
SVMs CS446 Fall ’16

• Not the most general setting
for on-line learning.
• Not the most general metric
• (Regret: cumulative loss;
Competitive analysis)

On-Line Learning

Model:
 Instance space: X (dimensionality – n)

 Target: f: X {0,1}, f  C, concept class (parameterized by n)

Protocol:

 learner is given x  X

 learner predicts h(x), and is then given f(x) (feedback)

Performance: learner makes a mistake when h(x)  f(x)
 number of mistakes algorithm A makes on sequence S of

examples, for the target function f.

A is a mistake bound algorithm for the concept class C,
if MA(c) is a polynomial in n, the complexity parameter
of the target concept.

),(max)(, SfMCM ASCfA 

1

SVMs CS446 Fall ’16

Representation

Assume that you want to learn conjunctions. Should your hypothesis
space be the class of conjunctions?
 Theorem: Given a sample on n attributes that is consistent with a conjunctive

concept, it is NP-hard to find a pure conjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

 [David Haussler, AIJ’88: “Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework”]

Same holds for Disjunctions.

Intuition: Reduction to minimum set cover problem.

 Given a collection of sets that cover X, define a set of examples so that
learning the best (dis/conj)junction implies a minimal cover.

Consequently, we cannot learn the concept efficiently as a
(dis/con)junction.

But, we will see that we can do that, if we are willing to learn the
concept as a Linear Threshold function.

In a more expressive class, the search for a good hypothesis
sometimes becomes combinatorially easier.

2

SVMs CS446 Fall ’16

Linear Functions

Disjunctions

At least m of n:

Exclusive-OR:

Non-trivial DNF

3

f (x) =
1 if w1 x1 + w2 x2 +. . . wn xn >= 

0 Otherwise {

y = (x1  x2 v) (x1  x2)

y = (x1  x2) v (x3  x4)

y = x1  x3  x5

y = (1• x1 + 1• x3 + 1• x5 >= 1)

y = at least 2 of {x1 , x3 , x5}

y = (1• x1 + 1• x3 + 1• x5 >=2)

SVMs CS446 Fall ’16

Perceptron learning rule

We learn f:X{-1,+1} represented as f =sgn{wx)

Where X= {0,1}n or X= Rn and w Rn

Given Labeled examples: {(x1, y1), (x2, y2),…(xm, ym)}

4

1. Initialize w=0

2. Cycle through all examples

a. Predict the label of instance x to be y’ = sgn{wx)

b. If y’y, update the weight vector:

w = w + r y x (r - a constant, learning rate)

Otherwise, if y’=y, leave weights unchanged.

n
R

SVMs CS446 Fall ’16

Perceptron Convergence

Perceptron Convergence Theorem:

If there exist a set of weights that are consistent with
the data (i.e., the data is linearly separable), the
perceptron learning algorithm will converge
 How long would it take to converge ?

Perceptron Cycling Theorem:

If the training data is not linearly separable the
perceptron learning algorithm will eventually repeat
the same set of weights and therefore enter an
infinite loop.
 How to provide robustness, more expressivity ?

5

SVMs CS446 Fall ’16

Perceptron: Mistake Bound
Theorem

Maintains a weight vector wRN, w0=(0,…,0).

Upon receiving an example x  RN

Predicts according to the linear threshold function
w•x  0.

Theorem [Novikoff,1963] Let (x1; y1),…,: (xt; yt), be a
sequence of labeled examples with xi <N, xiR and
yi {-1,1} for all i. Let u <N,  > 0 be such that,

||u|| = 1 and yi u • xi   for all i.

Then Perceptron makes at most R2 /  2 mistakes on
this example sequence.

(see additional notes)

6

Complexity Parameter

SVMs CS446 Fall ’16

Robustness to Noise

In the case of non-separable data , the extent to which a data
point fails to have margin ° via the hyperplane w can be
quantified by a slack variable

»i= max(0, ° − yi w¢ xi).
Observe that when »i = 0, the example xi has margin at least °.
Otherwise, it grows linearly with − yi w¢ xi

Denote: D2 = [ {»i
2}]1/2

Theorem: The perceptron is

guaranteed to make no more than

((R+D2)/°)2 mistakes on any sequence

of examples satisfying ||xi||2<R
Perceptron is expected to

have some robustness to noise.

7

- --- -
-

-
- -

- -

- -

-

-

SVMs CS446 Fall ’16

Winnow Algorithm

The Winnow Algorithm learns Linear Threshold
Functions.

For the class of disjunctions:
 instead of demotion we can use elimination.

8

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i















 1n;

SVMs CS446 Fall ’16

Winnow – Mistake Bound

Claim: Winnow makes O(k log n) mistakes on k-
disjunctions

u - # of mistakes on positive examples (promotions)

v - # of mistakes on negative examples (demotions)

1. u < k log(2n)
A weight that corresponds to a good variable is only promoted.

When these weights get to n there will be no more mistakes on
positives.

9

(demotion) 1)x (if /2w w,xbut w 0f(x) If

)(promotion 1)x (if 2w w,xwbut 1f(x) If

nothing do :mistake no If

xw iff 1 is Prediction

 w :Initialize

iii

iii

i







 1n;









SVMs CS446 Fall ’16

I Regularization Via Averaged
Perceptron

An Averaged Perceptron Algorithm is motivated by the following
considerations:

 Every Mistake-Bound Algorithm can be converted efficiently to a PAC
algorithm – to yield global guarantees on performance.

 In the mistake bound model:

 We don’t know when we will make the mistakes.

 In the PAC model:

 Dependence is on number of examples seen and not number of mistakes.

 Which hypothesis will you choose…??

 Being consistent with more examples is better

To convert a given Mistake Bound algorithm (into a global guarantee algorithm):

 Wait for a long stretch w/o mistakes (there must be one)

 Use the hypothesis at the end of this stretch.

 Its PAC behavior is relative to the length of the stretch.

Averaged Perceptron returns a weighted average of a number of
earlier hypotheses; the weights are a function of the length of no-
mistakes stretch.

10

SVMs CS446 Fall ’16

I Regularization Via Averaged
Perceptron (or Winnow)

Training:

[m: #(examples); k: #(mistakes) = #(hypotheses); ci: consistency count for vi]

Input: a labeled training set {(x1, y1),…(xm, ym)}

Number of epochs T

Output: a list of weighted perceptrons {(v1, c1),…,(vk, ck)}

Initialize: k=0; v1 = 0, c1 = 0

Repeat T times:

 For i =1,…m:

 Compute prediction y’ = sign(vk ¢ xi)

 If y’ = y, then ck = ck + 1

else: vk+1 = vk + yi x ; ck+1 = 1; k = k+1

Prediction:

Given: a list of weighted perceptrons {(v1, c1),…(vk, ck)} ; a new example x

Predict the label(x) as follows:

y(x)= sign [1,k ci sign(vi ¢ x)]

11

SVMs CS446 Fall ’16

II Perceptron with Margin

Thick Separator (aka as Perceptron with Margin)
(Applies both for Perceptron and Winnow)

Promote if:

 w x -  < 

Demote if:

 w x -  > 

12

w ¢ x = 0

- --
- -

-

-
- -

- -

- -

-

-

w ¢ x = 

Note:  is a functional margin. Its effect could disappear as w grows.
Nevertheless, this has been shown to be a very effective algorithmic addition.
(Grove & Roth 98,01; Karov et. al 97)

SVMs CS446 Fall ’16

Winnow - Extensions

This algorithm learns monotone functions

For the general case:
 Duplicate variables (down side?)

 For the negation of variable x, introduce a new variable y.

 Learn monotone functions over 2n variables

Balanced version:
 Keep two weights for each variable; effective weight is the

difference

 We’ll come back to this idea when talking about multiclass.

13

(demotion) 1 where2
2

1
 ,)(but 0)(If

)(promotion 1 where
2

1
 2 ,)(but 1)(If

:Rule Update









iiiii

iiiii

xwwwwxwwxf

xwwwwxwwxf





SVMs CS446 Fall ’16

Winnow – A Robust Variation

Modeling:
 Adversary’s turn: may change the target concept by adding

or removing some variable from the target disjunction.

 Cost of each addition move is 1.

 Learner’s turn: makes prediction on the examples given, and
is then told the correct answer (according to current target
function)

 Winnow-R: Same as Winnow, only doesn’t let weights go
below 1/2

 Claim: Winnow-R makes O(c log n) mistakes, (c - cost of
adversary) (generalization of previous claim)

14

SVMs CS446 Fall ’16

General Stochastic Gradient
Algorithms

Given examples {z=(x,y)}1, m from a distribution over XxY, we are
trying to learn a linear function, parameterized by a weight vector w,
so that we minimize the expected risk function

J(w) = Ez Q(z,w) ~=~ 1/m 1,m Q(zi, wi)
In Stochastic Gradient Descent Algorithms we approximate this
minimization by incrementally updating the weight vector w as
follows:

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

Where g_t = gw Q(zt, wt) is the gradient with respect to w at time t.

The difference between algorithms now amounts to choosing a
different loss function Q(z, w)

15

SVMs CS446 Fall ’16

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

LMS: Q((x, y), w) =1/2 (y – w ¢ x)2

leads to the update rule (Also called Widrow’s Adaline):
wt+1 = wt + r (yt – wt ¢ xt) xt

Here, even though we make binary predictions based on sign (w ¢ x)
we do not take the sign of the dot-product into account in the loss.

Another common loss function is:
Hinge loss:
Q((x, y), w) = max(0, 1 - y w ¢ x)

This leads to the perceptron update rule:

If yi wi ¢ xi > 1 (No mistake, by a margin): No update
Otherwise (Mistake, relative to margin): wt+1 = wt + r yt xt

Stochastic Gradient Algorithms

16

w ¢ x

SVMs CS446 Fall ’16

wt+1 = wt – rt gw Q(zt, wt) = wt – rt gt

(notice that this is a vector, each coordinate (feature) has its own wt,j and gt,j)

So far, we used fixed learning rates r = rt, but this can change.
AdaGrad alters the update to adapt based on historical information,
so that frequently occurring features in the gradients get small
learning rates and infrequent features get higher ones.
The idea is to “learn slowly” from frequent features but “pay
attention” to rare but informative features.
Define a “per feature” learning rate for the feature j, as:

rt,j = r/(Gt,j)
1/2

where Gt,j = k1,t g2
k,j the sum of squares of gradients at feature j

until time t.
Overall, the update rule for Adagrad is:

wt+1,j = wt,j - gt,j r/(Gt,j)
1/2

This algorithm is supposed to update weights faster than Perceptron
or LMS when needed.

New Stochastic Gradient
Algorithms

17

SVMs CS446 Fall ’16

Regularization

The more general formalism adds a regularization term to the risk
function, and attempts to minimize:

J(w) = 1,m Q(zi, wi) + ¸ Ri (wi)
Where R is used to enforce “simplicity” of the learned functions.

LMS case: Q((x, y), w) =(y – w ¢ x)2

 R(w) = ||w||2
2 gives the optimization problem called Ridge Regression.

 R(w) = ||w||1 gives a problem called the LASSO problem

Hinge Loss case: Q((x, y), w) = max(0, 1 - y w ¢ x)
 R(w) = ||w||2

2 gives the problem called Support Vector Machines

Logistics Loss case: Q((x,y),w) = log (1+exp{-y w ¢ x})
 R(w) = ||w||2

2 gives the problem called Logistics Regression

These are convex optimization problems and, in principle, the same gradient
descent mechanism can be used in all cases.
We will see later why it makes sense to use the “size” of w as a way to
control “simplicity”.

