in Section 6.

Recent work [9, lo] adopts essentially the same definitions of learnability, and
applies them to the learning of geometric concepts. It is shown that orthogonal
rectangles and other geometric concepts in E” (n-dimensional Euclidean space) are
learnable in time polynomial in n and an error parameter. It is also shown that
linear separators in E” are learnable, which contrasts with our results in Section 5
that Boolean threshold functions (the discrete version of linear separators) are not
learnable. It has been shown (N. Megiddo, private communication) that the
learnability (in the sense of this paper) of concepts defined by unions of two half
spaces in E” would imply R = NP.

Learning from a “minimally adequate teacher” who can provide counterexam-
ples to hypotheses and answer membership queries is investigated in [6]. It is shown
that this model allows the learning of regular sets in polynomial time, whereas
results from [l] and [20] showed that this was not possible from examples only
unless P = NP.

In [5] and [25] it is shown that finding a minimum simple disjunction (i.e., a
I-CNF formula) consistent with given data is NP-hard. Their proof is by reduction
from the Set Covering problem [181. It is also deduced in [5] that finding a
minimum size DNF formula is NP-hard for various size measures (e.g., the number
of literals in the formula). The essential reasoning is that simple disjunctions cannot
be abbreviated by introducing conjunctions.

Finally, the results from [21] on constructing functions that appear random to
polynomial time computations give rise to a concept class that is not learnable
assuming the existence of one-way functions.

3. Hard-to-Learn Boolean Formulas
In this section we show that k-term-DNF and k-clause-CNF, both in the monotone,
and unrestricted case, are not learnable (i.e., unless R = NP). This is perhaps
surprising in light of the results in [32] and [33] outlined in Section 2 that k-CNF
and k-DNF are learnable. We further discuss the relationships between these
problems later.

In order to prove that these classes are not learnable, we first define a particular
generalization of the Graph k-Colorability problem [181.

Computational Limitations on Learning from Examples 971

The k-NM-Colorability problem is described (using the notational conventions
of [181) by:

Instance. A finite set S and a collection C = (cl, c2, . . . , en?] of constraints
c, c s.

Question. Is there a k-coloring of the elements of S (i.e., a function x: S+
11,2,...,kl) such that for each constraint ci E C the elements of c, are Not

Monochromatically colored (i.e., (Vc, E C)(3x, y E c;) such that x(x) # x(y))?

Note that if every c E C has size 2, then this is simply the Graph k-Colorability
problem, where the vertex set is S and the edge set is the set of pairs in C.

LEMMA 3.1. For all integers k 2 2, k-NM-Colorability is NP-complete.

PROOF. Clearly k-NM-Colorability is in NP, and since Graph k-Colorability is
NP-complete for every k > 3 ([1 S]), we need only show that 2-NM-Colorability
is NP-hard. In fact, 2-NM-Colorability is exactly the Set-Splitting problem, which
is also NP-complete [181. 0

3.1 LEARNING k-TERM-DNF Is HARD. We are now ready to prove one of our
main results. The construction in the proof below will be used again in Sections 4
and 6.

THEOREM 3.2. For all integers k I 2, k-term-DNF is not learnable.

PROOF. We reduce k-NM-Coloring to the k-term-DNF learning problem. Let
(S, C) be an instance of k-NM-Coloring. We construct a k-term-DNF learning
problem, as follows:

Each instance will correspond to a particular k-term-DNF formula to be learned.
We must describe what the positive and negative examples are, as well as the
distributions D’ and D-.

If s = (s,, s2, . . . , sn 1, then we have n feature variables (xl, x2, . . . , x,, 1 for
the learning+ problem. The set of positive examples will be the vectors (fi$‘=,,
where fi; = O;, the vector with feature xi = 0 and all other features set to 1. The
distribution D+ will be uniform over these n positive examples, with each
fii occurring with probability l/n. We’ll form] C] negative examples, (ri,) I=“, ,
each occurring with probability l/] C] in the distribution D-. For each con-
straint ci E C, if c; = (s;, , siz, . . . , s;~), then the vector ri i = O,,,,,,, ,i, is a
negative example. Thus the constraint (sl , ~3, ss) gives rise to the negative example
6 1.3.8 = (01011110111 * * .).

CLAIM 3.3. There is a k-term-DNF formula consistent with all of the positive
and negative examples above iff (S, C) is k-NM-Colorable.

PROOF OF CLAIM

(+) Assume (S, C) is k-NM-Colorable by a coloring x: S + (1, 2, . . . , k)
that uses every color at least once. Let f be the k-term-DNF expression f =
T, + T, + . . . + T,,., where the ith term Ti is defined by

T; = n x,.
z&,w

In other words, the ith term is the conjunction of all variables Xj for which the
corresponding element Sj is not colored i.

972 L. PITT AND L. G. VALIANT

Then the positive example $j clearly satisfies the term T;, where x(sj) = i. Thus
all of the positive examples satisfy the formulaf:

Now suppose that some negative example iii = 6;,,iZ,. _, %i, satisfies J: Then rii
satisfies some term Tj. Then every element of isi,, siz, . . . , s;,] must be colored
with color j; otherwise, Tj would not be satisfied. But then the constraint Ci
associated with the negative example rii is not satisfied by the coloring, since all of
the members of ci are colored the same color. Thus no negative example satisfies
the formulaJ

(q) Suppose that T, + T2 + . . . + Tk is a k-term-DNF formula that is satisfied
by all of the positive examples and no negative example. Then note without loss
of generality, each Tj is a product of positive literals only: If 7; contains two or
more negated variables, then none of the positive examples can satisfy it (since
they all have only a single “O”), so it may be eliminated. If 7; contains exactly one
negative literal XJ, then it can be satisfied by at most the single positive example
cji, SO 7; can be replaced with T(= nj+i Xi, which is satisfied by only the vectors
ljl and the vector 1, neither of which are negative examples.

