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1. Introduction 
The problem of inductive inference can be approached from several directions, 
and among these the viewpoint of computational complexity, namely, the study of 
inherent computational limitations, appears to be a promising one. An important 
instance of inference is that of learning a concept from examples and counterex- 
amples. In [32] and [33] it was shown that certain classes of concepts represented 
as Boolean expressions could be learned in a very strong sense: Whatever the 
probability distributions from which the examples and counterexamples were 
drawn, an expression from these classes distinguishing the examples from the 
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counterexamples with controllable error could be inferred feasibly. The purpose of 
the current paper is to indicate limits beyond which learning in this strong sense 
cannot be expected. We show that for some richer classes of Boolean concepts, 
feasible learning for all distributions is impossible unless R = NP. The proofs 
indicate infeasibility for particular distributions only. Learnability for natural 
subclasses of distributions is not necessarily excluded. 

A concept is defined in terms of its component features, which may themselves 
be concepts previously learned or primitive sensory inputs. For example, the 
concept elephant may be described in terms of the features (earsize, color, size, 
has-trunk, . . .I. We assume that our domain of discourse consists of y1 relevant 
features, which we denote by the variables x1, x2, . . . , x,,. Each feature variable Xi 
may take on a different range of values. Thus the feature color may be assigned to 
any of the values (red, blue, . . .). In this paper we are concerned only with Boolean 
features, however. This restriction is not a limitation, as all negative results for the 
Boolean case hold for the more general case of multivalued features. 

We assume each object in our world is represented by some assignment of the 
feature variables (x, ) to either 0 or 1. Thus each object is simply a vector ,? E 
(0, 11’. A concept C is a subset of the 2” possible vectors. If Z E C, then we say 
that .? is an example of the concept, or a positive example. Alternatively, if .? 4 C, 
then we say that i is a negative example. It is possible and often important to allow 
incompletely specified feature vectors also [32]. Since the negative results of this 
paper hold even in the completely specified case, we restrict ourselves to this 
simpler case here. 

The all-zero vector and all-one vector will be denoted by 6 and 1, respectively. 
We let i j,,x denote the vector that is set to 1 only at the positions i, j, . . . . 
Similarly, 0l.j.. denotes the vector which is 0 only at the positions i, j, . . . . 

There are many different ways in which a concept may be represented. For 
example, a Boolean formulafover the feature variables .? represents the concept 
C = (,?:-:f($ = 1). Similarly, a Pascal program, circuit, system of linear equations, 
etc., may be viewed as a representation of a concept. 

We are interested in algorithms that are capable of learning from examples whole 
classes of concepts, since any single concept is trivially learnable by an algorithm 
that has a “hardcoded” description of that concept. Whether or not a given class 
of concepts is learnable may depend on the knowledge representation chosen. 
Hence it is only meaningful to discuss classes of programs as being learnable. By a 
program we mean any algorithmic specification with binary output (i.e., a recog- 
nition algorithm). A program may be an explicit procedure or some knowledge 
representation with an associated evaluation procedure. A class F of such programs 
(whether Boolean circuits, formulas, etc.) represents a class %? of concepts if for 
each C E ‘57 there is anfE F that is a recognition algorithm for C. 

Let T be a parameter representing the size of the program fE F to be learned. T 
will depend on the representation and the total number of available features. For 
example, for a Boolean formulafover y1 variables, T(f) = max(n, size(f)), where 
size(f) is the smallest number of symbols needed to write the forrnulaf: 

We assume that the learning algorithm has available a black box called EXAM- 
PLES(f), with two buttons labeled POS and NEG. If POS (NEG) is pushed, a 
positive (negative) example is generated according to some fixed but unknown 
probability distribution D+ (D-). We assume nothing about the distributions D+ 
and D-, except that &;-)=, D’(i) = 1, &+, D-(Z) = 0, &+O D-(g) = 1, and 
C/c.;-,=~ DVZ) = 0. Thus EXAMPLES(f) is an errorless source: the probability of a 
misclassification is zero. 
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Definition 1. I. Let F be some class of programs representing concepts. Then F 
is learnable from examples iff there exists a polynomial p and a (possibly random- 
ized) learning algorithm A that accesses f only via EXAMPLES(f) such that 
(VfE F)(VD+, D-)(Vc > 0), the algorithm A halts in time p(T(f), l/c) and 
outputs a program g E F that with probability at least 1 - E, has the following 
properties: 

c. D+(Z) < c 
g(i)=0 

and 

1 D-(a)<~. 
‘c&i)= 1 

This definition can be understood as follows: We think of nature as providing 
examples of the concept to be learned according to some unknown probability 
distribution for which we can make no assumptions. Since there may be very 
bizarre examples of the concept that occur with low probability, it is unreasonable 
to expect the learning algorithm to produce a program that correctly classifies all 
examples. Hence a successful program g is one that agrees with the unknown rule 
fon most of the distribution. That is, the probability that the program g incorrectly 
classifies either a positive or a negative example is at most E in either case. A second 
source of error is introduced by the possibility that the particular sequence of 
examples provided by nature is highly unrepresentative. In this case it is reasonable 
that the program g be highly inaccurate. We require that this occur with probability 
at most E. Hence with probability at least 1 - t, g will satisfy the inequalities of 
Definition 1.1. A further requirement of the definition is that the run time of the 
algorithm be polynomial in the size of the program to be learned, as well as in the 
error parameter l/c. 

In applications it may be advantageous to allow the learning algorithm to choose 
a program from a different class from the one from which the input is taken. For 
example, the underlying rule might be a Boolean formula, but we may be satisfied 
if the learning algorithm produces a Pascal program that can adequately discrimi- 
nate between positive and negative examples. The above definition can be extended 
as follows: 

Definition 1.2. Let F and G be classes of programs representing concepts. Then 
F is learnable from examples by G iff there exists a polynomial p and a (possibly 
randomized) learning algorithm A that accesses f only via EXAMPLES(f) such 
that (Vf E F)(VD+, D-)(Vt > 0), the algorithm A halts in time p(T(f), l/t) and 
outputs a program g E G that with probability at least 1 - E has the following 
properties: 

2 D+(?)<E 
‘q(.?)=O 

and 

Thus “F is learnable by F” is equivalent to “F is learnable.” In general, the larger 
the class F is, the harder the learning task, since the domain of possible programs 
is much more varied. On the other hand, for fixed F, the larger the class G is, the 
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easier the learning task. Thus we have, immediately from the definitions: 

If F is learnable by G, and G c H, then F is learnable by H. In particular, even 
if F is not learnable, if F is learnable by G and G is learnable, then F U G is 
learnable. Also, it is easy to see that if F is learnable by G, and G is learnable by F, 
then F is learnable and G is learnable. 

In Section 3 we shall see some examples of F and G where F is not learnable, 
but F U G is learnable. Results such as these are reminiscent of the often cited 
problem-solving heuristic: Try a different viewpoint or richer representation. 