18

SVMs CS446 Fall ’16

Generalization

Dominated by the sparseness of the function space
 Most features are irrelevant

of examples required by multiplicative algorithms
depends mostly on # of relevant features
 (Generalization bounds depend on the target ||u||)

of examples required by additive algoirithms depends
heavily on sparseness of features space:
 Advantage to additive. Generalization depend on input ||x||

 (Kivinen/Warmuth 95).

19

SVMs CS446 Fall ’16

Which Algorithm to Choose?

Generalization

 Multiplicative algorithms:

 Bounds depend on ||u||, the separating hyperplane; i: example #)

 Mw =2ln n ||u||1
2 maxi||x

(i)||1
2 /mini(u ¢ x(i))2

 Do not care much about data; advantage with sparse target u

 Additive algorithms:

 Bounds depend on ||x|| (Kivinen / Warmuth, ‘95)

 Mp = ||u||2
2 maxi||x

(i)||2
2/mini(u ¢ x(i))2

 Advantage with few active features per example

20

The l1 norm: ||x||1 = i|xi| The l2 norm: ||x||2 =(1
n|xi|

2)1/2

The lp norm: ||x||p = (1
n|xi|

P
)

1/p
The l1 norm: ||x||1 = max

i
|x

i
|

SVMs CS446 Fall ’16

Making data linearly separable

21

f(x) = 1 iff x1
2 + x2

2 ≤ 1

SVMs CS446 Fall ’16

Making data linearly separable

22

Transform data: x = (x1, x2) => x’ = (x1
2, x2

2)
f(x’) = 1 iff x’1 + x’2 ≤ 1

In order to deal with this, we
introduce two new concepts:

Dual Representation

Kernel (& the kernel trick)

SVMs CS446 Fall ’16 23

(demotion) 1)x (if 1- w w,xbut w 0Class If

)(promotion 1)x (if 1 w w,xwbut 1Class If

iii

iii









)xxw(Th f(x)

R w:Hypothesis ;{0,1} x :Examples

n

1i ii

nn

 




)(

Let w be an initial weight vector for perceptron. Let (x1,+), (x2,+), (x3,-), (x4,-) be
examples and assume mistakes are made on x1, x2 and x4.
What is the resulting weight vector?

w = w + x1 + x2 - x4

In general, the weight vector w can be written
as a linear combination of examples:

w = 1,m r ®i yi xi
Where ®i is the number of mistakes made on xi.

Dual Representation

Note: We care about the dot
product: f(x) = w ¢ x =

= (1,m r®i yi xi) ¢ x
= 1,m r®i yi (xi ¢ x)

SVMs CS446 Fall ’16

Kernel Based Methods

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing the dot product can be done in the original feature
space.

Notice: this pertains only to efficiency: The classifier is identical
to the one you get by blowing up the feature space.

Generalization is still relative to the real dimensionality (or,
related properties).

Kernels were popularized by SVMs, but many other algorithms
can make use of them (== run in the dual).
 Linear Kernels: no kernels; stay in the original space. A lot of applications

actually use linear kernels.

24

 


M
 f(x)

z
z))S(z)K(x,(Th

SVMs CS446 Fall ’16

Implementation

Simply run Perceptron in an on-line mode, but keep
track of the set M.

Keeping the set M allows us to keep track of S(z).

Rather than remembering the weight vector w,
remember the set M (P and D) – all those examples
on which we made mistakes.

Dual Representation

25

 


M
 f(x)

z
z))S(z)K(x,(Th

)xz)tt z)K(x,
i

ii



I

((

SVMs CS446 Fall ’16

Kernels – General Conditions

Kernel Trick: You want to work with degree 2 polynomial features, (x).
Then, your dot product will be in a space of dimensionality n(n+1)/2. The
kernel trick allows you to save and compute dot products in an n
dimensional space.

Can we use any K(.,.)?
 A function K(x,z) is a valid kernel if it corresponds to an inner product in some

(perhaps infinite dimensional) feature space.

Take the quadratic kernel: k(x,z) = (xTz)2

Example: Direct construction (2 dimensional, for simplicity):

K(x,z) = (x1 z1 + x2 z2)2 = x1
2 z1

2 +2x1 z1 x2 z2 + x2
2 z2

2

= (x1
2, sqrt{2} x1x2, x2

2) (z1
2, sqrt{2} z1z2, z2

2)

= (x)T (z)  A dot product in an expanded space.

It is not necessary to explicitly show the feature function .

General condition: construct the Gram matrix {k(xi ,zj)}; check that it’s

positive semi definite.

26

 


M
 f(x)

z
z))S(z)K(x,(Th

)xz)tt z)K(x,
i

ii



I

((

SVMs CS446 Fall ’16

The Kernel Matrix

The Gram matrix of a set of n vectors S = {x1…xn} is
the n×n matrix G with Gij = xixj

 The kernel matrix is the Gram matrix of {φ(x1), …,φ(xn)}

 (size depends on the # of examples, not dimensionality)

Direct option:
 If you have the φ(xi), you have the Gram matrix (and it’s

easy to see that it will be positive semi-definite)

Indirect:
 If you have the Kernel, write down the Kernel matrix Kij, and

show that it is a legitimate kernel, without an explicit
construction of φ(xi)

27

SVMs CS446 Fall ’16

Constructing New Kernels

You can construct new kernels k’(x, x’) from
existing ones:

 Multiplying k(x, x’) by a constant c:
k’(x, x’) = ck(x, x’)

 Multiplying k(x, x’) by a function f applied to x and x’:
k’(x, x’) = f(x)k(x, x’)f(x’)

 Applying a polynomial (with non-negative coefficients) to
k(x, x’):
k’(x, x’) = P(k(x, x’)) with P(z) = ∑i aiz

i and ai≥0

 Exponentiating k(x, x’):
k’(x, x’) = exp(k(x, x’))

29

SVMs CS446 Fall ’16 30

A method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weight vector.

Computing the weight vector can be done in the original feature
space.

Notice: this pertains only to efficiency: the classifier is identical
to the one you get by blowing up the feature space.
Generalization is still relative to the real dimensionality (or,
related properties).
Kernels were popularized by SVMs but apply to a range of
models, Perceptron, Gaussian Models, PCAs, etc.

Summary – Kernel Based Methods

 


M
 f(x)

z
z))S(z)K(x,(Th

SVMs CS446 Fall ’16

Efficiency-Generalization
Tradeoff

There is a tradeoff between the computational
efficiency with which these kernels can be computed
and the generalization ability of the classifier.

For example, using such kernels the Perceptron
algorithm can make an exponential number of
mistakes even when learning simple functions.
[Khardon,Roth,Servedio,NIPS’01; Ben David et al.]

In addition, computing with kernels depends strongly
on the number of examples. It turns out that
sometimes working in the blown up space is more
efficient than using kernels. [Cumby,Roth,ICML’03]

31

SVMs CS446 Fall ’16

Explicit & Implicit Kernels:
Complexity

Is it always worthwhile to define kernels and work in
the dual space?

Computationally: [Cumby,Roth 2003]

 Dual space – t1 m2 vs, Primal Space – t2 m

 Where m is # of examples, t1, t2 are the sizes of the (Dual,
Primal) feature spaces, respectively.

 Typically, t1 << t2, so it boils down to the number of
examples one needs to consider relative to the growth in
dimensionality.

Rule of thumb: a lot of examples  use Primal space

Most applications today: People use explicit kernels. That is,
they blow up the feature space explicitly.

32

SVMs CS446 Fall ’16

Kernels: Generalization

Do we want to use the most expressive kernels we
can?
 (e.g., when you want to add quadratic terms, do you really

want to add all of them?)

No; this is equivalent to working in a larger feature
space, and will lead to overfitting.

Here is a simple argument that shows that simply
adding irrelevant features does not help.

33

SVMs CS446 Fall ’16 34

Kernels: Generalization(2)

Given: A linearly separable set of points S={x1,…xn} 2 Rn with
separator w 2 Rn

Embed S into a higher dimensional space n’>n , by adding
zero-mean random noise e to the additional dimensions.

Then w’ ¢ x= (w,0) ¢ (x,e) = w ¢ x

So w’ 2 Rn’ still separates S.

We will now look at °/||x|| which we have shown to be
inversely proportional to generalization (and mistake bound) ?

 (S, w’)/||x’|| = minS w’T x’ / ||w’|| ||x’|| =

minS wT x /||w|| ||x’|| <  (S, w’)/||x||

Since ||x’|| = ||(x,e)|| > ||x||

The new ratio is larger, which implies generalization suffers.

Intuition: adding a lot of noisy/irrelevant features cannot help

SVMs CS446 Fall ’16

Multi-Layer Neural Network

Multi-layer network were designed to overcome the
computational (expressivity) limitation of a single
threshold element.

The idea is to stack several

layers of threshold elements,

each layer using the output of

the previous layer as input.

Multi-layer networks can represent arbitrary
functions, but building effective learning methods
for such network was [thought to be] difficult.

35

activation

Input

Hidden

Output

SVMs CS446 Fall ’16

Basic Units

Linear Unit: Multiple layers of linear functions
oj = w ¢ x produce linear functions. We want to
represent nonlinear functions.

Threshold units: oj = sgn(w ¢ x)

are not differentiable, hence

unsuitable for gradient descent.

The key idea (Rumelhart, Hinton, Williiam, 1986) was
to notice that the discontinuity of the threshold
element can be represents by a smooth non-linear
approximation: oj = [1+ exp{-w ¢ x}]-1

36

activation

Input

Hidden

Output

w2
ij

w1
ij

SVMs CS446 Fall ’16

Learning with a Multi-Layer
Perceptron

It’s easy to learn the top layer – it’s just a linear unit.

Given feedback (truth) at the top layer, and the activation at the
layer below it, you can use the Perceptron update rule (more
generally, gradient descent) to updated these weights.

The problem is what to do with

the other set of weights – we do

not get feedback in the

intermediate layer(s).

37

activation

Input

Hidden

Output

w2
ij

w1
ij

SVMs CS446 Fall ’16

Learning with a Multi-Layer
Perceptron

The problem is what to do with

the other set of weights – we do

not get feedback in the

intermediate layer(s).

Solution: If all the activation

functions are differentiable, then

the output of the network is also

a differentiable function of the input and weights in the network.

Define an error function (e.g., sum of squares) that is a differentiable
function of the output, that this error function is also a differentiable
function of the weights.

We can then evaluate the derivatives of the error with respect to the
weights, and use these derivatives to find weight values that minimize this
error function. This can be done, for example, using gradient descent (or
other optimization methods).

This results in an algorithm called back-propagation.

38

activation

Input

Hidden

Output

w2
ij

w1
ij

SVMs CS446 Fall ’16

Computational Learning Theory

What general laws constrain inductive learning ?
 What learning problems can be solved ?

 When can we trust the output of a learning algorithm ?

We seek theory to relate
 Probability of successful Learning

 Number of training examples

 Complexity of hypothesis space

 Accuracy to which target concept is approximated

 Manner in which training examples are presented

39

SVMs CS446 Fall ’16

Quantifying Performance

We want to be able to say something rigorous about
the performance of our learning algorithm.

We will concentrate on discussing the number of
examples one needs to see before we can say that
our learned hypothesis is good.