Now color the elements of S by the function x: S + 11, 2, . . . , k] defined by
x(s;) = minlj: literal X, does not occur in term Tj 1.

Note that x is well defined: Since each positive example satisfies the formula
T, + Tz + . . . + Tk, each positive example i;; must satisfy some term Tj. But each
term is a conjunct of only positive literals; therefore, for some j, x, must not occur
in term T,. Thus each element of S receives a color. Furthermore, if x violates
some color constraint cj = (si,, siz, . . .), then all of these elements are colored by
the same colorj, and then, by the definition of x, none of the literals (x,,, x;~, . . .I
occur in term Tj, and thus the negative example associated with ci satisfies Tj,
contradicting the assumption that none of the negative examples satisfy the formula
T, + Tz + . . . + Tk. This completes the proof of the claim. q

Now to complete the proof of Theorem 3.2, we observe that, if there is a learning
algorithm for k-term-DNF, it can be used to decide k-NM-Colorability in random
polynomial time as follows: Given an instance (S, C) of k-NM-Colorability, form
the distributions D+ and D- as above, and choose E < mini l/l S 1, l/l C 1).

If (S, C) is k-NM-Colorable, then by Claim 3.3 there exists a k-term-DNF
formula consistent with the positive and negative examples, and thus, with proba-
bility at least 1 - t, the learning algorithm must produce a formula that is consistent
with all of the examples (by the choice of the error bound E), thereby giving a k-
NM-coloring for (S, C). Conversely, if (S, C) is not k-NM-Colorable, then by
Claim 3.3 there does not exist a consistent k-term-DNF formula, and the learning
algorithm must either fail to produce a hypothesis within its allotted time, or else
produce one that is not consistent with at least one example. In either case this can
be observed, and it may be determined that no k-NM-Coloring is possible. Cl

Note that the construction gives rise to a monotone k-term-DNF formula that is
hard to learn, even when the learning algorithm is allowed to choose among
nonmonotone k-term-DNF formulas. Thus we have the following stronger result.

COROLLARY 3.4

-For all integers k 2 2, monotone k-term-DNF is not learnable.
-For all integers k 2 2, monotone k-term-DNF is not learnable by k-term-DNF.

3.2 k-TERM-DNFANDGRAPHCOLORINGAPPROXIMATIONS. Asshown,k-term-
DNF, even in the simple monotone case, is not learnable because it is NP-hard to

Computational Limitations on Learning from Examples 913

determine whether there is a k-term-DNF formula consistent with a collection of
positive and negative examples. We are prompted to ask whether k-term-DNF (of
n variables) is learnable by (k + I)-term-DNF or f(k, n)-term-DNF for some
reasonably slowly growing function f:

The difficulty of learning k-term-DNF stems from the NP-hardness of a gener-
alization of the Graph k-Colorability problem. In fact, we could have used Graph
k-Colorability directly to obtain the same result fork 2 3. (However, we shall need
the NP-hardness of 2-NM-Colorability in a later section also.)

It is shown in [171 that for every c > 0, unless P = NP, no polynomial time
algorithm can approximate the fewest number of colors needed to color a graph
within a constant factor of 2 - t. In the paper, we see that this is achieved by
showing that for all k 2 6, unless P = NP, no polynomial time algorithm exists
that outputs “yes” on input a k-colorable graph, and outputs “no” on input a graph
that needs at least 2k - 4 colors. It follows immediately from the proof of
Theorem 3.2 and this result that

COROLLARY 3.5. For all integers k 2 6, (monotone) k-term-DNF is not learn-
able by (2k - 5)-term-DNF.

We can strengthen this result by exploiting the fact that 2-NM-Colorability is
NP-hard. In [171 the hardness of Graph 3-Colorability was used to obtain the result
mentioned above. By employing the same techniques, but using 2-NM-Colorability,
it is easy to show that

COROLLARY 3.6. For all integers k 2 4, (monotone) k-term-DNF is not learn-
able by (2k - 3)-term DNF.

There is currently a large separation between the lower bounds for approximate
coloring, and the upper bounds achieved by the best approximate coloring algo-
rithms. Even for 3-colorable graphs, the best approximation algorithm known only
guarantees that the coloring found uses at most 3& colors, where n is the number
of vertices in the graph [35]. Should this prove to be a lower bound as well, we
would have that (monotone) 3-term-DNF is not learnable by less than 3&-term-
DNF (with n the number of variables).

On the other hand, suppose that for some t > 0, g(n) is o(n’-f). Then, if we
show that monotone k-term-DNF is learnable by kg(n)-term-DNF, we would
immediately have significantly improved the best known upper bound [24, 3.51 of
min(k(n/logn), kn - ’ (I”)} for the number of colors needed by randomized algo-
rithms to color a k-Colorable graph with n vertices. It is unlikely that such an
algorithm will be found easily. The reader should consult [9] for further relation-
ships between approximations for NP-hard optimization problems and learnability.

3.3 k-TERM-DNF Is LEARNABLE BY k-CNF. The previous section indicates the
difficulties involved in learning k-term-DNF. Following an observation of
R. Boppana (private communication), we show here that k-term-DNF is learnable
by k-CNF. (As a corollary we have that k-term-DNF U k-CNF is learnable!) There
is no paradox here. k-term-DNF is too restrictive of a domain to allow learning,
that is, although patterns in the data may be observable, the demand that the
learned formula be expressed in k-term-DNF is a significant enough constraint to
render the task intractable. A richer domain of representation, k-CNF, allows a
greater latitude in expressing the formula learned. Thus the availability to the
learner of a variety of knowledge representations is seen to be valuable for learning.
Often a change of representation can make a ditlicult learning task easy.