We also consider the situation in which, owing to the application area, a 
classification error in one direction (false positive or false negative) would be 
catastrophic, and we would like the learning algorithm to produce a rule that 
completely avoids this type of error. NFP and NFN abbreviate “no false positive” 
and “no false negative,” respectively: 

Definition 1.3. Let F be a class of programs representing concepts. Then F is 
NFP-learnable (respectively NFN-learnable) from examples iff there exists a poly- 
nomial p and a (possibly randomized) learning algorithm A that accessesfonly via 
EXAMPLES(f) such that (VJE F)(VD+, D-)(VE > 0), the algorithm A halts in 
time p(T(f), l/t) and outputs a program g E F that with probability at least 
1 - t has the following properties: 

z D+()<c and z D-(i)=0 
y(.C)=O &G)=l 

( 

respectively, C D+(g) = 0 and 1 D-(i) < t . 
n(l)=0 g(P)= 1 ) 

We similarly define “F is NFP-learnable by G” and “F” is NFN-learnable 
by G.” 

Note that the algorithms of [32] and [33] for k-CNF (k-DNF) are NFP (NFN) 
in the stronger sense that the probability that C D-(i) = 0 (C D’(i) = 0) is 1 rather 
than 1 - c. Here we use this weaker definition, since our negative results (Sec- 
tion 6) hold even for this weaker notion. 

Also note that for all of the classes of concepts we consider, and for all classes 
where testing the consistency of a program with an example can be done in 
polynomial time, there is a trivial polynomial-time algorithm for learning the class 
of concepts according to the above definition if it is assumed that P = NP: The 
algorithm simply takes sufficiently many randomly generated examples from Df 
and D- and then, using an oracle for NP, tests whether any concept representation 
of a certain size in the class is consistent with the generated examples. The number 
of examples required can be deduced easily from [lo]. Thus if P = NP, then most 
reasonable concept classes will be learnable. To prove nonlearnability we must 
therefore rely on the ubiquitous assumption that P # NP. Actually, since our 
learning algorithms are allowed to be randomized, our results will rely on the 
assumption that R # NP, where R is the class of sets accepted in random polynomial 
time [ 191.’ 

One of the main techniques in this paper is to reduce known NP-complete 
problems to the problem of finding a representation of a concept that is consistent 
with certain sample data. It is then shown that, if the class of concepts is learnable, 

’ A set S is accepted in random polynomial time iff there exists a randomized algorithm A such that 
on all inputs A is guaranteed to halt in polynomial time, and such that, if x @ S, ,4(x) = “no” and 
if x E .S, then Pr[A (x) = “yes”] 2 4. 

- 
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the NP-complete problem can be solved in random polynomial time. Thus all of 
our nonlearnability results are of the form; “F is not learnable unless R = NP.” 
For the rest of the paper we drop the phrase “unless R = NP,” and simply write 
“F is not learnable.” 

The rest of this paper is organized as follows: In Section 2 we briefly review some 
previous work relative to this model of concept learning. In Sections 3-5 we prove 
that some restricted classes of Boolean functions are not learnable. We show in 
Section 6 that even learning of heuristics (rules that account for some of the positive 
examples) may be intractable, and we conclude with a brief review and some open 
problems in Section 7. In the remainder of this section we define most of the 
concept classes with which we are concerned. 

A CNF formula is a Boolean formula in conjunctive normal form: a product of 
clauses, where each clause is a sum of literals. A literal is either a variable xj or its 
negation X. For example: (xl + %)(x3 + x6 + x9)(55; + x4 + x8). 

A DNF formula is a Boolean formula in disjunctive normal form: a sum of 
terms, where each term iS a product of literals. For example, x1x3x4 + x2x9 + 
%X7X8. 

A monomial is a single term; a product of literals. 
For each integer k 2 1 we define the following classes of Boolean formulas (and 

corresponding concept classes): 

k-CNF. The class of CNF formulas with at most k literals in each clause. 
k-DNF. The class of DNF formulas with at most k literals in each term. 
k-clause-CNF. The class of CNF formulas with at most k clauses. 
k-term-DNF. The class of DNF formulas with at most k terms. 
p-formulas. The class of arbitrary Boolean formulas that contain each variable at 

most once. 
monotone formulas. The class of formulas containing only positive literals. 

We are also interested in threshold operators that are not usually concisely 
representable as Boolean formulas. For example, a common decision rule might 
be: It is an elephant iff it has at least 5 of the following 12 features: trunk, big ears, 
large, grey, . . . . While we might also allow weights to be given to each feature 
reflecting its relative importance, it turns out that intractability appears already in 
the {O, 1) case: 

Boolean threshold functions. The class of concepts represented by zero-one linear 
inequalities: that is, for each concept C there is a vector ? E (0, 1 ] n and an integer 
yrOsuchthatC=(Z:?.Z?y]. 

2. Previous Work 
Machine learning has been studied from a number of different vantage points. As 
a branch of artificial intelligence, it has been investigated widely, although usually 
in a less formal setting. (See [26] for a survey.) Among more formal approaches, 
the literature of inductive inference [7, 81 includes investigations into the inference 
of recursive functions, automata, formal languages, etc. Work has been done on 
(1) probabilistic aspects of inference [ 15, 16, 23,27,28, 30, 341, (2) approximate 
inference [ 11, 13,29, 311, and (3) inference within the limitations of feasible 
computation [ l-4,20]. However, what distinguishes the approach taken here is the 
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definition of learnability (introduced in [32]) which, by incorporating all three of 
the aspects above, allows some nontrivial program classes to be learnable in a 
strong but plausible sense. 

In [32] it was shown that k-CNF is NFP-learnable (and hence learnable) from 
positive examples only. The main idea was that the formula can be constructed 
from a conjunct of a set of clauses whose cardinality is at most polynomial in the 
size of the variable set. Each such clause can be included (with high likelihood) in 
the conjunct being learned, provided that it does not violate any of a polynomial 
number of positive samples generated by the underlying distribution. An immediate 
consequence, by a kind of duality (see Section 3.4), is that k-DNF is NFN-learnable 
from negative examples only [33]. Since every monomial is a I-CNF formula, 
monomials are NFP-learnable from positive examples only. Note that a monomial 
is a 1 -term-DNF expression. We show in the next section that the sum of any other 
fixed number of monomials is not learnable. 

In [33] it is shown that “heuristic monomials,” or rules of thumb for DNF 
expressions to be learned, are difficult to find. We discuss this further and extend 
the results in Section 6. 

Recent work [9, lo] adopts essentially the same definitions of learnability, and 
applies them to the learning of geometric concepts. It is shown that orthogonal 
rectangles and other geometric concepts in E” (n-dimensional Euclidean space) are 
learnable in time polynomial in n and an error parameter. It is also shown that 
linear separators in E” are learnable, which contrasts with our results in Section 5 
that Boolean threshold functions (the discrete version of linear separators) are not 
learnable. It has been shown (N. Megiddo, private communication) that the 
learnability (in the sense of this paper) of concepts defined by unions of two half 
spaces in E” would imply R = NP. 

