
Clustering CS446 - FALL ‘16

Administration

Final Exam: Next Tuesday, 12/6 12:30, in class. 
 Material: Everything covered from the beginning of the 

semester

 Format: Similar to mid-term; closed books

 Review session on Thursday

HW 7: Due on Thursday 12/1. 
 Only 24 hours of no additional time if needed.

Final Projects:
 Due on Tuesday, 12/13; 

 Follow Piazza and web site for submission insturctions

 The final report should look like a conference paper. 

 A report guideline is available from the class info page. 
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No office hours 
this week. 
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How many are there ?
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Clustering

Clustering is a mode of unsupervised learning.

Given a collection of data points, the goal is to find structure in 
the data:  organize that data into sensible groups.

We are after a convenient and valid organization of the data, 
not after a rule for separating future data into categories.

Cluster analysis is the formal study  of algorithms and methods 
for doing that.

How many are there ?

3
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Clustering

Clustering is a mode on unsupervised learning.

Given a collection of data points, the goal is to find structure in 
the data:  organize that data into sensible groups.

We are after a convenient and valid organization of the data, 
not after a rule for separating future data into categories.

Cluster analysis is the formal study  of algorithms and methods 
for doing that.
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Clustering

A cluster is a set of entities which are alike, and entities in different 
clusters are not alike.

A cluster is an aggregation of points in the test space such that the 
distance between any two points  in the cluster is less than the 
distance between any point in the cluster and any point not in it.

Clusters may be described as connected regions of a multi-
dimensional space containing a relatively high density of points,     
separated from other  regions by regions containing a low  density 
of points.

5
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Clustering

The last definitions assume that the objects to be clustered are 
represented as points in some measurements space.

“We recognize a cluster when we see it”.

It is easy to give a functional definition for a cluster, but a lot     
harder to give an operational definition. 

One reason may be that objects can be clustered into groups with 
a purpose in mind (shape, size, time, resolution,….)

6
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Clustering
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Clustering

Clustering is not a Learning Problem.  It’s an Optimization Problem.   
Given a set of points and a pairwise distance, devise an algorithm f 
that splits the data so that it optimizes some natural conditions. 

Scale-Invariance. 

 For any distance function d; for any α > 0, we have f(d) = f(α · d).

Richness. 

 Range(f) is equal to the set of all partitions of S.

 In other words, suppose we are given the names of the points only (i.e. the 
indices in S) but not the distances between them. Richness requires that for 
any desired partition Γ, it should be possible to construct a distance function d 
on S for which f(d) = Γ 

Consistency. 
 Let d and d’ be two distance functions. If f(d) = Γ, and d’ is a Γ-transformation of d, then 

f(d’) = Γ. In other words, suppose that the clustering Γ arises from the distance 
function d. If we now produce d’ by reducing distances within the clusters and 
enlarging distances between clusters then the same clustering Γ should arise 
from d’.
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Theorem: That is no clustering 
function that maps a set of points 
into a partition of it, that satisfies 
all three conditions. [Klienberg, NIPS 2002]
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Clustering

Clustering is not a Learning Problem.  It’s an Optimization Problem.   
Given a set of points and a pairwise distance, devise an algorithm f 
that splits the data so that it optimizes some natural conditions. 

So, what do we do? 

 Different optimization heuristics that make sense. 

Clustering can be done under generative model assumptions, or 
without any statistical assumptions

A key component in clustering is the measurement  space: 

 What is a reasonable distance/similarity measure  ?

 What are the important dimensions of the data ?

We will discuss:

 Clustering methods Metric Learning methods

 Dimensionality reduction methods

9
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The Clustering Problem

We are given a set of data points x1, x2, … xm that we 
would like to cluster.

Each data point is assumed to be an d-dimensional 
vector, that we will write as a column vector: 

x= (x1, x2, … xd )T

We do not make any statistical assumptions on the 
given data, nor on the number of clusters.

10
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Distance Measures

In studying Clustering techniques we will assume that 
we are  given a matrix of distances between all pairs 
of data points. 

We can assume that the input to the problem is:
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Distance Measures

In studying Clustering techniques we will assume that we are  
given a matrix of distances between all pairs of data points.  