974 L. PITT AND L. G. VALIANT

THEOREM 3.7. For all integers k L 1, k-term-DNF is learnable by k-CNF,

PROOF. Every k-term-DNF formula FD is logically equivalent to some k-CNF
formula Fc. whose size is polynomially related to the size of Fn. (If F. = Cf=, T,,
then let F(. = fl (x,, , x,,, . . . , x,,), where the product is over all choices of x;, E T, ,
x,,ETz,..., x,, E Tk.) Use the algorithm of [32] to learn a k-CNF formula F that
is-close enough to Fc (according to Df and D-) to satisfy the definition of
learnability. 0

3.4 DUALITY: k-CLAUSE-CNF. Just as similar techniques showed that both k-
CNF and k-DNF were learnable [32, 331, we observe that essentially the same
proof shows that both k-term-DNF and k-clause-CNF are not learnable for k 2 2.
This follows because k-clause-CNF learnability is easily seen to imply learnability
for k-term-DNF.

Assume that k-clause-CNF is learnable by algorithm A. Suppose we are given an
instance of k-term-DNF learning, that is, an EXAMPLE box with buttons POS
and NEG with underlying distributions D GNF and DDNF. Now transform the box
by switching the labels of POS and NEG, and present to algorithm A this new
example box (with distributions D& = DDNF and DCNF = D&).

In polynomial time, A constructs a k-clause-CNF formula C = C, CZ Cx . . . Ck
where each C, is a sum of literals. Now let the k-term-DNF formula F be
defined by

F= C,C, . . . c,=c,+z$+ *e-c,.

We have immediately that
e *

1 D&F(X) = x D&F(X) < E
F(.C)=O C(i) = I

and

z D&F(Z) .G. Jf D&F(Z) < E;
F(T)= I C(i)=0

thus we have constructed a k-term-DNF formula for the original input in polyno-
mial time.

We have just proved

THEOREM 3.8. For all integers k L 2, k-clause-CNF is not learnable.

By the same reduction, and by Corollary 3.6, we also have the following corollary:

COROLLARY 3.9

- For all integers k L 4, k-clause-CNF is not learnable by (2k - 3)-clause-CNF,
- For all positive integers k, k-clause-CNF is learnable by k-DNF.
- For all positive integers k, k-clause-CNF U k-CNF U k-term-DNF U k-DNF is

learnable.

4. ~-Formulas Are Not Learnable

In [32], it was shown that the class of p-formulas (Boolean formulas in which each
variable occurs at most once) are learnable, provided that the learning algorithm
has available certain very powerful oracles. Here we show that ~-formulas are not
learnable from examples alone. In Section 6 we show that it is difficult to learn
even very weak approximations of ~-formulas.

Computational Limitations on Learning from Examples 975

Each p-formula may be represented in a natural way as a rooted directed tree
with variables as leaves, internal nodes labeled with AND, OR, and NOT, and
edges directed away from the root. We do not assume that the out-degree of these
nodes is two, and therefore we may assume that no node has the same label as its
immediate ancestor. Observe that all of the NOT labels may be pushed to the
leaves of the tree by using De Morgan’s laws. This operation can be carried out
without increasing the number of edges and may increase the number of nodes by
at most n, the number of leaves. We therefore assume without loss of generality
that the internal nodes of the tree are all labeled with AND or OR with no node
labeled the same as its immediate ancestor, that they have out-degree at least 2,
and that the leaves contain literals for the variables. As each variable that occurs
in the formula may occur only once, in the tree there will be a single node
containing either the variable, or its negation. We say that the variable x; occurs
positively (respectively, negatively) if xi (respectively, 55;) is a leaf. It is easy to see
that in polynomial time such a tree representation can be constructed from any
p-formula.

We reduce 2-NM-Colorability to the p-formula learning problem, but first we
show that without loss of generality, the 2-NM-Colorability problem satisfies a
simple property. Suppose that (S, C) is an instance of 2-NM-Colorability. Let
s E S be given. If there is some t E S such that {s, t) E C, then we say that s has t
as a partner. (s may have many partners.) Now notice that without loss of generality
we may assume that every s E S has a partner, that is, that every element of S
occurs in some constraint of size 2 enforcing that the two elements be colored
differently. For if (S, C) does not satisfy this property, we can simply form the new
instance (S U S’, CU C’), where S’ = (s’ : s E S] and C’ = ((s, s’) : s E S]; thus
we have added a partner s ’ for each element s of S, and the partner occurs only in
the single constraint (s, s’}. Now (S U S’, C U C’) is 2-NM-Colorable iff (S, C) is
2-NM-Colorable, and every element has a partner.

Now we are ready to prove

THEOREM 4.1. p-formulas are not learnable.

PROOF. We reduce 2-NM-Colorability to ~-formula learning. Let (S, C) be an
instance of 2-NM-Colorability. By the remarks above, we may assume that every
s E S has a partner. Let the positive examples be {fii) and the negative examples
be {&] as in the proof of Theorem 3.2, with the uniform distributions D+ and D-.

LEMMA 4.2. There is a F-formula consistent with all (fij] and (ri;] $(S, C) is
2-NM-Colorable.

The nonlearnability of ~-formulas follows from Lemma 4.2, for as in the proof
of Theorem 3.2, if there is an algorithm for learning p-formulas in random polyno-
mial time, then, by choosing error parameter E smaller than both l/l C 1 and
l/l S 1, the algorithm can be used to decide the NP-complete 2-NM-Colorability
problem in random polynomial time.

We prove Lemma 4.2
(+) By Claim 3.3, (S, C) is 2-NM-Colorable implies there is a 2-term-DNF

formula consistent with all of ($i) and (fi;]. By that construction, the 2-term-DNF
formula contains each variable at most once; therefore, it is a p-formula.

(+) Suppose there is some p-formulafconsistent with the examples (fiI] and
(fi,]. Now consider the tree T forfthat has only AND and OR internal nodes, as
discussed above.

976 L. PITT AND L. G. VALIANT

CLAIM. Each variable xi occurs positively in the tree T.