Learning from a “minimally adequate teacher” who can provide counterexam- 
ples to hypotheses and answer membership queries is investigated in [6]. It is shown 
that this model allows the learning of regular sets in polynomial time, whereas 
results from [l] and [20] showed that this was not possible from examples only 
unless P = NP. 

In [5] and [25] it is shown that finding a minimum simple disjunction (i.e., a 
I-CNF formula) consistent with given data is NP-hard. Their proof is by reduction 
from the Set Covering problem [ 181. It is also deduced in [5] that finding a 
minimum size DNF formula is NP-hard for various size measures (e.g., the number 
of literals in the formula). The essential reasoning is that simple disjunctions cannot 
be abbreviated by introducing conjunctions. 

Finally, the results from [21] on constructing functions that appear random to 
polynomial time computations give rise to a concept class that is not learnable 
assuming the existence of one-way functions. 

3. Hard-to-Learn Boolean Formulas 
In this section we show that k-term-DNF and k-clause-CNF, both in the monotone, 
and unrestricted case, are not learnable (i.e., unless R = NP). This is perhaps 
surprising in light of the results in [32] and [33] outlined in Section 2 that k-CNF 
and k-DNF are learnable. We further discuss the relationships between these 
problems later. 

In order to prove that these classes are not learnable, we first define a particular 
generalization of the Graph k-Colorability problem [ 181. 
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The k-NM-Colorability problem is described (using the notational conventions 
of [ 181) by: 

Instance. A finite set S and a collection C = (cl, c2, . . . , en?] of constraints 
c, c s. 

Question. Is there a k-coloring of the elements of S (i.e., a function x: S+ 
11,2,...,kl) such that for each constraint ci E C the elements of c, are Not 

Monochromatically colored (i.e., (Vc, E C)( 3x, y E c;) such that x(x) # x(y))? 

Note that if every c E C has size 2, then this is simply the Graph k-Colorability 
problem, where the vertex set is S and the edge set is the set of pairs in C. 

LEMMA 3.1. For all integers k 2 2, k-NM-Colorability is NP-complete. 

PROOF. Clearly k-NM-Colorability is in NP, and since Graph k-Colorability is 
NP-complete for every k > 3 ([ 1 S]), we need only show that 2-NM-Colorability 
is NP-hard. In fact, 2-NM-Colorability is exactly the Set-Splitting problem, which 
is also NP-complete [ 181. 0 

3.1 LEARNING k-TERM-DNF Is HARD. We are now ready to prove one of our 
main results. The construction in the proof below will be used again in Sections 4 
and 6. 

THEOREM 3.2. For all integers k I 2, k-term-DNF is not learnable. 

PROOF. We reduce k-NM-Coloring to the k-term-DNF learning problem. Let 
(S, C) be an instance of k-NM-Coloring. We construct a k-term-DNF learning 
problem, as follows: 

Each instance will correspond to a particular k-term-DNF formula to be learned. 
We must describe what the positive and negative examples are, as well as the 
distributions D’ and D-. 

If s = (s,, s2, . . . , sn 1, then we have n feature variables (xl, x2, . . . , x,, 1 for 
the learning+ problem. The set of positive examples will be the vectors (fi$‘=,, 
where fi; = O;, the vector with feature xi = 0 and all other features set to 1. The 
distribution D+ will be uniform over these n positive examples, with each 
fii occurring with probability l/n. We’ll form ] C ] negative examples, (ri,) I=“, , 
each occurring with probability l/] C ] in the distribution D-. For each con- 
straint ci E C, if c; = (s;, , siz, . . . , s;~ ), then the vector ri i = O,,,,,,, ,i, is a 
negative example. Thus the constraint (sl , ~3, ss ) gives rise to the negative example 
6 1.3.8 = (01011110111 * * .). 

CLAIM 3.3. There is a k-term-DNF formula consistent with all of the positive 
and negative examples above iff (S, C) is k-NM-Colorable. 

PROOF OF CLAIM 

(+) Assume (S, C) is k-NM-Colorable by a coloring x: S + ( 1, 2, . . . , k) 
that uses every color at least once. Let f be the k-term-DNF expression f = 
T, + T, + . . . + T,,., where the ith term Ti is defined by 

T; = n x,. 
z&,w 

In other words, the ith term is the conjunction of all variables Xj for which the 
corresponding element Sj is not colored i. 
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Then the positive example $j clearly satisfies the term T;, where x(sj) = i. Thus 
all of the positive examples satisfy the formulaf: 

Now suppose that some negative example iii = 6;,,iZ,. _, %i, satisfies J: Then rii 
satisfies some term Tj. Then every element of isi,, siz, . . . , s;,] must be colored 
with color j; otherwise, Tj would not be satisfied. But then the constraint Ci 
associated with the negative example rii is not satisfied by the coloring, since all of 
the members of ci are colored the same color. Thus no negative example satisfies 
the formulaJ 

(q) Suppose that T, + T2 + . . . + Tk is a k-term-DNF formula that is satisfied 
by all of the positive examples and no negative example. Then note without loss 
of generality, each Tj is a product of positive literals only: If 7; contains two or 
more negated variables, then none of the positive examples can satisfy it (since 
they all have only a single “O”), so it may be eliminated. If 7; contains exactly one 
negative literal XJ, then it can be satisfied by at most the single positive example 
cji, SO 7; can be replaced with T( = nj+i Xi, which is satisfied by only the vectors 
ljl and the vector 1, neither of which are negative examples. 

Now color the elements of S by the function x: S + 11, 2, . . . , k] defined by 
x(s;) = minlj: literal X, does not occur in term Tj 1. 

Note that x is well defined: Since each positive example satisfies the formula 
T, + Tz + . . . + Tk, each positive example i;; must satisfy some term Tj. But each 
term is a conjunct of only positive literals; therefore, for some j, x, must not occur 
in term T,. Thus each element of S receives a color. Furthermore, if x violates 
some color constraint cj = (si,, siz, . . .), then all of these elements are colored by 
the same colorj, and then, by the definition of x, none of the literals (x,,, x;~, . . .I 
occur in term Tj, and thus the negative example associated with ci satisfies Tj, 
contradicting the assumption that none of the negative examples satisfy the formula 
T, + Tz + . . . + Tk. This completes the proof of the claim. q 

Now to complete the proof of Theorem 3.2, we observe that, if there is a learning 
algorithm for k-term-DNF, it can be used to decide k-NM-Colorability in random 
polynomial time as follows: Given an instance (S, C) of k-NM-Colorability, form 
the distributions D+ and D- as above, and choose E < mini l/l S 1, l/l C 1). 