40

Recall what we
did earlier:

SVMs CS446 Fall ’16

PAC Learning – Intuition

41

• We have seen many examples (drawn according to D)
• Since in all the positive examples x1 was active, it is very likely that it will be

active in future positive examples
• If not, in any case, x1 is active only in a small percentage of the

examples so our error will be small

10054321 xxxxxxh 

f

h

f and h disagree

+
+

-

-

-

h(x)][f(x)Error
DxD Pr 



SVMs CS446 Fall ’16

Formulating Prediction Theory
Instance Space X, Input to the Classifier; Output Space Y = {-1, +1}

Making predictions with: h: X  Y

D: An unknown distribution over X Y

S: A set of examples drawn independently from D; m = |S|, size of sample.

Now we can define:

True Error: ErrorD = Pr(x,y) 2 D [h(x) : = y]

Empirical Error: ErrorS = Pr(x,y) 2 S [h(x) : = y] = 1,m [h(xi) := yi]

 (Empirical Error (Observed Error, or Test/Train error, depending on S))

This will allow us to ask: (1) Can we describe/bound ErrorD given ErrorS ?

Function Space: C – A set of possible target concepts; target is: f: X  Y

Hypothesis Space: H – A set of possible hypotheses

This will allow us to ask: (2) Is C learnable?

 Is it possible to learn a given function in C using functions in H, given the
supervised protocol?

42

SVMs CS446 Fall ’16

Probably Approximately Correct

Cannot expect a learner to learn a concept exactly.

Cannot always expect to learn a close approximation
to the target concept

Therefore, the only realistic expectation of a good
learner is that with high probability it will learn a
close approximation to the target concept.

In Probably Approximately Correct (PAC) learning,
one requires that given small parameters  and ,
with probability at least (1- ) a learner produces a
hypothesis with error at most 

The reason we can hope for that is the Consistent
Distribution assumption.

43

SVMs CS446 Fall ’16

PAC Learnability

Consider a concept class C defined over an instance space X
(containing instances of length n), and a learner L using a
hypothesis space H.

C is PAC learnable by L using H if

 for all f  C,

 for all distributions D over X, and fixed 0< ,  < 1,

L, given a collection of m examples sampled independently
according to D produces

 with probability at least (1- ) a hypothesis h  H with error at
most , (ErrorD = PrD[f(x) : = h(x)])

where m is polynomial in 1/ , 1/ , n and size(H)

C is efficiently learnable if L can produce the hypothesis in time
polynomial in 1/ , 1/ , n and size(H)

44

SVMs CS446 Fall ’16

PAC Learnability

We impose two limitations:

Polynomial sample complexity (information theoretic constraint)

 Is there enough information in the sample to distinguish a
hypothesis h that approximate f ?

Polynomial time complexity (computational complexity)

 Is there an efficient algorithm that can process the sample and
produce a good hypothesis h ?

To be PAC learnable, there must be a hypothesis h  H with
arbitrary small error for every f  C. We generally assume H  C.
(Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy

 for every distribution (The distribution free assumption)

 for every target function f in the class C

45

SVMs CS446 Fall ’16

Occam’s Razor (1)
Claim: The probability that there exists a hypothesis h  H that

(1) is consistent with m examples and
(2) satisfies error(h) >  (ErrorD(h) = Prx 2 D [f(x) :=h(x)])

is less than |H|(1- )m .




1)]()([Pr xhxf
Dx

mH)1(|| 

m)1(

Proof: Let h be such a bad hypothesis.

- The probability that h is consistent with one example of f is

- Since the m examples are drawn independently of each other,

The probability that h is consistent with m example of f is less than

- The probability that some hypothesis in H is consistent with m examples

is less than
Note that we don’t need a true f for
this argument; it can be done with h,
relative to a distribution over X Y.

46

SVMs CS446 Fall ’16

Occam’s Razor (1)
We want this probability to be smaller than , that is:

|H|(1- ) < 

ln(|H|) + m ln(1- ) < ln()

(with e-x = 1-x+x2/2+…; e-x > 1-x; ln (1- ) < - ; gives a safer )

(gross over estimate)

It is called Occam’s razor, because it indicates a preference towards small

hypothesis spaces

What kind of hypothesis spaces do we want ? Large ? Small ?

To guarantee consistency we need H  C. But do we want the smallest H possible ?

m

)}/1ln(|){ln(|
1




 Hm

We showed that a
m-consistent hypothesis
generalizes well (err<)
(Appropriate m is a
function of |H|, , ±)

What do we know now
about the Consistent
Learner scheme?

47

SVMs CS446 Fall ’16

Consistent Learners
Immediately from the definition, we get the following general scheme
for PAC learning:

Given a sample D of m examples

 Find some h  H that is consistent with all m examples

 We showed that if m is large enough, a consistent hypothesis must be close
enough to f

 Check that m is not too large (polynomial in the relevant parameters) : we
showed that the “closeness” guarantee requires that

m > 1/ (ln |H| + ln 1/±)

 Show that the consistent hypothesis h  H can be computed efficiently

In the case of conjunctions

 We used the Elimination algorithm to find a hypothesis h that is consistent
with the training set (easy to compute)

 We showed directly that if we have sufficiently many examples (polynomial
in the parameters), than h is close to the target function.

We did not need to show it directly.
See above.

48

SVMs CS446 Fall ’16

Computational Complexity
Determining whether there is a 2-term DNF consistent
with a set of training data is NP-Hard

Therefore the class of k-term-DNF is not efficiently
(properly) PAC learnable due to computational complexity

We have seen an algorithm for learning k-CNF.

And, k-CNF is a superset of k-term-DNF
 (That is, every k-term-DNF can be written as a k-CNF)

Therefore, C=k-term-DNF can be learned as using H=k-CNF
as the hypothesis Space

Importance of representation:

 Concepts that cannot be learned using one representation can
be learned using another (more expressive) representation.

C

H

This result is analogous to an earlier
observation that it’s better to learn
linear separators than conjunctions.

49

SVMs CS446 Fall ’16

Negative Results – Examples
Two types of nonlearnability results:

Complexity Theoretic

 Showing that various concepts classes cannot be learned, based
on well-accepted assumptions from computational complexity
theory.

 E.g. : C cannot be learned unless P=NP

Information Theoretic

 The concept class is sufficiently rich that a polynomial number of
examples may not be sufficient to distinguish a particular target
concept.

 Both type involve “representation dependent” arguments.

 The proof shows that a given class cannot be learned by
algorithms using hypotheses from the same class. (So?)

Usually proofs are for EXACT learning, but apply for the
distribution free case.

50

SVMs CS446 Fall ’16

Agnostic Learning
Assume we are trying to learn a concept f using hypotheses
in H, but f  H

In this case, our goal should be to find a hypothesis h  H,
with a small training error:

We want a guarantee that a hypothesis with a small training
error will have a good accuracy on unseen examples

Hoeffding bounds characterize the deviation between the
true probability of some event and its observed frequency
over m independent trials.
 (p is the underlying probability of the binary variable (e.g., toss is

Head) being 1)

|)}()(;_{|
1

)(xhxfexamplestrainingx
m

hErrTR 

)]()([Pr)(xhxfhErr DxD  

22][ mepp 


Pr

SVMs CS446 Fall ’16

Agnostic Learning
Therefore, the probability that an element in H will have training error which is
off by more than  can be bounded as follows:

Doing the same union bound game as before, with
=|H|e-2m2

We get a generalization bound – a bound on how much will the true error ED

deviate from the observed (training) error ETR.

For any distribution D generating training and test instances, with probability at
least 1- over the choice of the training set of size m, (drawn IID), for all hH

m

H
hErrorhError TRD

2

)/1log(||log
)()(




22])()([ m

TRD ehErrhErr Pr

SVMs CS446 Fall ’16

Agnostic Learning

An agnostic learner which makes no commitment to
whether f is in H and returns the hypothesis with least
training error over at least the following number of
examples m can guarantee with probability at least (1-)
that its training error is not off by more than  from the
true error.

)}/1ln(|){ln(|
2

1
2




 Hm

SVMs CS446 Fall ’16

Infinite Hypothesis Space

The previous analysis was restricted to finite
hypothesis spaces

Some infinite hypothesis spaces are more expressive
than others
 E.g., Rectangles, vs. 17- sides convex polygons vs. general

convex polygons

 Linear threshold function vs. a conjunction of LTUs

Need a measure of the expressiveness of an infinite
hypothesis space other than its size

The Vapnik-Chervonenkis dimension (VC dimension)
provides such a measure.

Analogous to |H|, there are bounds for sample
complexity using VC(H)

SVMs CS446 Fall ’16

Shattering

55

• We say that a set S of examples is shattered by a set of functions H if

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

(Intuition: A rich set of functions shatters large sets of points)

Left bounded intervals on the real axis: [0,a), for some real number a>0

Sets of two points cannot be shattered

(we mean: given two points, you can label them in such a way that

no concept in this class will be consistent with their labeling)

0 a

+ + + + + --

0 a

+ + + + +

-

-

+

SVMs CS446 Fall ’16

VC Dimension

56

• We say that a set S of examples is shattered by a set of functions H if

for every partition of the examples in S into positive and negative examples

there is a function in H that gives exactly these labels to the examples

• The VC dimension of hypothesis space H over instance space X

is the size of the largest finite subset of X that is shattered by H.

• If there exists a subset of size d that can be shattered, then VC(H) >=d

• If no subset of size d can be shattered, then VC(H) < d

VC(Half intervals) = 1 (no subset of size 2 can be shattered)

VC(Intervals) = 2 (no subset of size 3 can be shattered)

VC(Half-spaces in the plane) = 3 (no subset of size 4 can be shattered)

Even if only one subset of this size does it!

Some are shattered, but some are

not

SVMs CS446 Fall ’16

Sample Complexity & VC Dimension

57

What if H is

finite?

• Using VC(H) as a measure of expressiveness we have an Occam algorithm

for infinite hypothesis spaces.

• Given a sample D of m examples

• Find some h  H that is consistent with all m examples

• If

•

• Then with probability at least (1-), h has error less than .

(that is, if m is polynomial we have a PAC learning algorithm;

to be efficient, we need to produce the hypothesis h efficiently.

• Notice that to shatter m examples it must be that: |H|>2m, so log(|H|)¸VC(H)

)}
2

log(4
13

log)(8{
1


 HVCm

SVMs CS446 Fall ’16

Learning Rectangles

58

• Consider axis parallel rectangles in the real plan

• Can we PAC learn it ?

(1) What is the VC dimension ?

• But, no five instances can be shattered

There can be at most 4 distinct

extreme points (smallest or largest

along some dimension) and these

cannot be included (labeled +)

without including the 5th point.

Therefore VC(H) = 4

As far as sample complexity, this guarantees PAC learnabilty.

SVMs CS446 Fall ’16

Sample Complexity Lower Bound

59

• There is also a general lower bound on the minimum number of examples

necessary for PAC leaning in the general case.

• Consider any concept class C such that VC(C)>2,

any learner L and small enough , .

Then, there exists a distribution D and a target function in C such that

if L observes less than

examples, then with probability at least ,

L outputs a hypothesis having error(h) >  .

Ignoring constant factors, the lower bound is the same as the upper bound,

except for the extra log(1/) factor in the upper bound.