Suppose that xi either occurs negatively in T, or fails to occur. Then consider
the element s; of S with which xi is associated. Si has a partner Sj. Since every
positive example satistiesf; the positive example fij satisfiesJ: If x, fails to occur in
T, then it does not matter what value it has; so if fij = 0, satisfies f; so too does the
vector 6 ,,,, which is a negative example due to the constraint {s;, Sj) E C. Similarly,
if xi occurs negatively inJ; then since fij satisfies f; so too will the same vector with
x; set to 0 instead of 1, and thus the negative example d,,j satisfies 1: Therefore,
every variable occurs positively inJ; proving the claim.

Now there are two cases to consider, depending on the label of the root of the
tree. In each case we show how a 2-NM-Coloring may be found from T.

Case 1. The root node is labeled OR.

Then f is equivalent to the formulafi +fi + . . . +fk, where J; is the subformula
computed by the subtree off with f's ith child as root.

LetL=fiandR=f2+... + fk. Color each element Si with color CL iff x, occurs
in formula L; otherwise, color si with color CR. We show that this is a legitimate
2-NM-Coloring:

Suppose a constraint ci = (s;, , s,,, . . , , s;,] is violated. Then all of s;, , si,, . . . ,
s,~ are colored the same color, and all of x,, , xi,, . . . , xi,,, occur in the same
subformula, say L without loss of generality. Then since formula R contains only
positive literals, and does not contain the variables xi,, x,,, . . . , x,,,,, it follows that
rii = iii,,,,,. .,i, satisfies formula R, and therefore satisfies f; a contradiction.

Case 2. The root node is labeled AND.

Since each variable xi occurs positively, there must be, an OR on the path from
the root to each x;; otherwise the positive example 6; = 0; could not satisfyf: Thus
there are k I 2 OR nodes that are children of the root AND node (by the normal
form assumption that all nodes have out-degree at least 2). We divide the subtree
beneath the ith OR into two groups, Li and Ri, where Li is the function computed
by the leftmost subtree of the ith OR, and R, is the function computed by the OR
of the remaining branches of the ith OR.

Thusf = (L, + R,)(Lz + Rz) a.- (Lk + Rk). Then let f' = L + R, where L =
L,Lz a.0 Lli and R = RIRz . -. Rk. We have that if f' is satisfied by some vector,
then f is also. Therefore no negative example satisfies f ‘. Now color Si with color
CL iff x, occurs in formula L, and color it CR, otherwise. By the same argument as
in Case 1, if some coloring constraint is violated, then all of the elements of the
constraint occur in the same subformula, and then the other subformula is satisfied
by the negative example associated with the given constraint. This completes the
proof of Lemma 4.2 and Theorem 4.1. 0

5. Boolean Threshold Functions
A Boolean threshold function (defined in Section 1) may be thought of intuitively
as follows. Among the set of n features (xi) there is some important subset Y for
the concept to be learned. There is also a critical threshold k such that whenever
an example ,? has at least k of the features of Y set to 1, it is a positive example;
otherwise, it is a negative example. We write this rule as Thk(F), where 9 is the
characteristic vector for the set Y, that is, y; = 1 iff the ith feature is in the set Y.

Computational Limitations on Learning from Examples 977

Thus if R is a positive example, then it satisfies 1 . 3 2 k, and if ,i! is a negative
example, then it satisfies ,? . 3 < k. (Where . is the “dot product” of the two
vectors: ,? . j = CT=1 Xiyj.)

To show that Boolean threshold functions are not learnable, we reduce Zero-
One Integer Programming (ZIP) to the learning problem. ZIP is the following NP-
complete problem [18, p. 2451:

Instance: A set of s pairs &, bi and the pair 6, B, where 2; E (0, 1) “, 6 E (0, 1) n,
bi E [0, 11, and 0 I B I n.

Question: Does there exist a vector h E (0, 11’ such that ?, . h 5 bi for 1 5 i I s
andci.hrB?

Given an instance of ZIP, we construct a Boolean threshold learning problem.
We have 2n features xl, x2, . . . , Xok. We sometimes write a vector of length 2n as
the concatenation of two vectors 6, i of length n, and denote this by (6, $).

There are two positive examples, ji, = (6, i) and & = (6,] 1,2.. ,n-B).
There are two types of negative examples. First, for each of the vectors Ci, 1 % i

I s, from the ZIP instance, we define the negative_ example (E;, i,,,,. ,n-b,-l).
Second, for 1 5 i 5 n we define the negative example 0, 0;).

We claim that there is a solution to the ZIP instance iff there is a Boolean
threshold function consistent with the given examples. If our claim is true, then
any learning algorithm can be used to decide the ZIP problem in random polyno-
mial time by letting D+ and D- be uniform over the positive and negative examples,
respectively, and choosing t < l/(s + n).

To prove the claim, suppose that z is a solution to the ZIP instance, and let
j = (2, i). It is easily verified that the threshold function Th,(j) is consistent with
all of the positive and negative examples above.

On the other hand, suppose that Y is a set with characteristic vector F = (i, t;),
and k is a positive integer such that the rule Thk(y) is consistent with the positive
and negative examples defined above. We show that i is a solution to the ZIP
instance.

The facts that fi, = (6, i) is a positive example and that, for all i, (6, &) is a
negative example give rise (respectively) to the following two inequalities:

ks (6, i) . (5, t;) 5 n. (1)

(vi) (6, 6j) . (2, I?) < k. (2)

By (1) and (2) and the fact that (6,@ differs from (6, 1) in only the position
n + i, it follows that $ = 1. Substituting 1 for i6 in (2) we conclude that k > n - 1,
andby(l),k=n.

Now observe that since ij2 = (6, i 1.2.. ,n-B) is a positive example,

n P (6, i,,,.. ,n--B) . (2, i)
and thus

. a.ZzB.