If (S, C) is k-NM-Colorable, then by Claim 3.3 there exists a k-term-DNF 
formula consistent with the positive and negative examples, and thus, with proba- 
bility at least 1 - t, the learning algorithm must produce a formula that is consistent 
with all of the examples (by the choice of the error bound E), thereby giving a k- 
NM-coloring for (S, C). Conversely, if (S, C) is not k-NM-Colorable, then by 
Claim 3.3 there does not exist a consistent k-term-DNF formula, and the learning 
algorithm must either fail to produce a hypothesis within its allotted time, or else 
produce one that is not consistent with at least one example. In either case this can 
be observed, and it may be determined that no k-NM-Coloring is possible. Cl 

Note that the construction gives rise to a monotone k-term-DNF formula that is 
hard to learn, even when the learning algorithm is allowed to choose among 
nonmonotone k-term-DNF formulas. Thus we have the following stronger result. 

COROLLARY 3.4 

-For all integers k 2 2, monotone k-term-DNF is not learnable. 
-For all integers k 2 2, monotone k-term-DNF is not learnable by k-term-DNF. 

3.2 k-TERM-DNFANDGRAPHCOLORINGAPPROXIMATIONS. Asshown,k-term- 
DNF, even in the simple monotone case, is not learnable because it is NP-hard to 
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determine whether there is a k-term-DNF formula consistent with a collection of 
positive and negative examples. We are prompted to ask whether k-term-DNF (of 
n variables) is learnable by (k + I)-term-DNF or f(k, n)-term-DNF for some 
reasonably slowly growing function f: 

The difficulty of learning k-term-DNF stems from the NP-hardness of a gener- 
alization of the Graph k-Colorability problem. In fact, we could have used Graph 
k-Colorability directly to obtain the same result fork 2 3. (However, we shall need 
the NP-hardness of 2-NM-Colorability in a later section also.) 

It is shown in [ 171 that for every c > 0, unless P = NP, no polynomial time 
algorithm can approximate the fewest number of colors needed to color a graph 
within a constant factor of 2 - t. In the paper, we see that this is achieved by 
showing that for all k 2 6, unless P = NP, no polynomial time algorithm exists 
that outputs “yes” on input a k-colorable graph, and outputs “no” on input a graph 
that needs at least 2k - 4 colors. It follows immediately from the proof of 
Theorem 3.2 and this result that 

COROLLARY 3.5. For all integers k 2 6, (monotone) k-term-DNF is not learn- 
able by (2k - 5)-term-DNF. 

We can strengthen this result by exploiting the fact that 2-NM-Colorability is 
NP-hard. In [ 171 the hardness of Graph 3-Colorability was used to obtain the result 
mentioned above. By employing the same techniques, but using 2-NM-Colorability, 
it is easy to show that 

COROLLARY 3.6. For all integers k 2 4, (monotone) k-term-DNF is not learn- 
able by (2k - 3)-term DNF. 

There is currently a large separation between the lower bounds for approximate 
coloring, and the upper bounds achieved by the best approximate coloring algo- 
rithms. Even for 3-colorable graphs, the best approximation algorithm known only 
guarantees that the coloring found uses at most 3& colors, where n is the number 
of vertices in the graph [35]. Should this prove to be a lower bound as well, we 
would have that (monotone) 3-term-DNF is not learnable by less than 3&-term- 
DNF (with n the number of variables). 

On the other hand, suppose that for some t > 0, g(n) is o(n’-f). Then, if we 
show that monotone k-term-DNF is learnable by kg(n)-term-DNF, we would 
immediately have significantly improved the best known upper bound [24, 3.51 of 
min(k(n/logn), kn - ’ (I”)} for the number of colors needed by randomized algo- 
rithms to color a k-Colorable graph with n vertices. It is unlikely that such an 
algorithm will be found easily. The reader should consult [9] for further relation- 
ships between approximations for NP-hard optimization problems and learnability. 

3.3 k-TERM-DNF Is LEARNABLE BY k-CNF. The previous section indicates the 
difficulties involved in learning k-term-DNF. Following an observation of 
R. Boppana (private communication), we show here that k-term-DNF is learnable 
by k-CNF. (As a corollary we have that k-term-DNF U k-CNF is learnable!) There 
is no paradox here. k-term-DNF is too restrictive of a domain to allow learning, 
that is, although patterns in the data may be observable, the demand that the 
learned formula be expressed in k-term-DNF is a significant enough constraint to 
render the task intractable. A richer domain of representation, k-CNF, allows a 
greater latitude in expressing the formula learned. Thus the availability to the 
learner of a variety of knowledge representations is seen to be valuable for learning. 
Often a change of representation can make a ditlicult learning task easy. 
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THEOREM 3.7. For all integers k L 1, k-term-DNF is learnable by k-CNF, 

PROOF. Every k-term-DNF formula FD is logically equivalent to some k-CNF 
formula Fc. whose size is polynomially related to the size of Fn. (If F. = Cf=, T,, 
then let F(. = fl (x,, , x,,, . . . , x,,), where the product is over all choices of x;, E T, , 
x,,ETz,..., x,, E Tk.) Use the algorithm of [32] to learn a k-CNF formula F that 
is-close enough to Fc (according to Df and D-) to satisfy the definition of 
learnability. 0 

3.4 DUALITY: k-CLAUSE-CNF. Just as similar techniques showed that both k- 
CNF and k-DNF were learnable [32, 331, we observe that essentially the same 
proof shows that both k-term-DNF and k-clause-CNF are not learnable for k 2 2. 
This follows because k-clause-CNF learnability is easily seen to imply learnability 
for k-term-DNF. 

Assume that k-clause-CNF is learnable by algorithm A. Suppose we are given an 
instance of k-term-DNF learning, that is, an EXAMPLE box with buttons POS 
and NEG with underlying distributions D GNF and DDNF. Now transform the box 
by switching the labels of POS and NEG, and present to algorithm A this new 
example box (with distributions D& = DDNF and DCNF = D&). 

In polynomial time, A constructs a k-clause-CNF formula C = C, CZ Cx . . . Ck 
where each C, is a sum of literals. Now let the k-term-DNF formula F be 
defined by 

F= C,C, . . . c,=c,+z$+ *e-c,. 

We have immediately that 
e * 

1 D&F(X) = x D&F(X) < E 
F(.C)=O C(i) = I 

and 

z D&F(Z) .G. Jf D&F(Z) < E; 
F(T)= I C(i)=0 

thus we have constructed a k-term-DNF formula for the original input in polyno- 
mial time. 

We have just proved 

THEOREM 3.8. For all integers k L 2, k-clause-CNF is not learnable. 

By the same reduction, and by Corollary 3.6, we also have the following corollary: 

COROLLARY 3.9 

- For all integers k L 4, k-clause-CNF is not learnable by (2k - 3)-clause-CNF, 
- For all positive integers k, k-clause-CNF is learnable by k-DNF. 
- For all positive integers k, k-clause-CNF U k-CNF U k-term-DNF U k-DNF is 

learnable. 