]
32

1)(
),

1
log(

1
max[






CVC
m

SVMs CS446 Fall ’16

Boosting

Boosting is (today) a general learning paradigm for putting
together a Strong Learner, given a collection (possibly
infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answer
to a theoretical question in PAC learning. [The Strength of Weak
Learnability; Schapire, 89]

Consequently, Boosting has interesting theoretical
implications, e.g., on the relations between PAC learnability
and compression.
 If a concept class is efficiently PAC learnable then it is efficiently PAC

learnable by an algorithm whose required memory is bounded by a
polynomial in n, size c and log(1/).

 There is no concept class for which efficient PAC learnability requires
that the entire sample be contained in memory at one time – there is
always another algorithm that “forgets” most of the sample.

60

SVMs CS446 Fall ’16

The Boosting Approach

Algorithm
 Select a small subset of examples

 Derive a rough rule of thumb

 Examine 2nd set of examples

 Derive 2nd rule of thumb

 Repeat T times

 Combine the learned rules into a single hypothesis

Questions:
 How to choose subsets of examples to examine on each round?

 How to combine all the rules of thumb into single prediction rule?

Boosting
 General method of converting rough rules of thumb into highly

accurate prediction rule

61

SVMs CS446 Fall ’16

A Formal View of Boosting

Given training set (x1, y1), … (xm, ym)

yi 2 {-1, +1} is the correct label of instance xi 2 X

For t = 1, …, T
 Construct a distribution Dt on {1,…m}

 Find weak hypothesis (“rule of thumb”)

ht : X ! {-1, +1}

with small error t on Dt:

t = PrD [ht (xi) := yi]

Output: final hypothesis Hfinal

62

SVMs CS446 Fall ’16

Adaboost

Constructing Dt on {1,…m}:

 D1(i) = 1/m

 Given Dt and ht :

 Dt+1 = Dt(i)/zt e-®t if yi = ht(xi)

Dt(i)/zt e+®t if yi := ht (xi)

= Dt(i)/zt exp(-®t yi ht (xi))

where zt = normalization constant

and

®t = ½ ln{ (1 - εt)/εt }

Final hypothesis: Hfinal (x) = sign (t ®t ht(x))

63

< 1; smaller weight

> 1; larger weight

Notes about ®t:
 Positive due to the weak learning

assumption
 Examples that we predicted correctly are

demoted, others promoted
 Sensible weighting scheme: better

hypothesis (smaller error)  larger weight

Think about unwrapping it all
the way to 1/m

e+®t = sqrt{(1 - t)/t }>1

SVMs CS446 Fall ’16

A Toy Example

64

SVMs CS446 Fall ’16

A Toy Example

65

SVMs CS446 Fall ’16

A Toy Example

66

SVMs CS446 Fall ’16

A Toy Example

67

SVMs CS446 Fall ’16

A Toy Example

68

A cool and important note
about the final hypothesis:
it is possible that the
combined hypothesis makes
no mistakes on the training
data, but boosting can still
learn, by adding more weak
hypotheses.

SVMs CS446 Fall ’16

Summary of Ensemble Methods

Boosting

Bagging

Random Forests

69

SVMs CS446 Fall ’16

Boosting
Initialization:

 Weigh all training samples equally

Iteration Step:

 Train model on (weighted) train set

 Compute error of model on train set

 Increase weights on training cases model gets wrong!!!

Typically requires 100’s to 1000’s of iterations

Return final model:

 Carefully weighted prediction of each model

70

SVMs CS446 Fall ’16

Bagging
Bagging predictors is a method for generating multiple versions of a
predictor and using these to get an aggregated predictor.

The aggregation averages over the versions when predicting a numerical
outcome and does a plurality vote when predicting a class.

The multiple versions are formed by making bootstrap replicates of the
learning set and using these as new learning sets.
 That is, use samples of the data, with repetition

Tests on real and simulated data sets using classification and regression
trees and subset selection in linear regression show that bagging can give
substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing
the learning set can cause significant changes in the predictor constructed
then bagging can improve accuracy.

71

SVMs CS446 Fall ’16

Example: Bagged Decision Trees
Draw 100 bootstrap samples of data

Train trees on each sample  100 trees

Average prediction of trees on out-of-bag samples

72

…

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24

SVMs CS446 Fall ’16

Random Forests (Bagged Trees++)

Draw 1000+ bootstrap samples of data

Draw sample of available attributes at each split

Train trees on each sample/attribute set  1000+ trees

Average prediction of trees on out-of-bag samples

73

…

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24

SVMs CS446 Fall ’16

Classification

So far we focused on Binary Classification

For linear models:
 Perceptron, Winnow, SVM, GD, SGD

The prediction is simple:
 Given an example x,

 Prediction = sgn(wTx)

 Where w is the learned model

The output is a single bit

74

SVMs CS446 Fall ’16

Multi-Categorical Output Tasks

Multi-class Classification (y  {1,...,K})
 character recognition (‘6’)

 document classification (‘homepage’)

Multi-label Classification (y  {1,...,K})
 document classification (‘(homepage,facultypage)’)

Category Ranking (y  K)
 user preference (‘(love > like > hate)’)

 document classification (‘hompage > facultypage > sports’)

Hierarchical Classification (y  {1,..,K})
 cohere with class hierarchy

 place document into index where ‘soccer’ is-a ‘sport’

SVMs CS446 Fall ’16

Setting

Learning:
 Given a data set D = {(xi , yi)}1

m

 Where xi 2 Rn, yi 2 {1,2,…,k}.

Prediction (inference):
 Given an example x, and a learned function (model),

 Output a single class labels y.

76

SVMs CS446 Fall ’16

Binary to Multiclass

Most schemes for multiclass classification work by
reducing the problem to that of binary classification.

The are multiple ways to decompose the multiclass
prediction into multiple binary decisions
 One-vs-all

 All-vs-all

 Error correcting codes

We will then talk about a more general scheme:
 Constraint Classification

It can be used to model other non-binary
classification and leads to Structured Prediction.

77

SVMs CS446 Fall ’16

One-Vs-All

Assumption: Each class can be separated from all the
rest using a binary classifier in the hypothesis space.

Learning: Decomposed to learning k independent
binary classifiers, one for each class label.

Learning:
 Let D be the set of training examples.

 8 label l, construct a binary classification problem as follows:

 Positive examples: Elements of D with label l

 Negative examples: All other elements of D

 This is a binary learning problem that we can solve, producing
k binary classifiers w1, w2, …wk

Decision: Winner Takes All (WTA):
 f(x) = argmaxi wi

Tx

SVMs CS446 Fall ’16

Solving MultiClass with 1vs All
learning

MultiClass classifier

 Function f : Rn
 {1,2,3,...,k}

Decompose into binary problems

Not always possible to learn

No theoretical justification
 Need to make sure the range of all classifiers is the same

(unless the problem is easy)

SVMs CS446 Fall ’16

Learning via One-Versus-All (OvA) Assumption

Find vr,vb,vg,vy Rn such that
 vr.x > 0 iff y = red 

 vb.x > 0 iff y = blue 

 vg.x > 0 iff y = green 

 vy.x > 0 iff y = yellow 

Classification: f(x) = argmaxi vi x

H = Rnk

Real Problem

SVMs CS446 Fall ’16

All-Vs-All

Assumption: There is a separation between every pair of classes
using a binary classifier in the hypothesis space.

Learning: Decomposed to learning [k choose 2] ~ k2

independent binary classifiers, one corresponding to each pair
of class labels. For the pair (i, j):

 Positive example: all exampels with label i

 Negative examples: all examples with label j

Decision: More involved, since output of binary classifier may
not cohere. Each label gets k-1 votes.

Decision Options:

 Majority: classify example x to take label i if i wins on x more often
than j (j=1,…k)

 A tournament: start with n/2 pairs; continue with winners .

SVMs CS446 Fall ’16

Learning via All-Verses-All (AvA) Assumption

Find vrb,vrg,vry,vbg,vby,vgy  Rd such that

 vrb.x > 0 if y = red
< 0 if y = blue

 vrg.x > 0 if y = red
< 0 if y = green

 ... (for all pairs)

Individual

Classifiers

Decision

Regions

H = Rkkn

How to

classify?

It is possible to
separate all k classes
with the O(k2)
classifiers

SVMs CS446 Fall ’16

Classifying with AvA

Tournament

1 red, 2 yellow, 2 green
 ?

Majority Vote

All are post-learning and might cause weird stuff

SVMs CS446 Fall ’16

One-vs-All vs. All vs. All

Assume m examples, k class labels.

 For simplicity, say, m/k in each.

One vs. All:

 classifier fi: m/k (+) and (k-1)m/k (-)

 Decision:

 Evaluate k linear classifiers and do Winner Takes All (WTA):

 f(x) = argmaxi fi(x) = argmaxi wi
Tx

All vs. All:

 Classifier fij: m/k (+) and m/k (-)

 More expressivity, but less examples to learn from.

 Decision:

 Evaluate k2 linear classifiers; decision sometimes unstable.

What type of learning methods would prefer All vs. All
(efficiency-wise)? (Think about Dual/Primal)

SVMs CS446 Fall ’16

Problems with Decompositions
Learning optimizes over local metrics
 Does not guarantee good global performance

 We don’t care about the performance of the local classifiers

Poor decomposition  poor performance
 Difficult local problems

 Irrelevant local problems

Especially true for Error Correcting Output Codes
 Another (class of) decomposition

 Difficulty: how to make sure that the resulting problems are separable.

Efficiency: e.g., All vs. All vs. One vs. All

Former has advantage when working with the dual space.

Not clear how to generalize multi-class to problems with a very large # of
output.

SVMs CS446 Fall ’16

Recall: Winnow’s Extensions

Winnow learns monotone Boolean functions

We extended to general Boolean functions via

“Balanced Winnow”
 2 weights per variable;

 Decision: using the “effective weight”,

the difference between w+ and w-

 This is equivalent to the Winner take all decision

 Learning: In principle, it is possible to use the 1-vs-all rule and update each set
of n weights separately, but we suggested the “balanced” Update rule that
takes into account how both sets of n weights predict on example x



If [(w w)x ] y, wi
 wi

ry xi , wi
 wi

ry xi

Positive

w+

Negative
w-

Can this be generalized to the case of k
labels, k >2? We need a “global”

learning approach

SVMs CS446 Fall ’16

Extending Balanced

In a 1-vs-all training you have a target node that represents
positive examples and target node that represents negative
examples.

Typically, we train each node separately (mine/not-mine
example).

Rather, given an example we could say: this is more a + example
than a – example.

We compared the activation of the different target nodes
(classifiers) on a given example. (This example is more class +
than class -)

Can this be generalized to the case of k labels, k >2?



If [(w w)x ] y, wi
 wi

ry xi , wi
 wi

ry xi

SVMs CS446 Fall ’16

Recall: Margin for binary classifiers

The margin of a hyperplane for a dataset is the
distance between the hyperplane and the data point
nearest to it.