Also, since for each i, (&, i 1.2,. .n-h,-l) is a negative example,

(E, L2 . .._. n-h,-l) - (2, i) < n,

and hence

(Vi) zi * i 5 bi.

(3)

(4)

978 L. PITT AND L. G. VALIANT

Inequalities (3) and (4) assert that i is indeed a solution to the ZIP instance,
proving our claim, and the following.

THEOREM 5.1. Boolean threshold functions are not learnable.

6. Learning Heuristic Rules
As we have seen in the previous sections, there are various natural classes of
formulas for which the problem of finding a good rule is hard. In cases such as
these, as well as cases in which there may be no rule of the form we seek that is
consistent with the observed data, we may wonder whether we can learn heuristic
rules for the concept-rules that account for some significant fraction of the
positive examples, while avoiding incorrectly classifying most of the negative
examples.

For example, since we know of no learning algorithm for CNF and DNF in
general, and we do have a learning algorithm for I-term-DNF, perhaps we can find
a single monomial that covers half of the positive examples while avoiding error
on all but 1 - c of the negative examples whenever such a monomial exists.

The following definition is meant to capture the notion of learning heuristics:

Definition 6.1. Let h be a function of n, the number of features, such that
(Vn) 0 5 h(n) 5 1, and let F and G be classes of programs representing concepts.
Then F is h-heuristically learnable from examples by G iff there exists a polyno-
mial p and a (possibly randomized) learning algorithm A that accesses f only via
EXAMPLES(f) such that (tlf~ F)(Vn)(VD+, D-)(Vt > 0), the algorithm A halts
in time p(T(f), I/E) and outputs a program g E G that with probability at least
1 - E, has the following properties:

I: D’(2) < 1 - h(n)
g(i)=0

and

c D-(Z)<C.
g(i-)= I

If no g E G with these properties exists, then A may output anything.

Note that the program g found must be correct on the fraction h(n) of the
positive examples. If F = G, then we write “F is h-heuristically learnable,”
and observe that the last sentence of the definition is redundant. The definition
extends in the natural way to “F is h-heuristically NFP-learnable by G,” and
“F is h-heuristically NFP-learnable,” by modifying the second inequality to
&;,=, D-(Z) = 0.

6.1 HEURISTIC MONOMIALS ARE NOT LEARNABLE. In [33], it was shown that
the class DNF is not $-heuristically NFP-learnable by monomials; that is, it is NP-
hard to determine whether there is a monomial m such that at least half of the
positive examples (weighted by D+) and none of the negative examples satisfy m,
given that there is some DNF rule that accurately classifies all of the examples.
(Actually, the results in [33] also imply that DNF is not c-heuristically NFP-
learnable by monomials for any fixed rational 0 < c < 1.)

Here we slightly strengthen the result by removing the “NFP” condition and
show that DNF is not c-heuristically learnable by monomials.

Computational Limitations on Learning from Examples

The reduction is from the Independent Set (IS) problem [181:

Instance: Graph G with vertex set V and edge set E and integer k.

979

Question: Does there exist an Independent Set of G of size at least k, that is, a
subset V’ G V such that] V’ (2 k and for no pair of elements x, y E V’ is it the
case that (x, y) E E?

A simple reduction shows that for any rational 0 < c < 1, the following c-IS
problem is also NP-complete:

Instance: Graph G with vertex set I/and edge set E.

Question: Does there exist an Independent Set of G of size at least c] V] ?

We reduce c-IS to the problem of learning c-heuristic monomials for DNF. Let
G = (V, E) be an instance of c-IS. With each vertex Vi associate a feature xi.
Let the set of positive examples be (d,]:,, . For each edge (i, j) E E define the
negative example b,,. Let the distributions D+ and D- be uniform over these
positive and negative examples, respectively. Let c < l/j E I .

Clearly there is a DNF formula for this concept: the n-term formula such that
the ith term is satisfied only by the vector &.

If there is a learning algorithm A that could determine whether there exists (and
produce) a monomial m that is satisfied by the fraction c of the positive examples,
and by at most t of the negative examples, then m is satisfied by none of the
negative examples, by choice oft.

Without loss of generality, m contains only positive literals; otherwise at most
one positive example could satisfy m. Now observe that the set of positive examples
that satisfy m are those vectors bi such that the literal Xi does not occur in m.
Furthermore, if both the positive examples di and dj satisfy m, then di,j also satisfies
m and is therefore not a negative example; that is, (i, j) @ E.

Thus (vi : xi does not occur in m) is an independent set of V and is of size at least
cn = c (V 1. Conversely, if there is an independent set Z of V of size c] V 1, then it
is easily verified that the monomial.

is satisfied by at least the fraction c of the positive examples, and none of the
negative examples. Therefore, learning algorithm A solves the c-IS problem in
random polynomial time. Furthermore, note that the construction was from a
monotone DNF formula; so we have proved

THEOREM 6.1. Monotone (and hence unrestricted) DNF is not c-heuristically
learnable by monomials for any rational c with 0 < c c 1.

To further illustrate the difficulty of finding heuristic monomials, let opt be the
largest number of positive examples that satisfy a monomial that is not satisfied by
more than E of the negative examples. Then for any constant c < 1, the problem
of learning a monomial that is satisfied by c . opt positive examples and at most E
of the negative examples is as hard as approximating the maximum independent
set to within a constant factor c. It has been shown [181 that if this can be done,
then the size of the maximum independent set can be approximated arbitrarily
closely.

980 L. PITT AND L. G. VALIANT

Finally, we note that a straightforward reduction may be employed to show that
for any fixed positive integer k and rational c such that 0 < c < 1, DNF is not
c-heuristically learnable by k-term-DNF.

6.2 HEURISTIC ~-FORMULAS ARE NOT NFP-LEARNABLE. We now prove a
rather strong lower bound for heuristic NFP-learnability of p-formulas. We show

THEOREM 6.2. p-formulas (of N variables) are not exp(-N’/3)-heuristically
NFP-learnable.