4. ~-Formulas Are Not Learnable 

In [32], it was shown that the class of p-formulas (Boolean formulas in which each 
variable occurs at most once) are learnable, provided that the learning algorithm 
has available certain very powerful oracles. Here we show that ~-formulas are not 
learnable from examples alone. In Section 6 we show that it is difficult to learn 
even very weak approximations of ~-formulas. 
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Each p-formula may be represented in a natural way as a rooted directed tree 
with variables as leaves, internal nodes labeled with AND, OR, and NOT, and 
edges directed away from the root. We do not assume that the out-degree of these 
nodes is two, and therefore we may assume that no node has the same label as its 
immediate ancestor. Observe that all of the NOT labels may be pushed to the 
leaves of the tree by using De Morgan’s laws. This operation can be carried out 
without increasing the number of edges and may increase the number of nodes by 
at most n, the number of leaves. We therefore assume without loss of generality 
that the internal nodes of the tree are all labeled with AND or OR with no node 
labeled the same as its immediate ancestor, that they have out-degree at least 2, 
and that the leaves contain literals for the variables. As each variable that occurs 
in the formula may occur only once, in the tree there will be a single node 
containing either the variable, or its negation. We say that the variable x; occurs 
positively (respectively, negatively) if xi (respectively, 55;) is a leaf. It is easy to see 
that in polynomial time such a tree representation can be constructed from any 
p-formula. 

We reduce 2-NM-Colorability to the p-formula learning problem, but first we 
show that without loss of generality, the 2-NM-Colorability problem satisfies a 
simple property. Suppose that (S, C) is an instance of 2-NM-Colorability. Let 
s E S be given. If there is some t E S such that {s, t ) E C, then we say that s has t 
as a partner. (s may have many partners.) Now notice that without loss of generality 
we may assume that every s E S has a partner, that is, that every element of S 
occurs in some constraint of size 2 enforcing that the two elements be colored 
differently. For if (S, C) does not satisfy this property, we can simply form the new 
instance (S U S’, CU C’), where S’ = (s’ : s E S] and C’ = ((s, s’) : s E S]; thus 
we have added a partner s ’ for each element s of S, and the partner occurs only in 
the single constraint (s, s’}. Now (S U S’, C U C’) is 2-NM-Colorable iff (S, C) is 
2-NM-Colorable, and every element has a partner. 

Now we are ready to prove 

THEOREM 4.1. p-formulas are not learnable. 

PROOF. We reduce 2-NM-Colorability to ~-formula learning. Let (S, C) be an 
instance of 2-NM-Colorability. By the remarks above, we may assume that every 
s E S has a partner. Let the positive examples be {fii) and the negative examples 
be {&] as in the proof of Theorem 3.2, with the uniform distributions D+ and D-. 

LEMMA 4.2. There is a F-formula consistent with all (fij] and (ri;] $(S, C) is 
2-NM-Colorable. 

The nonlearnability of ~-formulas follows from Lemma 4.2, for as in the proof 
of Theorem 3.2, if there is an algorithm for learning p-formulas in random polyno- 
mial time, then, by choosing error parameter E smaller than both l/l C 1 and 
l/l S 1, the algorithm can be used to decide the NP-complete 2-NM-Colorability 
problem in random polynomial time. 

We prove Lemma 4.2 
(+) By Claim 3.3, (S, C) is 2-NM-Colorable implies there is a 2-term-DNF 

formula consistent with all of ($i) and (fi;]. By that construction, the 2-term-DNF 
formula contains each variable at most once; therefore, it is a p-formula. 

(+) Suppose there is some p-formulafconsistent with the examples (fiI] and 
(fi,]. Now consider the tree T forfthat has only AND and OR internal nodes, as 
discussed above. 
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CLAIM. Each variable xi occurs positively in the tree T. 

Suppose that xi either occurs negatively in T, or fails to occur. Then consider 
the element s; of S with which xi is associated. Si has a partner Sj. Since every 
positive example satistiesf; the positive example fij satisfiesJ: If x, fails to occur in 
T, then it does not matter what value it has; so if fij = 0, satisfies f; so too does the 
vector 6 ,,,, which is a negative example due to the constraint {s;, Sj) E C. Similarly, 
if xi occurs negatively inJ; then since fij satisfies f; so too will the same vector with 
x; set to 0 instead of 1, and thus the negative example d,,j satisfies 1: Therefore, 
every variable occurs positively inJ; proving the claim. 

Now there are two cases to consider, depending on the label of the root of the 
tree. In each case we show how a 2-NM-Coloring may be found from T. 

Case 1. The root node is labeled OR. 

Then f is equivalent to the formulafi +fi + . . . +fk, where J; is the subformula 
computed by the subtree off with f's ith child as root. 

LetL=fiandR=f2+... + fk. Color each element Si with color CL iff x, occurs 
in formula L; otherwise, color si with color CR. We show that this is a legitimate 
2-NM-Coloring: 

Suppose a constraint ci = (s;, , s,,, . . , , s;,] is violated. Then all of s;, , si,, . . . , 
s,~ are colored the same color, and all of x,, , xi,, . . . , xi,,, occur in the same 
subformula, say L without loss of generality. Then since formula R contains only 
positive literals, and does not contain the variables xi,, x,,, . . . , x,,,,, it follows that 
rii = iii,,,,,. .,i, satisfies formula R, and therefore satisfies f; a contradiction. 

Case 2. The root node is labeled AND. 

Since each variable xi occurs positively, there must be, an OR on the path from 
the root to each x;; otherwise the positive example 6; = 0; could not satisfyf: Thus 
there are k I 2 OR nodes that are children of the root AND node (by the normal 
form assumption that all nodes have out-degree at least 2). We divide the subtree 
beneath the ith OR into two groups, Li and Ri, where Li is the function computed 
by the leftmost subtree of the ith OR, and R, is the function computed by the OR 
of the remaining branches of the ith OR. 

Thusf = (L, + R,)(Lz + Rz) a.- (Lk + Rk). Then let f' = L + R, where L = 
L,Lz a.0 Lli and R = RIRz . -. Rk. We have that if f' is satisfied by some vector, 
then f is also. Therefore no negative example satisfies f ‘. Now color Si with color 
CL iff x, occurs in formula L, and color it CR, otherwise. By the same argument as 
in Case 1, if some coloring constraint is violated, then all of the elements of the 
constraint occur in the same subformula, and then the other subformula is satisfied 
by the negative example associated with the given constraint. This completes the 
proof of Lemma 4.2 and Theorem 4.1. 0 

5. Boolean Threshold Functions 
A Boolean threshold function (defined in Section 1) may be thought of intuitively 
as follows. Among the set of n features (xi) there is some important subset Y for 
the concept to be learned. There is also a critical threshold k such that whenever 
an example ,? has at least k of the features of Y set to 1, it is a positive example; 
otherwise, it is a negative example. We write this rule as Thk(F), where 9 is the 
characteristic vector for the set Y, that is, y; = 1 iff the ith feature is in the set Y. 
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Thus if R is a positive example, then it satisfies 1 . 3 2 k, and if ,i! is a negative 
example, then it satisfies ,? . 3 < k. (Where . is the “dot product” of the two 
vectors: ,? . j = CT=1 Xiyj.) 