88

+

+
+
+

+ +
+
+

-

-
-

-

-

-
-

-
-

-

-

-
-

-
-

-

-

-
Margin with respect to this hyperplane

SVMs CS446 Fall ’16

Multiclass Margin

89

SVMs CS446 Fall ’16

Multiclass SVM (Intuition)

Recall: Binary SVM
 Maximize margin

 Equivalently,

Minimize norm of weights such that the closest points to the
hyperplane have a score 1

Multiclass SVM
 Each label has a different weight vector (like one-vs-all)

 Maximize multiclass margin

 Equivalently,

Minimize total norm of the weights such that the true label is
scored at least 1 more than the second best one

90

SVMs CS446 Fall ’16

Multiclass SVM in the separable case

91

Recall hard binary SVM

The score for the true label is higher than the score
for any other label by 1

Size of the weights. Effectively,
regularizer

SVMs CS446 Fall ’16

Multiclass SVM: General case

92

The score for the true label is higher than the score
for any other label by
1 - »i

Size of the weights. Effectively,
regularizer

Slack variables. Not all
examples need to satisfy the

margin constraint.

Total slack. Effectively, don’t
allow too many examples to
violate the margin constraint

Slack variables can only be
positive

SVMs CS446 Fall ’16

Multiclass SVM: Summary

Training:
 Optimize the “global” SVM objective

Prediction:
 Winner takes all

argmaxi wi
Tx

With K labels and inputs in <n, we have nK weights in all
 Same as one-vs-all

Why does it work?
 Why is this the “right” definition of multiclass margin?

A theoretical justification, along with extensions to other algorithms
beyond SVM is given by “Constraint Classification”
 Applies also to multi-label problems, ranking problems, etc.
 [Dav Zimak; with D. Roth and S. Har-Peled]

93

SVMs CS446 Fall ’16 94

SVMs CS446 Fall ’16 95

SVMs CS446 Fall ’16 96

SVMs CS446 Fall ’16

Details: Kesler Construction &
Multi-Class Separability

Transform Examples

2>1

2>3

2>4

2>1

2>3

i>j fi(x) - fj(x) > 0

wi  x - wj  x > 0

W  Xi - W  Xj > 0

W  (Xi - Xj) > 0

W  Xij > 0

Xi = (0,x,0,0)  Rkd

Xj = (0,0,0,x)  Rkd

Xij = Xi - Xj = (0,x,0,-x)

W = (w1,w2,w3,w4)  Rkd

2>4

If (x,i) was a given n-dimensional
example (that is, x has is labeled i,
then

xij, 8 j=1,…k, j:= i, are positive
examples in the nk-dimensional
space. –xij are negative examples.

SVMs CS446 Fall ’16

Learning via Kesler’s Construction
Given (x1, y1), ..., (xN, yN)  Rn x {1,...,k}

Create
 P+ =  P+(xi,yi)

 P– =  P–(xi,yi)

Find w = (w1, ..., wk)  Rkn, such that
 w.x separates P+ from P–

One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.

To understand how to update the weight vector in the n-dimensional
space, we note that

wT ¢ xyy’ ¸ 0 (in the nk-dimensional space)

is equivalent to:

(wy
T – wy’

T) ¢ x ¸ 0 (in the n-dimensional space)

SVMs CS446 Fall ’16 99

SVMs CS446 Fall ’16 100

SVMs CS446 Fall ’16

Data Dependent VC dimension

So far we discussed VC dimension in the context of a fixed class
of functions.

We can also parameterize the class of functions in interesting
ways.

Recall the VC based generalization bound:

Err(h) · errTR(h) + Poly{VC(H), 1/m, log(1/±)}

101

SVMs CS446 Fall ’16

Linear Classification

Although both classifiers separate the data, the
distance with which the separation is achieved is
different:

102

h1 h2

SVMs CS446 Fall ’16

Concept of Margin

The margin °i of a point xi 2 Rn with respect to a
linear classifier h(x) = sign(w ¢ x +b) is defined as the
distance of xi from the hyperplane w ¢ x + b = 0:

°i = |(w ¢ xi +b)/||w|||

The margin of a set of points {x1,…xm} with respect to
a hyperplane w, is defined as the margin of the point
closest to the hyperplane:

° = min
i
°i = mini|(w ¢ xi +b)/||w|||

103

SVMs CS446 Fall ’16

VC and Linear Classification

If H° is the space of all linear classifiers in <n that
separate the training data with margin at least °,
then:

VC(H°) ·min(R2/°2, n) +1,

Where R is the radius of the smallest sphere (in <n)
that contains the data.

Thus, for such classifiers, we have a bound of the
form:

Err(h) · errTR(h) + { (O(R2/°2) + log(4/±))/m }1/2

104

SVMs CS446 Fall ’16

Data Dependent VC dimension

Namely, when we consider the class H° of linear hypotheses
that separate a given data set with a margin °,

We see that

 Large Margin ° Small VC dimension of H°

Consequently, our goal could be to find a separating hyperplane
w that maximizes the margin of the set S of examples.

A second observation that drives an algorithmic approach is
that:

Small ||w||  Large Margin

This leads to an algorithm: from among all those w’s that agree
with the data, find the one with the minimal size ||w||

105

SVMs CS446 Fall ’16

Maximal Margin

106

This discussion motivates the notion of a maximal margin.
The maximal margin of a data set S is define as:

°(S) = max||w||=1 min(x,y) 2 S |y wT x|
1. For a given w: Find the

closest point.
2. Then, find the one the gives
the maximal margin value across
all w’s (of size 1).
Note: the selection of the point is in
the min and therefore the max does
not change if we scale w, so it’s okay
to only deal with normalized w’s.

(PS0, PS1): The distance between a point x and the hyperplane defined by (w; b) is: |wT x + b|/||w||

How does it help us to derive these h’s?

argmax||w||=1 min(x,y) 2 S |y wT x|

SVMs CS446 Fall ’16

Hard SVM Optimization

We have shown that the sought after weight vector w
is the solution of the following optimization problem:

SVM Optimization: (***)

Minimize: ½ ||w||2

Subject to: 8 (x,y) 2 S: y wT x ¸ 1

This is an optimization problem in (n+1) variables,
with |S|=m inequality constraints.

107

SVMs CS446 Fall ’16

Support Vector Machines

The name “Support Vector Machine” stems from the
fact that w* is supported by (i.e. is the linear span of)
the examples that are exactly at a distance 1/||w*||
from the separating hyperplane. These vectors are
therefore called support vectors.

Theorem: Let w* be the minimizer of

the SVM optimization problem (***)

for S = {(xi, yi)}. Let I= {i: w*Tx = 1}.

Then there exists coefficients ®i >0 such that:

w* = i 2 I ®i yi xi

108

This representation
should ring a bell…

SVMs CS446 Fall ’16

Maximal Margin

109

The margin of a linear separator
wT x+b = 0

is 2 / ||w||

max 2 / ||w|| = min ||w||

= min ½ wTw

min
𝑤,𝑏

1

2
𝑤𝑇𝑤

s.t yi(w
Txi + 𝑏) ≥ 1, ∀ 𝑥𝑖 , 𝑦𝑖 ∈ 𝑆

SVMs CS446 Fall ’16

Duality

This, and other properties of Support Vector
Machines are shown by moving to the dual problem.

Theorem: Let w* be the minimizer of

the SVM optimization problem (***)

for S = {(xi, yi)}.

Let I= {i: yi (w
*Txi +b)= 1}.

Then there exists coefficients ®i >0

such that:

w* = i 2 I ®i yi xi

110

08-LecSvm-dual.pdf

SVMs CS446 Fall ’16

Soft SVM

Notice that the relaxation of the constraint:
yiw

Txi ≥ 1

Can be done by introducing a slack variable 𝜉𝑖 (per
example) and requiring:

yiw
Txi ≥ 1 − 𝜉𝑖 ; 𝜉𝑖 ≥ 0

Now, we want to solve:

111

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t yiw
Txi ≥ 1 − 𝜉𝑖 ; 𝜉𝑖 ≥ 0 ∀𝑖

SVMs CS446 Fall ’16

Soft SVM (2)

Now, we want to solve:

Which can be written as:

min
𝑤

1

2
𝑤𝑇𝑤 + 𝐶෍

𝑖

max(0, 1 − 𝑦𝑖𝑤
𝑇𝑥𝑖) .

What is the interpretation of this?

112

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t yiw
Txi ≥ 1 − 𝜉𝑖 ; 𝜉𝑖 ≥ 0 ∀𝑖

In optimum, ξi = max(0, 1 − yiw
Txi)

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t 𝜉𝑖 ≥ 1 − yiw
Txi; 𝜉𝑖≥ 0 ∀𝑖

SVMs CS446 Fall ’16

SVM Objective Function

113

The problem we solved is:

Min ½ ||w||2 + c  »i

Where »i > 0 is called a slack variable, and is defined by:

 » i = max(0, 1 – yi wtxi)

 Equivalently, we can say that: yi wtxi ¸ 1 - »; »¸ 0

And this can be written as:

Min ½ ||w||2 + c  »i

General Form of a learning algorithm:
 Minimize empirical loss, and Regularize (to avoid over fitting)

 Theoretically motivated improvement over the original algorithm we’ve see
at the beginning of the semester.

Can be replaced by other loss functionsCan be replaced by other regularization
functions

Empirical lossRegularization term

SVMs CS446 Fall ’16 114

Balance between regularization and empirical
loss

SVMs CS446 Fall ’16

Balance between regularization and empirical
loss

115

(DEMO)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/js-toy/example.html

SVMs CS446 Fall ’16

Underfitting Overfitting

Model complexity

Expected
Error

Underfitting and Overfitting

116

Simple models:
High bias and low variance

Variance

Bias

Complex models:
High variance and low bias

Smaller C Larger C

SVMs CS446 Fall ’16

What Do We Optimize?

117

SVMs CS446 Fall ’16

Optimization: How to Solve

118

1. Earlier methods used Quadratic Programming. Very slow.

2. The soft SVM problem is an unconstrained optimization problems. It is
possible to use the gradient descent algorithm! Still, it is quite slow.

Many options within this category:

 Iterative scaling; non-linear conjugate gradient; quasi-Newton methods;
truncated Newton methods; trust-region newton method.

 All methods are iterative methods, that generate a sequence wk that
converges to the optimal solution of the optimization problem above.

 Currently: Limited memory BFGS is very popular

3. 3rd generation algorithms are based on Stochastic Gradient Decent
 The runtime does not depend on n=#(examples); advantage when n is very large.

 Stopping criteria is a problem: method tends to be too aggressive at the beginning and
reaches a moderate accuracy quite fast, but it’s convergence becomes slow if we are
interested in more accurate solutions.

4. Dual Coordinated Descent (& Stochastic Version)

SVMs CS446 Fall ’16

SGD for SVM

119

Goal: min
𝑤

𝑓 𝑤 ≡
1

2
𝑤𝑇𝑤 +

𝐶

𝑚
σ𝑖max 0, 1 − 𝑦𝑖𝑤

𝑇𝑥𝑖 . m: data size

Compute sub-gradient of 𝑓 𝑤 :

𝛻𝑓 𝑤 = 𝑤 − 𝐶𝑦𝑖𝑥𝑖 if 1 − 𝑦𝑖𝑤
𝑇𝑥𝑖 ≥ 0 ; otherwise 𝛻𝑓 𝑤 = 𝑤

1. Initialize 𝑤 = 0 ∈ 𝑅𝑛

2. For every example xi, yi ∈ 𝐷

If 𝑦𝑖𝑤
𝑇𝑥𝑖 ≤ 1 update the weight vector to

𝑤 ← 1 − 𝛾 𝑤 + 𝛾𝐶𝑦𝑖𝑥𝑖 (𝛾 - learning rate)

Otherwise 𝑤 ← (1 − 𝛾)𝑤

3. Continue until convergence is achieved

This algorithm
should ring a bell…

Convergence can be proved for a slightly
complicated version of SGD (e.g, Pegasos)

m is here for mathematical correctness, it
doesn’t matter in the view of modeling.