In other words, if the formula sought is not to be satisfied by any negative
examples, then it is NP-hard to find a p-formula that is satisfied by even an
exponentially vanishing fraction of the positive examples (when in fact there is
some p-formula that is consistent with all of the positive and negative examples).

The proof of Theorem 6.2 will be very similar to that of Theorem 4.1. Given a
2-NM-Colorability instance (S, C), we show how to construct a p-formula learning
problem (a set of positive and negative examples with distributions Df and D-)
such that if a learning algorithm A produces a p-formula that is satisfied by no
negative example, and at least exp(-N’j3) of the positive examples (according to
the distribution DC), then this formula may be used to find (in polynomial time) a
2-NM-Coloring of (S, C).

PROOF. Let (S, C) be an instance of 2-NM-Colorability, with 1 S 1 = ~1, and
recall that we may assume without loss of generality that every s E S has a partner.
Then we define a learning problem with N = ~1~ feature variables, which we think
of as the concatenation of n2 groups of y1 feature variables each. Each example
vector x has length n3, and we write it as the concatenation of n2 vectors (6;) each
of length n. Thus 2 = (6, h2, . . . , 6,~). We call each of these subvectors of length
n a block. The feature variable Xi,j is the jth feature of the ith block, thus
&=xi.,x;,2,. ..) xi,, for each i, 1 5 i 5 n2. Whereas in our previous reduction, the
element Sj had associated with it the feature variable Xi, here it is associated with
the jth element of each block, that is, with each element of {Xi, : 1 5 i 5 n2).

We define n”* positive examples: Every vector i for which (Vi)(3j) 8; = 0,. Thus
each block of any positive example looks like some positive example from the
reduction of Theorem 3.2.

We define many negative examples: Any vector where for some block i we have
that 6; = fij, where fij is defined as in the reduction for Theorem 3.2-all l’s except
at the positions corresponding to the elements of the jth constraint cj E C.

Let D+ be the uniform distribution on the positive examples, generated by
choosing, independently at random, a single position in each block to be set to 0.
D- is an almost uniform distribution, generated by randomly choosing a block i,
randomly choosing a constraint cj, setting hi = sj, and then setting each of the
other blocks randomly.

Note that the distributions DC and D- are polynomially generable, that is, there
is an algorithm that produces examples for each of these distributions in random
polynomial time.

LEMMA 6.3. If there is a 2-NM-Coloring of (S, C) then there is a p-formula f
that is satisfied by all of the positive examples, and none of the negative examples.

PROOF. If x: S + (1,2 j is a 2-NM-Coloring of (S, C), then define the p-formula
f by

f = ijj (Ti.1 + Ti,2),

I

-

Computational Limitations on Learning from Examples

where

Ti.1 = II x;.j and Ti.2 = n x;,j.
X(S,)# 1 x(.+4

981

f is a p-formula, because the variable Xi.j may only appear in either the
subformula T;,, or the subformula Tj,2. If it occurs in T;,, then x(Sj) # 1, and if it
appears in Tj.2 then x(Sj) # 2. It then cannot appear in both subformulas; otherwise,
the element Sj receives no color by the coloring x.

Suppose that ji is a positive example, and thus for some_ function
p: {l, 2,. . . , n’) + (1, 2,. . . , n) the ith block of3 is exactly the vector Op(,). Then
for each i, fi satisfies at least one of (T;,, , Tj,2): If x(sPcj,) = 1 # 2, then the literal
x,,,(~) appears in Tj,2 and therefore not in T ,,l, and since all other variables of the
form xi.j, j # p(i) are set to 1 in 15, and these are the only other variables that can
occur in T;, , , we have that 6 satisfies 7;. , . Similarly, if x(s,(~,) = 2, then $ satisfies
Ti.2. Since ji satisfies either T;,, or Ti.2 for each i, fi satisfiesJ

Now if ri is a negative example, then by definition, there is some block 6;
and constraint cj = (Sj, , Sj,, . . . , Sjk) such that hi = Oj,,j,,, ,jk. If ri satisfies f;
then fi satisfies T;,, or 7;,2. By definition, we have that either all of the literals
bkj, 3 XI,J~ 9 * * . 3 X,-j,] occur in T,, , or they all occur in T;.2. Then we must have that
all of the elements (s,, , S,, . . . , Sjk) are colored with color 2 or 1, respectively, and
thus x does not satisfy all of the constraints. Hence, ri cannot satisfy f: This
completes the proof of Lemma 6.3.

LEMMA 6.4. From a p-formula f that is satisfied by more than (n - l)“* of the
positive examples, and not by any negative examples, in polynomial time a 2-NM-
Coloring of (S, C) can be found.

PROOF. We say that block i is covered iff for each j, 1 5 j I n, there is some
positive example fi such that the ith block 6, = dj, and $ satisIiesJ Clearly there
must be some block i that is covered; otherwise, fis satisfied by at most (n - l)“*
positive examples. Let i be a covered block.

CLAIM. In the tree Tfor the function1; all variables (x,, , xi.*, . . . , xi,,,] from the
covered ith block occur positively.

To see that the claim is true, recall that each element Sj has a partner sh in the 2-
NM-Colorability instance. +With (Sj, Sk) as a constraint, we have that any vector for
which the ith block b, = oj,k is a negative example. Since there is some positive
example fi satisfying f such that the ith block 6, = 0, (block i is covered), if X,.J
occurs negatively in the tree, or not at all, then by simply setting x;.k to 0 in 3, we
have an example that still satisfiesf; and in which 6, = 6j,k, a negative example.
This contradicts the assumption that no negative example satisfiesf:

The rest of the proof of Lemma 6.4 now follows similarly to that of Lemma 4.2.
We sketch the argument.

Case 1. The root node is labeled OR.