A distance measure (metric) is a function d:Rd x Rd
 R that 

satisfies:

For the purpose of clustering, sometimes the distance 
(similarity) is not required to be a metric
 No Triangle Inequality

 No Symmetry
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Examples: 

• Euclidean Distance:

• Manhattan Distance:

• Infinity (Sup) Distance:

• Notice that if             is the Euclidean metric,               is not a metric

but can be used as a measure (no triangle inequality)
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Examples: 

• Euclidean Distance:

• Manhattan Distance:

• Infinity (Sup) Distance:  
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Notice that:

• Infinity (Sup) Distance < Euclidean Distance <Manhattan Distance:

• But distances do not induce same order on pairs of points
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• The clustering may be sensitive to the similarity measure.

• Sometimes this can be avoided by using a distance measure

that is invariant to some of the transformations that are natural to 

the problem.

• Mahalanobis Distance:

where  is a symmetric matrix.

Covariance Matrix: Translates all the axes so that they have 

Mean=0 and Variance=1 (Shift and Scale invariance)
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• The clustering may be sensitive to the similarity measure.

• Sometimes this can be avoided by using a distance measure

that is invariant to some of the transformations that are natural to 

the problem.

• Mahalanobis Distance:

where  is a symmetric matrix.

Covariance Matrix: Translates all the axes so that they have 

Mean=0 and Variance=1 (Shift and Scale invariance)

• It is possible to get rotation invariance by rotating the axes so 

that they coincide with the  eigenvectors of the covariance matrix.

This is a transformation to the principle components.

y)(xy)-(xy)d(x,
T 

Distance Measures
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• Sometimes it is useful to define 

distance between a data point x and a set A of points:

• and distance between sets of points A, B:

• There are many other ways to do it; may depend on the application.

 


Ay
y)d(x,

|A|

1
A)d(x,

 


ByA,x
y)d(x,

|B||A|

1
B)d(A,

Distance Measures



Clustering CS446 - FALL ‘16 19

• Given: a set  x1, x2,…xm of data points, 

a distance function d(x,y) and 

a threshold T 
• Ci will represent clusters, zi their representative

• i index into data points, j index into clusters

process data point i 

(where to place it?)

 Initialize

Do sequentially for all i:
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                    k 1

   Let : D d(x , z ),   for all j 1,...k

           D Min D ,   I {j | D D }
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   If  D T 
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Basic Algorithms

Problems: Outcome depends on 
the order of the data points both 
in assigning points to a cluster and 
in determining distance of a point 
from a cluster
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• Given a collection of points, one way to define the goal of a 

clustering process is to use the following two measures:

• A measure of similarity within a group of points

• A measure of similarity between different groups

• Ideally, we would like to define these so that:

The within similarity can be maximized

The between similarity can be minimized

at the same time.

• This turns out to be a hard task.

Association-Dissociation 
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• Given: a set  X = {x1, x2, …xm} of points,  a distance function d(x,y)  

• X is split into k clusters Cj, each with a representative zj 2 X 

• Definitions: (scatter measures)

Within cluster:                          (average distance to representative) 

Global Clustering Scatter:

For each xi choose the closest representative zj. 

Dj measures the scatter of the jth cluster; we want to minimize it.

D measures the quality of the clustering; 
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• Definitions: (scatter measures)

Within cluster:                          (average distance to representative) 

Global Clustering Scatter:

For each xi choose the closest representative zj. 

Dj measures the scatter of the jth cluster; we want to minimize it.

D measures the quality of the clustering; 

For optimal clustering:
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•Given: a set  X = {x1, x2, …xm} of points,  a distance function d(x,y)  

• X is split into k clusters Cj, each with a representative zj 2 X 

• Algorithm:

1. Initialize centers randomly                   round: r=1
2. Cluster x1, x2, …xm w.r.t centers using Nearest Neighbor 

3. Choose new centers: Choose zj to minimize Di .

Compute the clustering total scatter for this round: 

4. Stopping Criterion: Check if

If not, iterate: r = r+1,  go back to 2. 

k21 zzz ,...,

           

)z,d(xargminjCx jijji 

T
1)-D(r

D(r)-1)-D(r


D(r)

K-Means
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•Given: a set  X = {x1, x2, …xm} of points,  a distance function d(x,y)  

• X is split into k clusters Cj, each with a representative zj 2 X 

• Will it converge ? It can be shown that the scatter mean goes down. 