SVMs CS446 Fall ’16

Nonlinear SVM

120

We can map data to a high dimensional space: x → 𝜙 𝑥 (DEMO)

Then use Kernel trick: 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝜙 𝑥𝑖
𝑇 𝜙 𝑥𝑗 (DEMO2)

Primal:

min
𝑤,𝜉𝑖

1

2
𝑤𝑇𝑤 + 𝐶 σ𝑖 𝜉𝑖

s.t yiw
T𝜙 𝑥𝑖 ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0 ∀𝑖

Dual:

min
𝛼

1

2
𝛼𝑇Q𝛼 − 𝑒𝑇𝛼

s.t 0 ≤ 𝛼 ≤ 𝐶 ∀𝑖

Q𝑖𝑗 = 𝑦𝑖 𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗

Theorem: Let w* be the minimizer of the primal problem,

𝛼∗ be the minimizer of the dual problem.
Then w∗ = σ𝑖 𝛼

∗ yixi

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/svmtoy3d/examples/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/js-toy/example.html

Bayesian Learning CS446 -FALL ‘16

1: Direct Learning

121

Model the problem of text correction as a problem of learning
from examples.

Goal: learn directly how to make predictions.

PARADIGM

Look at many (positive/negative) examples.

Discover some regularities in the data.

Use these to construct a prediction policy.

A policy (a function, a predictor) needs to be specific.

[it/in] rule: if the occurs after the target in

Assumptions comes in the form of a hypothesis class.

Bottom line: approximating h : X → Y, is estimating P(Y|X).

Bayesian Learning CS446 -FALL ‘16

Direct Learning (2)

122

Consider a distribution D over space XY
X - the instance space; Y - set of labels. (e.g. +/-1)
Given a sample {(x,y)}1

m
,, and a loss function L(x,y)

Find hH that minimizes

i=1,mD(xi,yi)L(h(xi),yi) + Reg

L can be: L(h(x),y)=1, h(x)y, o/w L(h(x),y) = 0 (0-1 loss)

L(h(x),y)=(h(x)-y)2 , (L2)

L(h(x),y)= max{0,1-y h(x)} (hinge loss)

L(h(x),y)= exp{- y h(x)} (exponential loss)

Guarantees: If we find an algorithm that minimizes loss on the observed
data. Then, learning theory guarantees good future behavior (as a function
of H).

Bayesian Learning CS446 -FALL ‘16

2: Generative Model

123

Model the problem of text correction as that of generating
correct sentences.

Goal: learn a model of the language; use it to predict.

PARADIGM

Learn a probability distribution over all sentences
 In practice: make assumptions on the distribution’s type

Use it to estimate which sentence is more likely.
 Pr(I saw the girl it the park) <> Pr(I saw the girl in the park)

 In practice: a decision policy depends on the assumptions

Guarantees: We need to assume the “right” probability distribution

Bottom line: the generating paradigm approximates
P(X,Y) = P(X|Y) P(Y).

The model is called
“generative” since it
assumes how data X
is generated given y

Bayesian Learning CS446 -FALL ‘16

Probabilistic Learning

There are actually two different notions.

Learning probabilistic concepts

 The learned concept is a function c:X[0,1]

 c(x) may be interpreted as the probability that the label 1 is
assigned to x

 The learning theory that we have studied before is
applicable (with some extensions).

Bayesian Learning: Use of a probabilistic criterion in
selecting a hypothesis
 The hypothesis can be deterministic, a Boolean function.

It’s not the hypothesis – it’s the process.

124

Bayesian Learning CS446 -FALL ‘16

Basics of Bayesian Learning

125

Goal: find the best hypothesis from some space H of
hypotheses, given the observed data D.

Define best to be: most probable hypothesis in H

In order to do that, we need to assume a probability
distribution over the class H.

In addition, we need to know something about the relation
between the data observed and the hypotheses (E.g., a coin
problem.)

 As we will see, we will be Bayesian about other things, e.g., the
parameters of the model

Bayesian Learning CS446 -FALL ‘16

Basics of Bayesian Learning

126

P(h) - the prior probability of a hypothesis h
Reflects background knowledge; before data is observed. If no
information - uniform distribution.

P(D) - The probability that this sample of the Data is observed.
(No knowledge of the hypothesis)

P(D|h): The probability of observing the sample D, given that
hypothesis h is the target

P(h|D): The posterior probability of h. The probability that h is
the target, given that D has been observed.

Bayesian Learning CS446 -FALL ‘16

Bayes Theorem

127

P(h|D) increases with P(h) and with P(D|h)

P(h|D) decreases with P(D)

P(D)
P(h)

h)|P(DD)|P(h 

Bayesian Learning CS446 -FALL ‘16

P(h|D) = P(D|h) P(h)/P(D)

The learner considers a set of candidate hypotheses H
(models), and attempts to find the most probable one h H,
given the observed data.

Such maximally probable hypothesis is called maximum a
posteriori hypothesis (MAP); Bayes theorem is used to
compute it:

hMAP = argmaxh 2 H P(h|D) = argmaxh 2 H P(D|h) P(h)/P(D)

= argmaxh 2 H P(D|h) P(h)

Learning Scenario

128

Bayesian Learning CS446 -FALL ‘16

Learning Scenario (2)

129

hMAP = argmaxh 2 H P(h|D) = argmaxh 2 H P(D|h) P(h)

We may assume that a priori, hypotheses are equally
probable: P(hi) = P(hj) 8 hi, hj 2 H

We get the Maximum Likelihood hypothesis:

hML = argmaxh 2 H P(D|h)

Here we just look for the hypothesis that best explains the
data

Bayesian Learning CS446 -FALL ‘16

Bayes Optimal Classifier

130

How should we use the general formalism?
What should H be?

H can be a collection of functions. Given the training data,
choose an optimal function. Then, given new data, evaluate
the selected function on it.

H can be a collection of possible predictions. Given the data,
try to directly choose the optimal prediction.

Could be different!

Bayesian Learning CS446 -FALL ‘16

Bayes Optimal Classifier

131

The first formalism suggests to learn a good hypothesis and
use it.
(Language modeling, grammar learning, etc. are here)

The second one suggests to directly choose a decision.[it/in]:
This is the issue of “thresholding” vs. entertaining all options
until the last minute. (Computational Issues)

h)P(h)|P(DargmaxD)|P(hargmaxh HhHhMAP  

Bayesian Learning CS446 -FALL ‘16

Justification: Bayesian Approach

132

The Bayes optimal function is

fB(x) = argmaxyD(x; y)

That is, given input x, return the most likely label

It can be shown that fB has the lowest possible value for Err(f)

Caveat: we can never construct this function: it is a function of
D, which is unknown.

But, it is a useful theoretical construct, and drives attempts to
make assumptions on D

Bayesian Learning CS446 -FALL ‘16

Maximum-Likelihood Estimates

133

We attempt to model the underlying distribution

D(x, y) or D(y | x)

To do that, we assume a model

P(x, y | ) or P(y | x , ),

where  is the set of parameters of the model

Example: Probabilistic Language Model (Markov Model):

 We assume a model of language generation. Therefore, P(x, y | ) was
written as a function of symbol & state probabilities (the parameters).

We typically look at the log-likelihood

Given training samples (xi; yi), maximize the log-likelihood

L() = i log P (xi; yi | ) or L() = i log P (yi | xi , ))

Bayesian Learning CS446 -FALL ‘16

Justification: Bayesian Approach

134

Assumption: Our selection of the model is good; there is some parameter
setting * such that the true distribution is really represented by our model

D(x, y) = P(x, y | *)

Define the maximum-likelihood estimates:

ML = argmaxL()

As the training sample size goes to , then

P(x, y | ML) converges to D(x, y)

Given the assumption above, and the availability of enough data

argmaxy P(x, y | ML)

converges to the Bayes-optimal function

fB(x) = argmaxyD(x; y)

Bayesian Learning CS446 -FALL ‘16

f:XV, finite set of values

Instances xX can be described as a collection of features

x = (x1, x2, … xn) xi 2 {0,1}

Given an example, assign it the most probable value in V

Bayes Rule:

Notational convention: P(y) means P(Y=y)

)x,...,x,x|P(vargmax x)|P(vargmax v n21jVvjVvMAP jj  



vMAP  argmax v j V

P(x1 ,x2,..., xn | v j)P(v j)

P(x1,x2 ,..., xn)

  argmax v j VP(x1 ,x2,..., xn | v j)P(v j)

Bayesian Classifier

135

Bayesian Learning CS446 -FALL ‘16

Bayesian Classifier

VMAP = argmaxv P(x1, x2, …, xn | v)P(v)

Given training data we can estimate the two terms.

Estimating P(v) is easy. E.g., under the binomial distribution
assumption, count the number of times v appears in the training data.

However, it is not feasible to estimate P(x1, x2, …, xn | v)

In this case we have to estimate, for each target value, the probability
of each instance (most of which will not occur).

In order to use a Bayesian classifiers in practice, we need to make
assumptions that will allow us to estimate these quantities.

136

Bayesian Learning CS446 -FALL ‘16

 












n

1i ji

jnjn43jn32jn21

jn3jn32jn21

jn2jn21

jn21

)v|P(x

v|P(xv,x,...,x |P(xv,x,...,x|)P(xv,x,...,x|P(x

v|x,...,P(xv,x,...,x|)P(xv,x,...,x|P(x

v|x,...,)P(xv,x,...,x|P(x

)v|x,...,x,P(x

))...)

.......

))

)

VMAP = argmaxv P(x1, x2, …, xn | v)P(v)

Assumption: feature values are independent given the target value

Naive Bayes

137

Bayesian Learning CS446 -FALL ‘16

Naive Bayes (2)
VMAP = argmaxv P(x1, x2, …, xn | v)P(v)

Assumption: feature values are independent given the target
value

P(x1 = b1, x2 = b2,…,xn = bn | v = vj) = 1
n P(xn = bn | v = vj)

Generative model:

First choose a value vj V according to P(v)

For each vj : choose x1 x2, …, xn according to P(xk |vj)

138

Bayesian Learning CS446 -FALL ‘16

Naive Bayes (3)
VMAP = argmaxv P(x1, x2, …, xn | v)P(v)

Assumption: feature values are independent given the target value

P(x1 = b1, x2 = b2,…,xn = bn | v = vj) = 1
n P(xi = bi | v = vj)

Learning method: Estimate n|V| + |V| parameters and use them to make
a prediction. (How to estimate?)

Notice that this is learning without search. Given a collection of training
examples, you just compute the best hypothesis (given the assumptions).

This is learning without trying to achieve consistency or even approximate
consistency.

139

Bayesian Learning CS446 -FALL ‘16

Lecture 10: EM
EM is a class of algorithms that is used to estimate a probability
distribution in the presence of missing attributes.

Using it requires an assumption on the underlying probability
distribution.

The algorithm can be very sensitive to this assumption and to
the starting point (that is, the initial guess of parameters).

In general, known to converge to a local maximum of the
maximum likelihood function.

140

Bayesian Learning CS446 -FALL ‘16

Three Coin Example
We observe a series of coin tosses generated in the following
way:

A person has three coins.