To show that Boolean threshold functions are not learnable, we reduce Zero- 
One Integer Programming (ZIP) to the learning problem. ZIP is the following NP- 
complete problem [ 18, p. 2451: 

Instance: A set of s pairs &, bi and the pair 6, B, where 2; E (0, 1) “, 6 E (0, 1) n, 
bi E [0, 11, and 0 I B I n. 

Question: Does there exist a vector h E (0, 11’ such that ?, . h 5 bi for 1 5 i I s 
andci.hrB? 

Given an instance of ZIP, we construct a Boolean threshold learning problem. 
We have 2n features xl, x2, . . . , Xok. We sometimes write a vector of length 2n as 
the concatenation of two vectors 6, i of length n, and denote this by (6, $). 

There are two positive examples, ji, = (6, i) and & = (6, ] 1,2.. ,n-B). 
There are two types of negative examples. First, for each of the vectors Ci, 1 % i 

I s, from the ZIP instance, we define the negative_ example (E;, i,,,,. ,n-b,-l). 
Second, for 1 5 i 5 n we define the negative example 0, 0;). 

We claim that there is a solution to the ZIP instance iff there is a Boolean 
threshold function consistent with the given examples. If our claim is true, then 
any learning algorithm can be used to decide the ZIP problem in random polyno- 
mial time by letting D+ and D- be uniform over the positive and negative examples, 
respectively, and choosing t < l/(s + n). 

To prove the claim, suppose that z is a solution to the ZIP instance, and let 
j = (2, i). It is easily verified that the threshold function Th,(j) is consistent with 
all of the positive and negative examples above. 

On the other hand, suppose that Y is a set with characteristic vector F = (i, t;), 
and k is a positive integer such that the rule Thk(y) is consistent with the positive 
and negative examples defined above. We show that i is a solution to the ZIP 
instance. 

The facts that fi, = (6, i) is a positive example and that, for all i, (6, &) is a 
negative example give rise (respectively) to the following two inequalities: 

ks (6, i) . (5, t;) 5 n. (1) 

(vi) (6, 6j) . (2, I?) < k. (2) 

By (1) and (2) and the fact that (6,@ differs from (6, 1) in only the position 
n + i, it follows that $ = 1. Substituting 1 for i6 in (2) we conclude that k > n - 1, 
andby(l),k=n. 

Now observe that since ij2 = (6, i 1.2.. ,n-B) is a positive example, 

n P (6, i,,,.. ,n--B) . (2, i) 
and thus 

. a.ZzB. 

Also, since for each i, (&, i 1.2,. .n-h,-l) is a negative example, 

(E, L2 . .._. n-h,-l) - (2, i) < n, 

and hence 

(Vi) zi * i 5 bi. 

(3) 

(4) 
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Inequalities (3) and (4) assert that i is indeed a solution to the ZIP instance, 
proving our claim, and the following. 

THEOREM 5.1. Boolean threshold functions are not learnable. 

6. Learning Heuristic Rules 
As we have seen in the previous sections, there are various natural classes of 
formulas for which the problem of finding a good rule is hard. In cases such as 
these, as well as cases in which there may be no rule of the form we seek that is 
consistent with the observed data, we may wonder whether we can learn heuristic 
rules for the concept-rules that account for some significant fraction of the 
positive examples, while avoiding incorrectly classifying most of the negative 
examples. 

For example, since we know of no learning algorithm for CNF and DNF in 
general, and we do have a learning algorithm for I-term-DNF, perhaps we can find 
a single monomial that covers half of the positive examples while avoiding error 
on all but 1 - c of the negative examples whenever such a monomial exists. 

The following definition is meant to capture the notion of learning heuristics: 

Definition 6.1. Let h be a function of n, the number of features, such that 
(Vn) 0 5 h(n) 5 1, and let F and G be classes of programs representing concepts. 
Then F is h-heuristically learnable from examples by G iff there exists a polyno- 
mial p and a (possibly randomized) learning algorithm A that accesses f only via 
EXAMPLES(f) such that (tlf~ F)(Vn)(VD+, D-)(Vt > 0), the algorithm A halts 
in time p( T(f), I/E) and outputs a program g E G that with probability at least 
1 - E, has the following properties: 

I: D’(2) < 1 - h(n) 
g(i)=0 

and 

c D-(Z)<C. 
g(i-)= I 

If no g E G with these properties exists, then A may output anything. 

Note that the program g found must be correct on the fraction h(n) of the 
positive examples. If F = G, then we write “F is h-heuristically learnable,” 
and observe that the last sentence of the definition is redundant. The definition 
extends in the natural way to “F is h-heuristically NFP-learnable by G,” and 
“F is h-heuristically NFP-learnable,” by modifying the second inequality to 
&;,=, D-(Z) = 0. 

6.1 HEURISTIC MONOMIALS ARE NOT LEARNABLE. In [33], it was shown that 
the class DNF is not $-heuristically NFP-learnable by monomials; that is, it is NP- 
hard to determine whether there is a monomial m such that at least half of the 
positive examples (weighted by D+) and none of the negative examples satisfy m, 
given that there is some DNF rule that accurately classifies all of the examples. 
(Actually, the results in [33] also imply that DNF is not c-heuristically NFP- 
learnable by monomials for any fixed rational 0 < c < 1.) 

Here we slightly strengthen the result by removing the “NFP” condition and 
show that DNF is not c-heuristically learnable by monomials. 
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The reduction is from the Independent Set (IS) problem [ 181: 

Instance: Graph G with vertex set V and edge set E and integer k. 
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Question: Does there exist an Independent Set of G of size at least k, that is, a 
subset V’ G V such that ] V’ ( 2 k and for no pair of elements x, y E V’ is it the 
case that (x, y) E E? 

A simple reduction shows that for any rational 0 < c < 1, the following c-IS 
problem is also NP-complete: 

Instance: Graph G with vertex set I/and edge set E. 

Question: Does there exist an Independent Set of G of size at least c ] V ] ? 

We reduce c-IS to the problem of learning c-heuristic monomials for DNF. Let 
G = (V, E) be an instance of c-IS. With each vertex Vi associate a feature xi. 
Let the set of positive examples be (d,]:,, . For each edge (i, j) E E define the 
negative example b,,. Let the distributions D+ and D- be uniform over these 
positive and negative examples, respectively. Let c < l/j E I . 

Clearly there is a DNF formula for this concept: the n-term formula such that 
the ith term is satisfied only by the vector &. 