• Note that this is a Hard EM algorithm (see K-Means in the EM lecture)

• We do not know how fast it will converge -- bound # of iterations.

• Why should the center be an element in the set ?

Using the Euclidean Distance, minimizing is achieved by 

computing the average, which need not be a data element.

• What is k ? Can try with different values, and measure the quality of the   

clustering.

K-Means
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Improving K-Means

• The main problem with k-means is the initial conditions --

determining k and the centers. 

• Bad initial conditions may generate unimportant cells and may 

degrade overall performance.

• There are various ways to get around it. 

• Methods for splitting centers:

Start with k=1; for k=i use the centers of k=i-1, or a simple 

function of them.  

• ISODATA: k-means with provisions for 

deleting clusters  (if they are too small)

splitting clusters (if their mean scatter is too large)

Adapting k; stopping criterion
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Limitations

• k-means/ISODATA will work well in cases where all the clusters

behaves similarly statistically. 

• K-means can be shown to be optimal when the distance function

is derived from the probability distribution that generates the data.

• E.g., for a mixture of Normal distribution, the Euclidean metric

yields optimal performance. 

This is the EM algorithms studied earlier.

• These methods are not so effective when the data has some 

internal  structure, especially if different clusters have 

different structures.
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Limitations
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Model Based Methods

• One advantage of K-means is that it is a principled method –
it has a probabilistic interpretation.

This allows a principle investigation of the algorithm; a better 
understanding of what it does, and a way to modify it in a principled way.

Can this be done for other algorithms?
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Agglomerative Clustering

• Assume a distance measure between points d(x1,x2)

• Define a distance measure between Clusters D(c1,c2)

• Algorithm:
• Initialize: Each point in a separate cluster. 
• At each stage, merge the two closest clusters according to D. 

(I.e., merge the two D-closest clusters). 

Different definitions of D, for the same d, give rise to radically different 
partitions of the data.
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Examples (I)

• Assume a distance measure between points d(x1,x2)

• Define a distance measure between Clusters D(c1,c2)

• Algorithm:
• Initialize: Each point in a separate cluster.
• At each stage, merge the two closest clusters according to D. 

(I.e., merge the two D-closest clusters). 

Single Link Clustering:

DSL(C1,C2) = min{xi Ci} d(x1,x2)

Complete Link Clustering:

DCL(C1,C2) = max{xi Ci} d(x1,x2)
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Examples (II)

• Assume a distance measure between points d(x1,x2)

• Define a distance measure between Clusters D(c1,c2)

• Algorithm:
• Initialize: Each point in a separate cluster.
• At each stage, merge the two closest clusters according to D. 

(I.e., merge the two D-closest clusters). 
Ward’s Method: 

D(ward) = ESS(C1 U C2) – ESS(C1) – ESS(C2) 

Where:  ESS(C) = (x-m)2

m – mean of data point in cluster C

Group Average Clustering: 
DGA(C1,C2) = mean{Ci ,Cj} d(x1,x2)
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Model Based Methods

Claim: Common heuristics for agglomerative clustering algorithms are 
Each equivalent to a hierarchical model-based (probabilistic) method.

This interpretation gives a theoretical explanation for the empirical 
behavior of these algorithms, as well as a principled approach to practical
issues: no. of clusters, choice of methods, etc. 

Model based clustering views clustering as the problem of computing the
(approximate) maximum for the classification likelihood of the data X.

The classification likelihood of the data X: 
L(1,….,k ;l1,…,ln  |X) = p (xi| i)

Where: li is the label (cluster id) of the point xi

i are the model parameters. 

Notice that this is a model of hard clustering. It is also possible to 
model soft clustering, as a mixture model. 
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Model Based Agglomerative Methods

Model based clustering views clustering as the problem of computing the
(approximate) maximum for the classification likelihood of the data X.

Agglomerative approach:

- Start with a partition P of the data in which each sample is in its own 
singleton cluster.