 Coin 0: probability of Head is a

 Coin 1: probability of Head p

 Coin 2: probability of Head q

Consider the following coin-tossing scenarios:

141

Bayesian Learning CS446 -FALL ‘16

Estimation Problems
Scenario I: Toss one of the coins four times.

Observing HHTH
Question: Which coin is more likely to produce this sequence ?

Scenario II: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2
Observing the sequence HHHHT, THTHT, HHHHT, HHTTH
produced by Coin 0 , Coin1 and Coin2
Question: Estimate most likely values for p, q (the probability of H in each

coin) and the probability to use each of the coins (a)

Scenario III: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2
Observing the sequence HHHT, HTHT, HHHT, HTTH
produced by Coin 1 and/or Coin 2
Question: Estimate most likely values for p, q and a

There is no known analytical solution to this problem (general
setting). That is, it is not known how to compute the values of
the parameters so as to maximize the likelihood of the data.

Coin 0

1st toss 2nd toss nth toss

142

Bayesian Learning CS446 -FALL ‘16

Key Intuition (1)
If we knew which of the data points (HHHT), (HTHT), (HTTH) came from
Coin1 and which from Coin2, there was no problem.

Recall that the “simple” estimation is the ML estimation:

Assume that you toss a (p,1-p) coin m times and get k Heads m-k Tails.

log[P(D|p)] = log [pk (1-p)m-k]= k log p + (m-k) log (1-p)

To maximize, set the derivative w.r.t. p equal to 0:

d log P(D|p)/dp = k/p – (m-k)/(1-p) = 0

Solving this for p, gives: p=k/m

143

Bayesian Learning CS446 -FALL ‘16

Key Intuition (2)
If we knew which of the data points (HHHT), (HTHT), (HTTH) came from
Coin1 and which from Coin2, there was no problem.

Instead, use an iterative approach for estimating the parameters:

 Guess the probability that a given data point came from Coin 1 or 2;
Generate fictional labels, weighted according to this probability.

 Now, compute the most likely value of the parameters. [recall NB example]

 Compute the likelihood of the data given this model.

 Re-estimate the initial parameter setting: set them to maximize the likelihood
of the data.

(Labels Model Parameters) Likelihood of the data

This process can be iterated and can be shown to converge to a local
maximum of the likelihood function

144

Bayesian Learning CS446 -FALL ‘16

EM Algorithm (Coins) -I
We will assume (for a minute) that we know the parameters
and use it to estimate which Coin it is (Problem 1)

Then, we will use this “label” estimation of the observed tosses, to
estimate the most likely parameters

 and so on...

Notation: n data points; in each one: m tosses, hi heads.
What is the probability that the ith data point came from Coin1 ?

STEP 1 (Expectation Step): (Here h=hi)

hmhhmh

hmh

i

i
ii

1

)q(1q) (1)p(1p

)p(1p

)P(D

P(Coin1) Coin1)|P(D
)D|P(Coin1P












~~~~~~

~~
 ~

                  
aa

a

a~
~~

,q,p

145



Bayesian Learning CS446 -FALL ‘16

EM Algorithm (Coins) - II
Now, we would like to compute the likelihood of the data, and find the 
parameters that maximize it.

We will maximize the log likelihood of the data (n data points)  

 LL = 1,n logP(Di |p,q,a)

But, one of the variables – the coin’s name - is hidden. We can 
marginalize:

 LL=  i=1,n log y=0,1 P(Di, y | p,q, a) 

However, the sum is inside the log, making ML solution difficult. 

Since the latent variable y is not observed, we cannot use the complete-
data log likelihood. Instead, we use the expectation of the complete-data 
log likelihood under the posterior distribution of the latent variable to 
approximate log p(Di| p’,q’,®’)

We think of the likelihood logP(Di|p’,q’,a’) as a random variable that 
depends on the value y of the coin in the ith toss. Therefore, instead of 
maximizing the LL we will maximize the expectation of this random 
variable (over the coin’s name).  [Justified using Jensen’s Inequality; later & above] 

146

LL= i=1,n log y=0,1 P(Di, y | p,q, a) =
= i=1,n log y=0,1 P(Di|p,q, a )P(y|Di,p,q,a) = 
= i=1,n log E_y P(Di |p,q, a) ¸
¸ i=1,n E_y log P(Di |p,q, a)

Where the inequality is due to Jensen’s Inequality.
We maximize a lower bound on the Likelihood. 



Bayesian Learning CS446 -FALL ‘16

EM Algorithm (Coins) - III
We maximize the expectation of this random variable (over 
the coin name).

E[LL] = E[i=1,n log P(Di| p,q, a)] = i=1,nE[log P(Di| p,q, a)] =    

=  i=1,n P1
i log P(Di, 1 | p,q, a)] + (1-P1

i) log P(Di, 0 | p,q, a)] 

This is due to the linearity of the expectation and the random 
variable definition:

log P(Di, y | p,q, a)  =    log P(Di, 1 | p,q, a)   with Probability  P1
i

log P(Di, 0 | p,q, a)   with Probability (1-P1
i) 

147



Bayesian Learning CS446 -FALL ‘16

EM Algorithm (Coins) - IV
Explicitly, we get:

         

         

         

a

a a

a a

a

 



   

     

   





 i i i i

i

i

i i i i

1 1

i

h m h h m hi i

1 1

i

i

1 i i

E( log P(D |p,q, )

P log P(1,D |p,q, ) (1 P )log P(0,D |p,q, )

P log(  p (1 p) ) (1 P )log((1- ) q (1 q) )

P (log  hlogp (m-h )log(1

                a



   


i

i

1 i i

p))

(1 P )(log(1- ) hlogq (m-h )log(1 q))

148



Bayesian Learning CS446 -FALL ‘16

EM Algorithm (Coins) - V
Finally, to find the most likely parameters, we maximize the 
derivatives with respect to             : 

STEP 2: Maximization Step

(Sanity check: Think of the weighted fictional points)

a~
~~

,q,p

  
n

P
               0

P1
-

P

d

dE
i

1
n

1i

i

1

i

1 
 








a
aaa

~
~1~~

  
P

m

h
P

p               0)
p1

hm
-

p

h
(P

pd

dE
i

1

ii

1n

1i

iii

1




 








~
~~~