Then f = L + R, where L is the function computed by the left branch of the root
node, and R is the function computed by the OR of the remaining branches of the
root node. Consider only the variables (Xi.1 1 from the covered block i. Color Sj with
color CL iff the literal x;., appears in formula L; otherwise, color Sj with color CR.

If there is some constraint cj = (Sj, , Sj2, . . . , S,) whose elements are all colored
identically (without loss of generality suppose it is CIA), then all of the literals
&.j, 9 xi,~z 3 * . . 2 xi,,, occur in formula L. Then these variables do not occur in R, and
therefore the vector ri that has these variables set to 0, all other variables from

982 L. PITT AND L. G. VALIANT

block i set to 1, and all other variables set to 0 or 1 depending on whether they
occur negatively or positively infmust satisfy R (and hencef). But ri is a negative
example, since the ith block corresponds to a coloring constraint. This contradicts
the assumption that no negative examples satisfy J

Case 2. The root node is labeled AND.

First note that none of the children of the root AND node in the formula tree T
can be literals from block i. For if x,,~ is a child of the root, then any positive
example satisfying the formula must have a “1” in position Xi,j, and there is then
no positive example satisfyingfsuch that the ith block 6, = Oj, contradicting the
fact that block i is covered.

Although there may be some literals from some block other than i attached
directly to the AND, the path from the AND to any literal of block i must contain
an OR node. Thus there is at least one OR as an immediate descendant of the
top AND. Suppose there are k 2 1 ORs that are immediate descendants of
the top AND and whose subtree contain some literal from block i. For each such
OR, we divide the subtrees below the OR into two groups, L, and Rj, (1 5j 5 k),
where L, is the function computed by the subtree beneath the leftmost branch of
the jth OR, and Rj is the function computed by the OR of the subtrees beneath
the remaining branches of the jth OR. Further, let X be the function computed by
the AND of the remaining subtrees.

Now the functionfcan be written as

f= WI + RI& + Rz) ..a (L/c + R/x)X,

where X contains no literals from block i. (X may be empty.)
Consider the formula f’ = L, Lz . . . LkX + RI RZ . . . RkX. Then any example

satisfyingf’ also satisfiesf; and therefore no negative example satisfiesf’. Further
note that in f’ each variable of block i occurs only once, although variables of
other blocks may occur twice if they are in X. Now we observe that the argument
for Case 1 applies tof’, since the argument only used the facts that all literals from
block i are positive, which is true here due to the claim; that all negative examples
were avoided, which again is true for f ‘; and that all literals from block i occur
only once.

This completes the proof of Lemma 6.4. 0

We are now ready to finish the proof of Theorem 6.2. Suppose that there is an
algorithm A that on input EXAMPLES of some p-formula of N variables, in
polynomial time and with high probability found a p-formula that was satisfied by
greater than the fraction exp(-N’j3) of the positive examples and was not satisfied
by any negative example. Then given any instance of a 2-NM-Coloring problem
(S, C) with 1 S 1 = n, use the reduction above to obtain a s-formula learning
problem to present to algorithm A with N = n 3 variables, and distributions D’ and
D-. Then by Lemma 6.3, if (S, C) is 2-NM-Colorable, then there is some p-
formula that is consistent with all positive and negative examples, and thus in
polynomial time algorithm A finds some CL-formulafthat is satisfied by no negative
examples, and by more than

exp(-N”3)n”Z = exp(-n)n”* > (1 - (l/,))“*,“* = (n - 1)“2

positive examples. By Lemma 6.4, in random polynomial time, A can be used to
find a 2-NM-Coloring of (S, C).

On the other hand, suppose (S, C) is not 2-NM-Colorable. Since the existence
of a p-formula consistent with greater than (n - 1)“’ positive examples and all

I

-

Computational Limitations on Learning from Examples 983

negative examples implies 2-NM-Colorability of (S, C), algorithm A either fails to
produce a formula, or produces one for which the associated coloring defined in
the proof above fails to be a legitimate 2-NM-Coloring. Either of these events can
be witnessed in polynomial time. Thus we have used A to solve the NP-Complete
2-NM-Coloring problem in random polynomial time.

This completes the proof of Theorem 6.2. 0

7. Conclusion
We have seen that for some seemingly simple classes of Boolean formulas there
are serious limitations to learning from examples alone. In the case of p-formulas,
even finding heuristics appears to be intractable. Although these limitations may
suggest that the search for algorithms that learn in a distribution-free sense is too
ambitious, there is a growing collection of positive results [9, 10,22, 32,331 wherein
such learning algorithms are achieved. Moreover, it is difficult to argue for the
applicability of results based on assumptions of uniform or normal distributions.

It seems instead that our results point out the importance of the knowledge
representation used by the learning algorithm. For example, in trying to learn DNF
formulas, we have seen that finding the minimum number of terms within a factor
of less than 2 is NP-hard. Indeed, this approximation problem may be much more
difficult since the graph-coloring approximation problem is reducible to it. Fur-
thermore, even if learning algorithms were found that inferred formulas that were
significantly (though only polynomially) larger than the minimum equivalent
formulas, this may have disadvantages in applications where comprehensibility by
humans is relevant and small constant-sized conjuncts and disjuncts are called for
[141. But as we have noted, allowing the more flexible representation of the union
of the classes k-DNF, k-CNF, k-term-DNF, and k-clause-CNF results in a class of
learnable formulas.

A number of areas of inquiry remain open. Can CNF (DNF) formulas be learned
from examples? Can we say something further about the relationships between
learnability and approximations for NP-hard optimization problems? Under rea-
sonable restrictions on the type of example distributions allowed, do some of the
hard to learn classes become learnable? Exactly what type of information other
than examples would allow for the learnability of these classes?