- At each stage, two clusters are chosen from P and merged, forming 
a new partition P’.

- The pair which is merged is the one which gives the highest resulting 
likelihood. (merges typically reduce the likelihood)

- The process is greedy. The best choice at a certain stage need not 
develop into the best strategy. 
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Model Based Agglomerative Methods

Agglomerative approach:
- Start with a partition P of the data in which each sample is in its own 
singleton cluster.

- At each stage, two clusters are chosen from P and merged, forming 
a new partition P’.

- The pair which is merged is the one which gives the highest resulting 
likelihood. (merges typically reduce the likelihood)

- The process is greedy. The best choice at a certain stage need not 
develop into the best strategy. 

At each stage of the algorithm we are choosing new labels; we don’t 
explicitly choose new parameters. Implicitly, it is assumed we have the 
best parameters. The quality of the current labeling: 

J(l1,…,ln |X) = max L(, l1,…,ln | X)
Relative cost of a merge:

J(P.P’) = J(P)/J(P’)
Rather than maximizing J(P’), can maximize the relative cost.
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Model Based Methods

The classification likelihood of the data X:

L(1,….,k ;l1,…,ln  |X) = p (xi| i)

Where: li is the label (cluster id) of the point xi

i are the model parameters. 

Notice that this is a model of hard clustering. It is also possible to 
model soft clustering, as a mixture model. 
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Model Based Interpretation

Ward’s Method:

- If the probability model is multivariate normal with uniform spherical 
covariance matrix I, then 

J ~  D(ward)

In this case we assume the component density is:
Rather than maximizing J(P’), can maximize the relative cost.
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Model Based Interpretation

Single-Link clustering:

- The corresponding probability model is a mixture of branching random 
walks (BRWs). A BRW is a stochastic process which generates a tree of
data points x as follows: 

- The process starts with a single root x0 in the placed according to some
distribution p0

- Each node in the frontier of the tree produces zero or more children. 
The position of a child is generated according to a multivariate normal
distribution, with variance I centered around the parent’s location.

Claim: If the probability model is a mixture of BRWs, then:  
J ~  D(SL)
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Model Based Methods

• One advantage of K-means is that it is a principled method –
it has a probabilistic interpretation.

This allows a principle investigation of the algorithm; a better 
understanding of what it does, and a way to modified it in a principled way.

Several Heuristics can be given probabilistic interpretation. 
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Importance of a Metric for a Clustering 
Algorithm

d1(x,x’) = [(f1 - f1’) 
2+(f2 - f2’) 

2]1/2 d2(x,x’) = |f1 – f1’|+|f2-f2’|

(a) Single-Linkage 
with Euclidean

(b) K-Means with 
Euclidean

(c) K-Means with a 
Linear Metric

There is no ‘universal’ distance metric that is good for any 
clustering algorithms and for any problems.

39
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Graph Theoretic Methods
• Points in an arbitrary feature space are represented as a 

weighted graph  G=(V,E)

• Nodes represent the points in the feature space.

• Edges are drawn between every pair of nodes. The weight of the 

edge w(i,j) is a function of the similarity between nodes i and j.

a    b     c    d    e

a 0    6    8    2    7

b 6    0    2    5    3

c 8    2    0  10    9

d 2    5  10    0    4

e 7    3    9    4    0

a

e

d
c

b

w(c,d)

Proximity Matrix:
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Graph Theoretic Methods

• Points in an arbitrary feature space are represented as a 

weighted graph  G=(V,E)

• We seek a partition of the set of       vertices into disjoint sets

where:  some measure of the similarity 

among the vertices in each     is high , and 

across sets           is low. 

(Notice that we assume a similarity measure, but it need not be metric)

k21 V,...,V,V

iV

ji V,V

V

a    b     c    d    e

a 0    6    8    2    7

b 6    0    2    5    3

c 8    2    0  10    9

d 2    5  10    0    4

e 7    3    9    4    0

a

e

d c

b

w(c,d)
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Graph Theoretic Methods

• What is the precise criterion for a good partition ?

• How can such a partition be computed efficiently ?  