If there is a learning algorithm A that could determine whether there exists (and 
produce) a monomial m that is satisfied by the fraction c of the positive examples, 
and by at most t of the negative examples, then m is satisfied by none of the 
negative examples, by choice oft. 

Without loss of generality, m contains only positive literals; otherwise at most 
one positive example could satisfy m. Now observe that the set of positive examples 
that satisfy m are those vectors bi such that the literal Xi does not occur in m. 
Furthermore, if both the positive examples di and dj satisfy m, then di,j also satisfies 
m and is therefore not a negative example; that is, (i, j) @ E. 

Thus (vi : xi does not occur in m ) is an independent set of V and is of size at least 
cn = c ( V 1. Conversely, if there is an independent set Z of V of size c ] V 1, then it 
is easily verified that the monomial. 

is satisfied by at least the fraction c of the positive examples, and none of the 
negative examples. Therefore, learning algorithm A solves the c-IS problem in 
random polynomial time. Furthermore, note that the construction was from a 
monotone DNF formula; so we have proved 

THEOREM 6.1. Monotone (and hence unrestricted) DNF is not c-heuristically 
learnable by monomials for any rational c with 0 < c c 1. 

To further illustrate the difficulty of finding heuristic monomials, let opt be the 
largest number of positive examples that satisfy a monomial that is not satisfied by 
more than E of the negative examples. Then for any constant c < 1, the problem 
of learning a monomial that is satisfied by c . opt positive examples and at most E 
of the negative examples is as hard as approximating the maximum independent 
set to within a constant factor c. It has been shown [ 181 that if this can be done, 
then the size of the maximum independent set can be approximated arbitrarily 
closely. 
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Finally, we note that a straightforward reduction may be employed to show that 
for any fixed positive integer k and rational c such that 0 < c < 1, DNF is not 
c-heuristically learnable by k-term-DNF. 

6.2 HEURISTIC ~-FORMULAS ARE NOT NFP-LEARNABLE. We now prove a 
rather strong lower bound for heuristic NFP-learnability of p-formulas. We show 

THEOREM 6.2. p-formulas (of N variables) are not exp(-N’/3)-heuristically 
NFP-learnable. 

In other words, if the formula sought is not to be satisfied by any negative 
examples, then it is NP-hard to find a p-formula that is satisfied by even an 
exponentially vanishing fraction of the positive examples (when in fact there is 
some p-formula that is consistent with all of the positive and negative examples). 

The proof of Theorem 6.2 will be very similar to that of Theorem 4.1. Given a 
2-NM-Colorability instance (S, C), we show how to construct a p-formula learning 
problem (a set of positive and negative examples with distributions Df and D-) 
such that if a learning algorithm A produces a p-formula that is satisfied by no 
negative example, and at least exp(-N’j3) of the positive examples (according to 
the distribution DC), then this formula may be used to find (in polynomial time) a 
2-NM-Coloring of (S, C). 

PROOF. Let (S, C) be an instance of 2-NM-Colorability, with 1 S 1 = ~1, and 
recall that we may assume without loss of generality that every s E S has a partner. 
Then we define a learning problem with N = ~1~ feature variables, which we think 
of as the concatenation of n2 groups of y1 feature variables each. Each example 
vector x has length n3, and we write it as the concatenation of n2 vectors (6;) each 
of length n. Thus 2 = (6, h2, . . . , 6,~). We call each of these subvectors of length 
n a block. The feature variable Xi,j is the jth feature of the ith block, thus 
&=xi.,x;,2,. ..) xi,, for each i, 1 5 i 5 n2. Whereas in our previous reduction, the 
element Sj had associated with it the feature variable Xi, here it is associated with 
the jth element of each block, that is, with each element of {Xi, : 1 5 i 5 n2). 

We define n”* positive examples: Every vector i for which (Vi)( 3j) 8; = 0,. Thus 
each block of any positive example looks like some positive example from the 
reduction of Theorem 3.2. 

We define many negative examples: Any vector where for some block i we have 
that 6; = fij, where fij is defined as in the reduction for Theorem 3.2-all l’s except 
at the positions corresponding to the elements of the jth constraint cj E C. 

Let D+ be the uniform distribution on the positive examples, generated by 
choosing, independently at random, a single position in each block to be set to 0. 
D- is an almost uniform distribution, generated by randomly choosing a block i, 
randomly choosing a constraint cj, setting hi = sj, and then setting each of the 
other blocks randomly. 

Note that the distributions DC and D- are polynomially generable, that is, there 
is an algorithm that produces examples for each of these distributions in random 
polynomial time. 

LEMMA 6.3. If there is a 2-NM-Coloring of (S, C) then there is a p-formula f 
that is satisfied by all of the positive examples, and none of the negative examples. 

PROOF. If x: S + ( 1,2 j is a 2-NM-Coloring of (S, C), then define the p-formula 
f by 

f = ijj (Ti.1 + Ti,2), 

I 

- 
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where 

Ti.1 = II x;.j and Ti.2 = n x;,j. 
X(S,)# 1 x(.+4 
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f is a p-formula, because the variable Xi.j may only appear in either the 
subformula T;,, or the subformula Tj,2. If it occurs in T;,, then x(Sj) # 1, and if it 
appears in Tj.2 then x(Sj) # 2. It then cannot appear in both subformulas; otherwise, 
the element Sj receives no color by the coloring x. 

Suppose that ji is a positive example, and thus for some_ function 
p: {l, 2,. . . , n’) + (1, 2,. . . , n) the ith block of3 is exactly the vector Op(,). Then 
for each i, fi satisfies at least one of (T;,, , Tj,2): If x(sPcj,) = 1 # 2, then the literal 
x,,,(~) appears in Tj,2 and therefore not in T ,,l, and since all other variables of the 
form xi.j, j # p(i) are set to 1 in 15, and these are the only other variables that can 
occur in T;, , , we have that 6 satisfies 7;. , . Similarly, if x(s,(~,) = 2, then $ satisfies 
Ti.2. Since ji satisfies either T;,, or Ti.2 for each i, fi satisfiesJ 

Now if ri is a negative example, then by definition, there is some block 6; 
and constraint cj = (Sj, , Sj,, . . . , Sjk) such that hi = Oj,,j,,, ,jk. If ri satisfies f; 
then fi satisfies T;,, or 7;,2. By definition, we have that either all of the literals 
bkj, 3 XI,J~ 9 * * . 3 X,-j, ] occur in T,, , or they all occur in T;.2. Then we must have that 
all of the elements (s,, , S,, . . . , Sjk ) are colored with color 2 or 1, respectively, and 
thus x does not satisfy all of the constraints. Hence, ri cannot satisfy f: This 
completes the proof of Lemma 6.3. 

LEMMA 6.4. From a p-formula f that is satisfied by more than (n - l)“* of the 
positive examples, and not by any negative examples, in polynomial time a 2-NM- 
Coloring of (S, C) can be found. 