REFERENCES

1. ANGLUIN, D. On the complexity of minimum inference of regular sets. ln$ Control 39 (1978),
337-350.

2. ANGLUIN, D. Finding patterns common to a set of strings. .Z. Comput. Syst. Sci. 21 (1980),
46-62.

3. ANGLUIN, D. Inductive inference of formal languages from positive data. Znf Control 45 (1980)
117-135.

4. ANGLUIN, D. Inference of reversible languages. J. ACM 29, 3 (July 1982), 741-765.
5. ANGLUIN, D. Remarks on the difficulty of finding a minimal disjunctive normal form for Boolean

functions. Unpublished manuscript.
6. ANGLUIN, D. Learning regular sets from queries and counter-examples. Yale University Tech.

Rep. YALEU/DCS/464, 1986.
7. ANGLUIN, D., AND SMITH, C. Inductive inference: Theory and methods. ACM Comput. Surv. 15,

3 (Sept. 1983), 237-269.
8. BLUM, L., AND BLUM, M. Toward a mathematical theory of inductive inference. Zn: Control 28

(1975), 125-155.
9. BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. Classifying learnable geomet-

ric concepts with the Vapnik-Chervonenkis dimension. In Proceedings of the 18th Annual
Symposium on the Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York, 1986,
pp. 273-282.

984 L. PITT AND L. G. VALIANT

10. BLUMER, A., EHRENFEUCHT, A., HAUSSLER, D., AND WARMUTH, M. Occam’s Razor. If: Process.
Left. 24 (1987), 377-380.

1 I. CASE, J., AND SMITH, C. Comparison of identification criteria for machine inductive inference.
Theoret. Comput. Sci. 25 (1983), 193-220.

12. CHVATAL, V. A greedy heuristic for the set covering problem. Math. Oper. Rex 4, 3 (1979),
233-235.

13. DALEY, R. On the error correcting power of pluralism in BC-type inductive inference. Theoret.
Comput. Sci. 24 (1983), 95-104.

14. DIETTERICH, T. C., AND MICHALSKI, R. S. A comparative review of selected methods for learning
from examples. In Machine Learning: An Artificial Intelligence Approach. Tioga, Palo Alto, Calif.,
1983.

15. FREIVALD, R. V. Functions computable in the limit by probabilistic machines. In Mathematicnl
Foundations of Computer Science (3rd Symposium at Jadwisin near Warsaw, 1974). Springer-
Verlag, New York, 1975.

16. FREIVALD, R. V. Finite identification of general recursive functions by probabilistic strategies. In
Proceedings of the Conference on Algebraic, Arithmetic, and Categorial Methods in Computation
Theory. Akadamie-Verlag, New York, 1979, pp. 138-145.

17. GAREY, M., AND JOHNSON, D. The complexity of near-optimal graph coloring. J. ACM 23, 1 (Jan.
1976), 43-49.

18. GAREY, M. AND JOHNSON, D. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

19. GILL, J. Computational complexity of probabilistic Turing machines. SIAM J. Comput. 6 (1977),
675-695.

20. GOLD, E. M. Complexity of automaton identification from given data. In: Control 37 (1978),
302-320.

21. GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random functions. J. ACM
33, 3 (July 1986), 792-807.

22. HAUSSLER, D. Quantifying the inductive bias in concept learning. In Proceedings of AAAI-86
(Philadelphia, Pa.). Morgan Kaufman, Los Altos, Calif., 1986, pp. 485-489.

23. HORNING, J. J. A study of grammatical inference. Ph.D. Dissertation. Computer Science Dept.,
Stanford Univ., Stanford, Calif., 1969.

24. JOHNSON, D. S. Worst case behaviour of graph coloring algorithms. In Proceedings of the 5th
South-Eastern Conference on Combinatorics, Graph Theory, and Computing. Utilitas Mathematics,
Winnipeg, Canada, 1974, pp. 5 13-528.

25. LEVIN, L. Universal sorting problems. Prob. Pered. Inf 9, 3 (1973), pp. 115-l 16.
26. MICHALSKI, R. S., CARBONELL, J. G., AND MITCHELL, T. M. Machine Learning: An Artljicial

ZnteNigence Approach. Tioga, Palo Alto, Calif., 1983.
27. PITT, L. A characterization of probabilistic inference. In Proceedings of the 25th Annual Sympo-

sium on Foundations of Computer Science. IEEE Computer Society Press, Washington, D.C., 1984,
pp. 485-494.

28. PODNIEKS, K. M. Probabilistic synthesis of enumerated classes of functions. Sov. Math. Dokl. 16
(1975), 1042-1045.

29. ROYER, J. S. On machine inductive inference of approximations. If: Control, to appear.
30. RUDICH, S. Inferring the structure of a Markov chain from its output. In Proceedings of the 26th

Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Washing-
ton, D.C., 1985, pp. 321-325.

3 1. SMITH, C. H., AND VELAUTHAPILLAI, M. On the inference of approximate programs. Tech. Rep.
1427, Dept. of Computer Science, Univ. of Maryland, College Park, Md.

32. VALIANT, L. G. A theory of the learnable. Commun. ACM 27, 11 (1984), 1134-I 142.
33. VALIANT, L. G. Learning disjunctions of conjunctions. In Proceedings of the 9th IJCAI (Los

Angeles, Calif., Aug. 1985), vol. 1. Morgan Kaufman, Los Altos, Calif., 1985, pp. 560-566.
34. WIEHAGEN, R., FREIVALD, R., AND KINBER, E. B. On the power of probabilistic strategies in

inductive inference. Theoret. Comput. Sci. 28 (1984), 11 l-133.
35. WIGDERSON, A. A new approximate graph coloring algorithm. In Proceedings of the 14th Annual

Symposium on the Theory of Computing. ACM, New York, 1982, pp. 325-329.

RECEIVED AUGUST 1986; REVISED JUNE 1987; ACCEPTED JANUARY 1988

Journal of the Association for Computing Machinery, Vol. 35, No. 4, October 1988