• General Method:  Decompose the graph into connected component

by identifying and deleting inconsistent (“bad”) edges.

Algorithm:

• Construct the Maximum Spanning Tree (recall: we work with similarity)

• Identify  inconsistent edges in the MST

• Remove the inconsistent edges to form connected components

and call them clusters.
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Graph Theoretic Methods

• Algorithm:

• Construct the Maximum Spanning Tree

• Identify  inconsistent edges in the MST

• Remove the inconsistent edges to form connected components

and call them clusters.

What are inconsistent edges ?

- Use a threshold  (delete the light edges)

- Delete an edge if its weight is significantly lower than that of

nearby edges. 

Notice: in any case -- methods are local and thus not very different from 

the distance-based methods used before.  
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Example: Hierarchical Clustering

• Hierarchical clustering is a nested sequence of partitions

• Agglomerative: 

Places each object in its own cluster and gradually merge the 

atomic clusters into larger and larger clusters.

• Divisive: Start with all objects in one cluster and subdivide 

into smaller clusters. 

{(a) ,(b),(c),(d),(e)}

{(a,b),(c),(d),(e)}

{(a,b),(c,d),(e)}

{(a,b,c,d),(e)}

{(a,b,c,d,e)}

a b c d e
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Example: Hierarchical Clustering

a    b     c    d    e

a 0    3    8    2    7

b 3    0    1    5    4

c 8    1    0  10    9

d 2    5  10    0    4

e 7    4    9    4    0

• Form a Threshold Graph G(k): (i,j) G(k) iff k  d(i,j)

• If less clusters then before: 

- Name each connected component of G(k) a cluster    or

- Name each clique of G(k) a cluster
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Example: Hierarchical Clustering

a    b     c    d    e

a 0    3    8    2    7

b 3    0    1    5    4

c 8    1    0  10    9

d 2    5  10    0    4

e 7    4    9    4    0

b c a d e

• Form a Threshold Graph G(k): (i,j) G(k) iff k  d(i,j)

b c

G(1)

cb

a d
G(2)

a d
G(3)

cb

a d

cb

G(4)

• If less clusters then before:      

- Name each connected component of G(k) a cluster or        

- Name each clique of G(k) a cluster
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Clustering
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Global Algorithms

• MST and neighborhood approaches are very efficient but are

based on local properties of the graph.

• In many applications (e.g., image segmentation) we need a 

partition criterion that depends on global properties.

• How  to partition the graph G(V,E) into the “natural” 

disjoint sets A,B? 

• Try to define a global degree of similarity 

between parts of the graph.
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Cut Algorithms

• MST and neighborhood approaches are very efficient but are

based on local properties of the graph.

• In many applications (e.g., image segmentation) we need a 

partition criterion that depends on global properties.

• A Graph G(V,E) can be partitioned into two disjoint sets A,B.

• The degree of similarity between the two parts:

• The optimal bi-partition of G is one that minimizes the cut value.

• There exist efficient algorithms for computing the minimal cut.





BvA,u

v)w(u, B)cut(A,
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• Cut algorithms can be extended to k-partitions by recursively

finding the minimal cuts that bisects the existing groups.





BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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BvA,u

v)w(u, B)cut(A,

Cut Algorithms
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• Minimal cut favors cutting small sets of isolated nodes in the

graph G(V,E)

The cut value increases with the number of edges going across

the partitions. (The drawn partition assumes that distances are

inversely proportional to the similarity).

Improvement:  Normalization -

measures the total connection from the nodes in A to the graph V.





BvA,u

v)w(u, B)cut(A,

Cut Algorithms





VvA,u

v)w(u, V)asso(A,
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• The normalized measure would be:

This is a measure of dissociation between clusters in the graph

V)asso(B,

B)cut(A,

V)asso(A,

B)cut(A,
 B)Ncut(A, 

Cut Algorithms
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• The normalized measure would be:

This is a measure of dissociation between clusters in the graph

We can also define the normalized association within clusters:

Let                      be as before (total weights edges with A)

V)asso(B,

B)cut(A,

V)asso(A,

B)cut(A,
 B)Ncut(A, 

A)asso(A,

V)asso(B,

B)asso(B,

V)asso(A,

A)asso(A,
 B)Nasso(A, 

Cut Algorithms
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• We have two measure:

The disassociation measure

which we want to minimize.

and a measure of association within clusters:

which reflects how tightly, on average, nodes within the groups are 

connected to each other and we want to maximize.