PROOF. We say that block i is covered iff for each j, 1 5 j I n, there is some 
positive example fi such that the ith block 6, = dj, and $ satisIiesJ Clearly there 
must be some block i that is covered; otherwise, fis satisfied by at most (n - l)“* 
positive examples. Let i be a covered block. 

CLAIM. In the tree Tfor the function1; all variables (x,, , xi.*, . . . , xi,,,] from the 
covered ith block occur positively. 

To see that the claim is true, recall that each element Sj has a partner sh in the 2- 
NM-Colorability instance. +With (Sj, Sk ) as a constraint, we have that any vector for 
which the ith block b, = oj,k is a negative example. Since there is some positive 
example fi satisfying f such that the ith block 6, = 0, (block i is covered), if X,.J 
occurs negatively in the tree, or not at all, then by simply setting x;.k to 0 in 3, we 
have an example that still satisfiesf; and in which 6, = 6j,k, a negative example. 
This contradicts the assumption that no negative example satisfiesf: 

The rest of the proof of Lemma 6.4 now follows similarly to that of Lemma 4.2. 
We sketch the argument. 

Case 1. The root node is labeled OR. 

Then f = L + R, where L is the function computed by the left branch of the root 
node, and R is the function computed by the OR of the remaining branches of the 
root node. Consider only the variables (Xi.1 1 from the covered block i. Color Sj with 
color CL iff the literal x;., appears in formula L; otherwise, color Sj with color CR. 

If there is some constraint cj = (Sj, , Sj2, . . . , S,) whose elements are all colored 
identically (without loss of generality suppose it is CIA), then all of the literals 
&.j, 9 xi,~z 3 * . . 2 xi,,, occur in formula L. Then these variables do not occur in R, and 
therefore the vector ri that has these variables set to 0, all other variables from 
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block i set to 1, and all other variables set to 0 or 1 depending on whether they 
occur negatively or positively infmust satisfy R (and hencef). But ri is a negative 
example, since the ith block corresponds to a coloring constraint. This contradicts 
the assumption that no negative examples satisfy J 

Case 2. The root node is labeled AND. 

First note that none of the children of the root AND node in the formula tree T 
can be literals from block i. For if x,,~ is a child of the root, then any positive 
example satisfying the formula must have a “1” in position Xi,j, and there is then 
no positive example satisfyingfsuch that the ith block 6, = Oj, contradicting the 
fact that block i is covered. 

Although there may be some literals from some block other than i attached 
directly to the AND, the path from the AND to any literal of block i must contain 
an OR node. Thus there is at least one OR as an immediate descendant of the 
top AND. Suppose there are k 2 1 ORs that are immediate descendants of 
the top AND and whose subtree contain some literal from block i. For each such 
OR, we divide the subtrees below the OR into two groups, L, and Rj, (1 5j 5 k), 
where L, is the function computed by the subtree beneath the leftmost branch of 
the jth OR, and Rj is the function computed by the OR of the subtrees beneath 
the remaining branches of the jth OR. Further, let X be the function computed by 
the AND of the remaining subtrees. 

Now the functionfcan be written as 

f= WI + RI& + Rz) ..a (L/c + R/x)X, 

where X contains no literals from block i. (X may be empty.) 
Consider the formula f’ = L, Lz . . . LkX + RI RZ . . . RkX. Then any example 

satisfyingf’ also satisfiesf; and therefore no negative example satisfiesf’. Further 
note that in f’ each variable of block i occurs only once, although variables of 
other blocks may occur twice if they are in X. Now we observe that the argument 
for Case 1 applies tof’, since the argument only used the facts that all literals from 
block i are positive, which is true here due to the claim; that all negative examples 
were avoided, which again is true for f ‘; and that all literals from block i occur 
only once. 

This completes the proof of Lemma 6.4. 0 

We are now ready to finish the proof of Theorem 6.2. Suppose that there is an 
algorithm A that on input EXAMPLES of some p-formula of N variables, in 
polynomial time and with high probability found a p-formula that was satisfied by 
greater than the fraction exp(-N’j3) of the positive examples and was not satisfied 
by any negative example. Then given any instance of a 2-NM-Coloring problem 
(S, C) with 1 S 1 = n, use the reduction above to obtain a s-formula learning 
problem to present to algorithm A with N = n 3 variables, and distributions D’ and 
D-. Then by Lemma 6.3, if (S, C) is 2-NM-Colorable, then there is some p- 
formula that is consistent with all positive and negative examples, and thus in 
polynomial time algorithm A finds some CL-formulafthat is satisfied by no negative 
examples, and by more than 

exp(-N”3)n”Z = exp(-n)n”* > (1 - (l/,))“*,“* = (n - 1)“2 

positive examples. By Lemma 6.4, in random polynomial time, A can be used to 
find a 2-NM-Coloring of (S, C). 

On the other hand, suppose (S, C) is not 2-NM-Colorable. Since the existence 
of a p-formula consistent with greater than (n - 1)“’ positive examples and all 

I 

- 
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negative examples implies 2-NM-Colorability of (S, C), algorithm A either fails to 
produce a formula, or produces one for which the associated coloring defined in 
the proof above fails to be a legitimate 2-NM-Coloring. Either of these events can 
be witnessed in polynomial time. Thus we have used A to solve the NP-Complete 
2-NM-Coloring problem in random polynomial time. 

This completes the proof of Theorem 6.2. 0 

7. Conclusion 
We have seen that for some seemingly simple classes of Boolean formulas there 
are serious limitations to learning from examples alone. In the case of p-formulas, 
even finding heuristics appears to be intractable. Although these limitations may 
suggest that the search for algorithms that learn in a distribution-free sense is too 
ambitious, there is a growing collection of positive results [9, 10,22, 32,331 wherein 
such learning algorithms are achieved. Moreover, it is difficult to argue for the 
applicability of results based on assumptions of uniform or normal distributions. 

It seems instead that our results point out the importance of the knowledge 
representation used by the learning algorithm. For example, in trying to learn DNF 
formulas, we have seen that finding the minimum number of terms within a factor 
of less than 2 is NP-hard. Indeed, this approximation problem may be much more 
difficult since the graph-coloring approximation problem is reducible to it. Fur- 
thermore, even if learning algorithms were found that inferred formulas that were 
significantly (though only polynomially) larger than the minimum equivalent 
formulas, this may have disadvantages in applications where comprehensibility by 
humans is relevant and small constant-sized conjuncts and disjuncts are called for 
[ 141. But as we have noted, allowing the more flexible representation of the union 
of the classes k-DNF, k-CNF, k-term-DNF, and k-clause-CNF results in a class of 
learnable formulas. 

A number of areas of inquiry remain open. Can CNF (DNF) formulas be learned 
from examples? Can we say something further about the relationships between 
learnability and approximations for NP-hard optimization problems? Under rea- 
sonable restrictions on the type of example distributions allowed, do some of the 
hard to learn classes become learnable? Exactly what type of information other 
than examples would allow for the learnability of these classes? 
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