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And even earn money using  it ;-)!!

2

How? 

Google DeepMind!

Tweeters WhetLab!Yahoo Summly!
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One interesting application: 
Lets analyse tweets! 

Data 

Twitter posts  

just wanna leave these past in the past and move on 
  Place: Edinburgh, Scotland, United Kingdom         

My mom just dragged me to Walgreens and forced me to get a flu shot and then 
she told me it was just like mother-daughter tattoos #help 
  Place: Illinois, USA, United States            

unhappy tweet 

unhappy tweet 

Heard someone sing a Christmas song, in the pub on Friday night. Give us a break! 
Place: Illinois, USA, United States    

happy tweet

Meta analysis: which location is happier? 
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Our application

Feature 
Functions

Trained Learning 
Algorithm

Data 

Twitter posts  

→  “…”

→  “…”

→  “…”

Learning Based Java

Decision?

@… almost just tweeted "it hasn't been a week since school 
started and I've already cried" seriously can't do this  
 Place: Illinois, USA, United States    
    

Sentiment classifier: 
Negative
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What is Learning Based Java?

8

■ A modeling language for learning and inference

■ Supports 
Programming using learned models 
High level specification of features and 
constraints between classifiers 
Inference with constraints

■ Learning 
Classifiers are functions defined in terms of 
data
Learning can happen at compile time
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What does LBJava do for you?

9

■ Abstracts away the feature representation, 
learning and inference

■ Allows you to write learning based programs 

■ Application developers can reason about the 
application at hand



LBJava-Tutorial 

Demo1: The Badges game

 
 

Conference attendees to the 1994 Machine 
Learning conference were given name badges 
labeled with + or −. 

What function was used to assign these labels? 

+ Naoki Abe - Eric Baum

10
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Why use learning?

We typically use machine learning when  
the function f(x) we want the system to apply is 
too complex to program by hand.

11
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• Gender/age/country of the person? 
• Length of their first or last name? 
• Does the name contain letter ‘x’?  
• How many vowels does their name contain?  
• Is the n-th letter a vowel? 

12

Model this in LBJava, using the following features: 
• use the type of the characters in the first 5 positions of name  
• use the type of the characters in first 5 positions of the family 

name. 

For example:  
first-character-of-first-name-is-a 
first-character-of-first-name-is-b … 
second-character-of-first-name-is-a, …
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Running on linux machine

13

Step 1: Compile Java code (Readers etc.)  
- Need Java version 7 or higher 

$ javac -cp “lib/*” -d bin *.java

Step 2: Compile (and train) the LBJava code 

$ java -cp “lib/*:bin” 
edu.illinois.cs.cogcomp.lbjava.Main -d bin 
classifier.lbj
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Demo2: Spam/noSpam

■ The spam classifier 
1. The features 
2. The classifier 
3. Compiling to train the classifier

14



LBJava-Tutorial   CS446 Fall ’15    

Demo2: Spam/noSpam

15



LBJava-Tutorial   CS446 Fall ’15    

Demo2: Spam/noSpam

15

How a spam looks like?  Features!



LBJava-Tutorial   CS446 Fall ’15    

Demo2: Spam/noSpam

15

How a spam looks like?  Features!

• Let us simply use features based on occurring words or 
maybe word frequencies.  



LBJava-Tutorial   CS446 Fall ’15    

Demo2: Spam/noSpam

15

How a spam looks like?  Features!

• Let us simply use features based on occurring words or 
maybe word frequencies.  

• Write our features and learners using Lbjava.
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Demo3: Prediction of Drug Response for 
Cancer Patients

16

Patient name 
age, race, …

Patient name 
gene1_Experimental result 
gene2_Experimental result 
… 
genen_Experimental   result

 If Patient X will response to  Drug Y

Input

Output
Drug response is measured and reported as a real value 
but we can  use a threshold and convert it to a binary 
decision of positive and negative response here.
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Exercise

Tweeter sentiment classification 
http://l2r.cs.uiuc.edu/~danr/Teaching/
CS446-15/readme-twitter.txt 

Train a classifier on annotated examples 

Predict sentiment of tweets in real time! 
Filter by location, search terms, language, etc.

17

http://l2r.cs.uiuc.edu/~danr/Teaching/CS446-15/readme-twitter.txt
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Links
■ LBJava Software:  

http://cogcomp.cs.illinois.edu/page/software_view/LBJava 

■ LBJava Manual:  

http://cogcomp.cs.illinois.edu/software/manuals/LBJ2Manual.pdf 

■ Tutorial 2013 code and examples, step by step :  

 http://cogcomp.cs.illinois.edu/page/tutorial.201310

18

http://cogcomp.cs.illinois.edu/page/software
http://cogcomp.cs.illinois.edu/software/manuals/LBJ2Manual.pdf
http://cogcomp.cs.illinois.edu/page/tutorial.201310
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Parameter tuning

Inference and Constraints

Designing more complex models 

Pipelines