V)asso(B,

B)cut(A,

V)asso(A,

B)cut(A,
 B)Ncut(A, 

V)asso(B,

B)asso(B,

V)asso(A,

A)asso(A,
 B)Nasso(A, 

Cut Algorithms
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• The disassociation measure (want to minimize)

                   

B)Nasso(A,2)
V)asso(B,

B)asso(B,

V)asso(A,

A)asso(A,
(-2                   

V)asso(B,

B)asso(B,-V)asso(B,

V)asso(A,

A)asso(A,-V)asso(A,
                   

V)asso(B,

B)cut(A,

V)asso(A,

B)cut(A,
 B)Ncut(A,







Within cluster association measure  (want to maximize).

Cut Algorithms
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• The two partition criteria that we seek:

minimizing the disassociation measure and  

maximizing the within cluster association measure

are related and can be satisfied simultaneously.

• How to compute it efficiently: 

The problem of Normalized Cut is NP hard.

Approximation algorithms are based on 

Spectral Methods - solving an eigenvalue problem

Normalized Cut Algorithms
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Clustering: Summary

• The problem of partitioning a set of point into k groups is ill defined. 

• Determining the features space and the similarity measure may be  

application dependent and are crucial in many cases.

• Standard approaches: 

k-means; agglomerative methods 

• Graph Theoretic methods: 

• MST algorithms

• Cut algorithm

• Normalized Cut/Spectral Methods

• Key questions in current research:

• Scalability; Metric Learning
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Importance of a Metric for a Clustering 
Algorithm

d1(x,x’) = [(f1 - f1’) 
2+(f2 - f2’) 

2]1/2 d2(x,x’) = |(f1+ f2)-(f1’+f2’)|

(a) Single-Linkage 
with Euclidean

(b) K-Means with 
Euclidean

(c) K-Means with a 
Linear Metric

There is no ‘universal’ distance metric good for any 
clustering algorithms and for any problems.
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Traditional Clustering

Unsupervised, without learning.

Metric learning and supervision: (Mooney etc. 03, 04, 
Xing etc. 03, Schultz & Joachims 03, Bach & Jordan03) 
Li & Roth’05 

A partition function

h(S) = Ad(S)

unlabeled 
data set S

partition h(S)

distance
metric d

clustering 
algorithm A+

K-means
X = {x1,x2,…}, C = {c1,c2,…,ck}

Euclidean Distance:
d(x, x’) = [(x- x’)T(x- x’)]1/2
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K=4

Supervision in Clustering
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Supervision in Clustering

64
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labeled data set S

supervised
learner

Training Stage:

Goal: h*=argmin errS(h,p)

distance
metric d

clustering 
algorithm A+

unlabeled 
data set S’

partition 
h(S’)

Application 
Stage: h(S’ )

A partition function

h(S) = Ad(S)

Supervised Discriminative Clustering (SDC)
(based on Li & Roth 2005)
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Learning partitioning function h by 
learning metric d

Supervised Metric Learning:
Given a data set S,
a fixed clustering algorithm A 
supervision p(S) = {(xi,ci)}1

m , 

the training process tries to find d*, minimizing the 
clustering error:

d*= argmind errS(h,p),   where h(S)=Ad(S).
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Clustering Error

Supervised Metric Learning: Given a data set S and a 
fixed clustering algorithm A and supervision p(S) = 
{(xi,ci)}1

m , the training process is to find d*,
minimizing the clustering error:

d*= argmind errS(h,p),   where h(S)=Ad(S).
Mean of P

Mean of h

67
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Algorithm

Supervised Metric Learning: Given a data set S and a 
fixed clustering algorithm A and supervision p(S) = 
{(xi,ci)}1

m , the training process is to find d*,
minimizing the clustering error:

d*= argmind errS(h,p),   where h(S)=Ad(S).
Mean of P

Mean of h

68

How to parameterize the 
distance function