)P(1-
m

h
)P(1

q 0)
q1

hm
-

q

h
)(P(1-

qd

dE
i

1

ii

1n

1i

iii

1
















~
~~~

When computing the derivatives, 
notice P1

i here is a constant; it was 
computed using the current 

parameters in the E step

149



Bayesian Learning CS446 -FALL ‘16

The General EM Procedure 

150

E

M



Bayesian Learning CS446 -FALL ‘16

Summary: EM

EM is a general procedure for learning in the presence of   
unobserved variables. 

We have shown how to use it in order to estimate the most likely 
density function for a mixture of probability distributions.

EM is an iterative algorithm that can be shown to converge to a 
local maximum of the likelihood function. Thus, might requires 
many restarts.

It depends on assuming a family of probability distributions.

It has been shown to be quite useful in practice, when the 
assumptions made on the probability distribution are correct,  but 
can fail otherwise.

151



Bayesian Learning CS446 -FALL ‘16

Lecture 11: Representing 
Probability Distribution

Goal: To represent all joint probability distributions over a set of 
random variables X1, X2,…., Xn

There are many ways to represent distributions. 

A table, listing the probability of each instance in {0,1}n

 We will need 2n-1 numbers

What can we do? Make Independence Assumptions

Multi-linear polynomials

 Polynomials over variables  (Samdani & Roth’09, Poon & Domingos’11)

Bayesian Networks

 Directed acyclic graphs

Markov Networks

 Undirected graphs

152



Bayesian Learning CS446 -FALL ‘16

Unsupervised Learning
In general, the problem is very hard. But, under some 
assumptions on the distribution we have shown that 
we can do it. (exercise: show it’s the most likely distribution) 

Assumptions:  (conditional independence given y)
 P(xi | xj,y) = P(xi|y)     i,j

Can these assumptions be relaxed ? 

Can we learn more general probability distributions ?
 (These are essential in many applications: language, vision.)

 y)|P(x1

 x1  x2  x3

 y

 xn

 y)|P(xn

 y)|P(x2

 P(y)

153

We can compute 
the probability of 
any event  or 
conditional event 
over  the n+1 
variables. 



Bayesian Learning CS446 -FALL ‘16

This is a theorem.  To prove 
it, order the nodes from 
leaves up, and use the 
product rule.
The terms are called CPTs 
(Conditional Probability 
tables) and they completely 
define the probability 
distribution.

Bayesian Networks represent the joint probability 
distribution over a set of variables. 

Independence Assumption:  x, x  is independent of its 
non-descendants given its parents

With these conventions, the joint probability distribution 
is given by:

Graphical Models of Probability Distributions

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

x is a descendant of y

z is a parent of x

154

Y

ZZ1 Z2 Z3

X2XX10



Bayesian Learning CS446 -FALL ‘16

Bayesian Network

Semantics of the DAG

 Nodes are random variables

 Edges represent causal influences

 Each node is associated with a conditional 
probability distribution

Two equivalent viewpoints

 A data structure that represents the joint 
distribution compactly

 A representation for a set of conditional 
independence assumptions about a distribution

155



Bayesian Learning CS446 -FALL ‘16

Bayesian Network: Example

The burglar alarm in your house rings when 
there is a burglary or an earthquake. An 
earthquake will be reported on the radio. If an 
alarm rings and your neighbors hear it, they will 
call you.

What are the random variables?

156



Bayesian Learning CS446 -FALL ‘16

Bayesian Network: Example

Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

An alarm can ring  
because of a burglary 
or an earthquake.

If there’s an 
earthquake, you’ll 
probably hear about 
it on the radio.

If your neighbors hear an 
alarm, they will call you.

How many parameters do we 
have? 

How many would we have if 
we had to store the entire 
joint?

157



Bayesian Learning CS446 -FALL ‘16

Bayesian Network: Example
Earthquake Burglary

Radio Alarm

Mary 
Calls

John Calls

P(E)

P(R | E)

P(B)

P(A | E, B)

P(M | A) P(J | A)

With these probabilities, 
(and assumptions, encoded 
in the graph) we can 
compute the probability of 
any event over these 
variables.

P(E,B,A,R,M, J) = P(E |B,A,R,M, J)P(B,A,R,M, J)

= P(E) ×P(B) ×P(R |E) ×P(A |E,B) ×P(M | A) ×P(J | A)

158



Bayesian Learning CS446 -FALL ‘16

Computational Problems

Learning the structure of the Bayes net

 (What would be the guiding principle?)

Learning the parameters

 Supervised? Unsupervised? 

Inference: 

 Computing the probability of an event: [#P Complete, Roth’93, ’96]

 Given structure and parameters

 Given an observation E, what is the probability of Y? P(Y=y | E=e) 

 (E, Y are sets of instantiated variables) 

 Most likely explanation (Maximum A Posteriori assignment, MAP, MPE) 
[NP-Hard; Shimony’94]

 Given structure and parameters

 Given an observation E, what is the most likely assignment to Y?

 Argmaxy P(Y=y | E=e) 

 (E, Y are sets of instantiated variables) 

159



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
Directed Acyclic  graph
 Each node has at most one 

parent

Independence Assumption:
 x is independent of its non-

descendants given its parents

(x is independent of other 
nodes give z; v is independent 
of w given u;)  

Need to know two numbers for 
each link: p(x|z), and a prior for 
the root p(y) 

160

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
This is a generalization of 
naïve Bayes.

Inference Problem:
 Given the Tree with all the     

associated probabilities,     
evaluate the probability of an 
event p(x) ?

161

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

P(x=1) =                 

= P(x=1|z=1)P(z=1) + P(x=1|z=0)P(z=0)

Recursively, go up the tree: 

P(z=1) = P(z=1|y=1)P(y=1) + P(z=1|y=0)P(y=0)

P(z=0) = P(z=0|y=1)P(y=1) + P(z=0|y=0)P(y=0)

Linear Time Algorithm

Now we have 
everything in terms of 
the CPTs (conditional 
probability tables) 



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
This is a generalization of 
naïve Bayes.

Inference Problem:
 Given the Tree with all the     

associated probabilities,     
evaluate the probability of an 
event p(x,y) ?

162

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

P(x=1,y=0) =                 

= P(x=1|y=0)P(y=0) 

Recursively, go up the tree along the path from x to y: 

P(x=1|y=0) = z=0,1 P(x=1|y=0, z)P(z|y=0) = 

= z=0,1 P(x=1|z)P(z|y=0)       

Now we have 
everything in terms of 
the CPTs (conditional 
probability tables) 



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
This is a generalization of 
naïve Bayes.

Inference Problem:
 Given the Tree with all the     

associated probabilities,     
evaluate the probability of an 
event p(x,u) ?

 (No direct path from x to u)

163

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

P(x=1,u=0) = P(x=1|u=0)P(u=0) 

Let y be a parent of x and u (we always have one)  

P(x=1|u=0) = y=0,1 P(x=1|u=0, y)P(y|u=0) = 

= y=0,1 P(x=1|y)P(y|u=0) =       
Now we have reduced 
it to cases we have 
seen  



Bayesian Learning CS446 -FALL ‘16

Graphical Models of Probability Distributions

For general Bayesian Networks 
 The learning problem is hard 

 The inference problem (given the network, evaluate the 
probability of a given event) is hard (#P Complete)     

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

164

P(y)

P(z3 | y)

P(x | z1, z2 ,z, z3)

Y

ZZ1 Z2 Z3

X2XX10



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
Learning Problem:

Given data (n tuples) assumed 
to be sampled from a tree-
dependent distribution
 What does that mean?  

 Generative model

Find the tree representation 
of the distribution.
 What does that mean?

165

 ) )Parents(x|P(xp(y)),...xx,xP(y,
i

iin21 

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

Among all trees, find the most likely one, given the data:

P(T|D) = P(D|T) P(T)/P(D)



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
Learning Problem:

Given data (n tuples) assumed 
to be sampled from a tree-
dependent distribution

Find the tree representation 
of the distribution. 

166

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

Assuming uniform prior on trees, the Maximum Likelihood
approach is to maximize  P(D|T),  

TML = argmaxT P(D|T) = argmaxT {x} PT (x1, x2, … xn)  

Now we can see why we had to solve the inference problem 
first; it is required for learning.



Bayesian Learning CS446 -FALL ‘16

Tree Dependent Distributions
Learning Problem:

Given data (n tuples) assumed 
to be sampled from a tree-
dependent distribution

Find the tree representation 
of the distribution. 

167

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

Assuming uniform prior on trees, the Maximum Likelihood
approach is to maximize  P(D|T),  

TML = argmaxT P(D|T) = argmaxT PT (x1, x2, … xn) =             

=                                 argmaxT PT

(xi|Parents(xi))  

Try this for naïve Bayes



Bayesian Learning CS446 -FALL ‘16

Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1

0100  0.1 0101 0.1 0110   0.1 0111  0.1

1000  0 1001  0 1010   0 1011  0

1100  0.05 1101  0.05 1110   0.05 1111  0.05

Probability Distribution 2:

Probability Distribution 3

Example: Learning Distributions

168

X3

X4

X2X1

X3

X4

X2

X1

P(x4)

P(x4)

P(x1|x4)

P(x1|x4)
P(x2|x4)

P(x2|x4)

P(x3|x4)

P(x3|x2)

Are these representations 
of the same distribution?
Given a sample, which of 
these generated it?



Bayesian Learning CS446 -FALL ‘16

Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1

0100  0.1 0101 0.1 0110   0.1 0111  0.1

1000  0   1001  0 1010   0 1011  0

1100  0.05 1101  0.05 1110   0.05 1111  0.05

Probability Distribution 2:

Probability Distribution 3

Example: Learning Distributions

169

X3

X4

X2X1

X3

X4

X2

X1

P(x4)

P(x4)

P(x1|x4)

P(x1|x4)
P(x2|x4)

P(x2|x4)

P(x3|x4)

P(x3|x2)

We are given 3 data 
points: 1011; 1001; 0100
Which one is the target 
distribution?



Bayesian Learning CS446 -FALL ‘16

Probability Distribution 1:

0000  0.1 0001 0.1 0010   0.1 0011  0.1

0100  0.1 0101 0.1 0110   0.1 0111  0.1

1000  0   1001  0 1010   0 1011  0

1100  0.05 1101  0.05 1110   0.05 1111  0.05

What is the likelihood that this table generated the data?

P(T|D) = P(D|T) P(T)/P(D)

Likelihood(T) ~= P(D|T) ~= P(1011|T) P(1001|T)P(0100|T)
 P(1011|T)=  0

 P(1001|T)=  0.1

 P(0100|T)=  0.1

P(Data|Table)=0

Example: Learning Distributions
We are given 3 data 
points: 1011; 1001; 0100
Which one is the target 
distribution?

170



Bayesian Learning CS446 -FALL ‘16

Probability Distribution 2:

What is the likelihood that the data was 

sampled from Distribution 2? 

Need to define it: 
 P(x4=1)=1/2

 p(x1=1|x4=0)=1/2           p(x1=1|x4=1)=1/2

 p(x2=1|x4=0)=1/3           p(x2=1|x4=1)=1/3

 p(x3=1|x4=0)=1/6           p(x3=1|x4=1)=5/6

Likelihood(T) ~= P(D|T) ~= P(1011|T) P(1001|T)P(0100|T)

 P(1011|T)=  p(x4=1)p(x1=1|x4=1)p(x2=0|x4=1)p(x3=1|x4=1)=1/2 1/2 2/3 5/6= 10/72

 P(1001|T)=                                       = 1/2 1/2 2/3 5/6=10/72

 P(0100|T)=                                        =1/2 1/2 2/3 5/6=10/72

 P(Data|Tree)=125/4*36

Example: Learning Distributions

X3

X4

X2X1

P(x4)

P(x1|x4)
P(x2|x4)

P(x3|x4)

171



Bayesian Learning CS446 -FALL ‘16

Probability Distribution 3:

What is the likelihood that the data was 

sampled from Distribution 2? 

Need to define it: 
 P(x4=1)=2/3

 p(x1=1|x4=0)=1/3          p(x1=1|x4=1)=1

 p(x2=1|x4=0)=1 p(x2=1|x4=1)=1/2

 p(x3=1|x2=0)=2/3          p(x3=1|x2=1)=1/6

Likelihood(T) ~= P(D|T) ~= P(1011|T) P(1001|T)P(0100|T)

 P(1011|T)=  p(x4=1)p(x1=1|x4=1)p(x2=0|x4=1)p(x3=1|x2=1)=2/3 1 1/2 2/3= 2/9

 P(1001|T)=                                                                    = 2/3 1 1/2 1/3=1/9

 P(0100|T)=                                                                    =1/3 2/3 1 5/6=10/54

 P(Data|Tree)=10/37

Example: Learning Distributions

172
X3

X4

X2

X1

P(x4)

P(x1|x4)

P(x2|x4)

P(x3|x2)

Distribution 2 is the most likely 
distribution to have produced the data. 



Bayesian Learning CS446 -FALL ‘16

We are now in the same situation we were when we decided 
which of two coins, fair (0.5,0.5) or biased (0.7,0.3) generated the 
data. 

But, this isn’t the most interesting case. 

In general, we will not have a small number of possible 
distributions to choose from, but rather a parameterized family 
of distributions.  (analogous to a coin with p   [0,1] )

We need a systematic way to search this family of distributions.

Example: Summary

173



Bayesian Learning CS446 -FALL ‘16

Learning Tree Dependent Distributions
Learning Problem:
 1.  Given data (n tuples) 

assumed to be sampled from   
a tree-dependent distribution

 find the most probable tree 
representation of the 
distribution. 

 2. Given data (n tuples) 

 find the tree representation 
that best approximates the 
distribution (without assuming 
that the data is sampled from a 
tree-dependent distribution.)

174

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

Space of all Tree 
Distributions

Target 
Distribution

Space of all 
Distributions

Target 
Distribution

Find the Tree closest  
to the target



Bayesian Learning CS446 -FALL ‘16

Learning Tree Dependent Distributions
Learning Problem:
 1.  Given data (n tuples) 

assumed to be sampled from   
a tree-dependent distribution

 find the most probable tree 
representation of the 
distribution. 

 2. Given data (n tuples) 

 find the tree representation 
that best approximates the 
distribution (without assuming 
that the data is sampled from a 
tree-dependent distribution.)

175

Y

ZW U

TXV

S

P(y)
P(s|y)

P(x|z)

The simple minded algorithm for learning a 
tree dependent distribution requires 

(1) for each tree, compute its likelihood

L(T) = P(D|T) = 

= PT (x1, x2, … xn) =             

= PT (xi|Parents(xi))  

(2) Find the maximal one



Bayesian Learning CS446 -FALL ‘16

1. Distance Measure
To measure how well a probability distribution P is 
approximated by probability distribution T we use here the 
Kullback-Leibler cross entropy measure (KL-divergence):

Non negative.

D(P,T)=0 iff P and T are identical

Non symmetric. Measures how much P differs from T.

176


x T(x)

P(x)
P(x)logT)D(P,



Bayesian Learning CS446 -FALL ‘16

2. Ranking Dependencies
Intuitively, the important edges to keep in the tree 
are edges (x---y) for x, y which depend on each other. 

Given that the distance between the distribution is 
measured using the KL divergence, the corresponding 
measure of dependence is the mutual information 
between x and y, (measuring the information x gives 
about y) 

which we can estimate with respect to the empirical 
distribution (that is, the given data).

177


yx , P(x)P(y)

y)P(x,
y)logP(x,y)I(x,



Bayesian Learning CS446 -FALL ‘16

Learning Tree Dependent Distributions

The algorithm is given m independent measurements from P.

For each variable x, estimate P(x) (Binary variables – n numbers)

For each pair of variables x, y, estimate P(x,y) (O(n2) numbers)

For each pair of variables compute  the mutual information

Build a complete undirected graph with all the variables as 
vertices. 

Let I(x,y) be the weights of the edge (x,y)

Build a maximum weighted spanning tree

178



Bayesian Learning CS446 -FALL ‘16

Learning Tree Dependent Distributions

The algorithm is given m independent measurements from P.

For each variable x, estimate P(x) (Binary variables – n numbers)

For each pair of variables x, y, estimate P(x,y) (O(n2) numbers)

For each pair of variables compute  the mutual information

Build a complete undirected graph with all the variables as 
vertices. 

Let I(x,y) be the weights of the edge (x,y)

Build a maximum weighted spanning tree

Transform the resulting undirected tree to a directed tree. 
 Choose a root variable and set the direction of all the edges away from it.

Place the corresponding conditional probabilities on the edges. 

179

(1)

(3)

(2)


