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Semi-Supervised Learning
Consider the problem of Prepositional Phrase Attachment. 
 Buy car with money             ; buy car with wheel 

There are several ways to generate features. Given the limited 
representation, we can assume that all possible conjunctions of 
the 4 attributes are used. (15 feature in each example). 

Assume we will use naïve Bayes for learning to decide between 
[n,v]

Examples are:  (x1,x2,…xn,[n,v])
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Using naïve Bayes
To use naïve Bayes, we need to use the data to estimate:        

P(n)                      P(v)

P(x1|n)                P(x1|v)

P(x2|n)                P(x2|v)

……

P(xn|n)                P(xn|v)

Then, given an example (x1,x2,…xn,?), compare:

P(n|x)~=P(n) P(x1|n) P(x2|n)… P(xn|n)

and

P(v|x)~=P(v) P(x1|v) P(x2|v)… P(xn|v)
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Using naïve Bayes
After seeing 10 examples, we have:   

P(n) =0.5; P(v)=0.5

P(x1|n)=0.75;P(x2|n) =0.5; P(x3|n) =0.5; P(x4|n) =0.5 

P(x1|v)=0.25; P(x2|v) =0.25;P(x3|v) =0.75;P(x4|v) =0.5

Then, given an example x=(1000), we have:

Pn(x)~=0.5 0.75 0.5 0.5 0.5 = 3/64

Pv(x)~=0.5 0.25 0.75 0.25 0.5=3/256 

Now, assume that in addition to the 10 labeled examples, we also 
have 100 unlabeled examples.

Will that help? 
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Using naïve Bayes
For example, what can be done with the example (1000)  ?
 We have an estimate for its label…
 But, can we use it to improve the classifier (that is, the estimation of the 

probabilities that we will use in the future)?

Option 1: We can make predictions, and believe them
 Or some of them (based on what?)

Option 2: We can assume the example x=(1000) is a 
 An n-labeled example with probability  Pn(x)/(Pn(x) + Pv(x))
 A v-labeled example with probability  Pv(x)/(Pn(x) + Pv(x))

Estimation of probabilities does not require working with 
integers!
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Using Unlabeled Data
The discussion suggests several algorithms:

1. Use a threshold. Chose examples labeled with high confidence. 
Label them [n,v]. Retrain.

2. Use fractional examples. Label the examples with fractional 
labels [p of n, (1-p) of v]. Retrain.
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Comments on Unlabeled Data
Both algorithms suggested can be used iteratively.

Both algorithms can be used with other classifiers, not  only naïve Bayes. 
The only requirement – a robust confidence measure in the classification.

There are other approaches to Semi-Supervised learning: See included 
papers (co-training; Yarowksy’s Decision List/Bootstrapping algorithm; 
“graph-based” algorithms that assume “similar” examples have “similar 
labels”, etc.)

What happens if instead of 10 labeled examples we start with 0 labeled 
examples?

Make a Guess; continue as above; a version of EM 
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EM
EM is a class of algorithms that is used to estimate a probability 
distribution in the presence of missing attributes. 

Using it, requires an assumption on the underlying probability 
distribution.

The algorithm can be very sensitive to this assumption and to 
the starting point (that is, the initial guess of parameters. 

In general, known to converge to a local maximum of the 
maximum likelihood function. 

7



EM CS446 –Spring ‘17

Three Coin Example
We observe a series of coin tosses generated in the following 
way: 

A person has three coins.

 Coin 0: probability of Head is a

 Coin 1: probability of Head p 

 Coin 2: probability of Head q

Consider the following coin-tossing scenarios:
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Estimation Problems
Scenario I: Toss one of the coins four times.

Observing  HHTH
Question: Which coin is more likely to produce this sequence ? 

Scenario II: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2
Observing the sequence  HHHHT,  THTHT, HHHHT, HHTTH
produced by Coin 0 , Coin1 and Coin2
Question: Estimate most likely values for p, q (the probability of H in each 

coin) and the probability to use each of the coins (a)

Scenario III: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2
Observing the sequence  HHHT,  HTHT, HHHT, HTTH
produced by Coin 1 and/or Coin 2 
Question: Estimate most likely values for p, q and a

There is no known analytical solution to this problem (general 
setting). That is, it is not known how to compute the values of 
the parameters so as to maximize the likelihood of the data.

Coin 0

1st toss 2nd toss nth  toss
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Key Intuition (1)
If we knew which of the data points (HHHT), (HTHT), (HTTH)  came from 
Coin1 and which from Coin2, there was no problem.

Recall that the “simple” estimation is the ML estimation:

Assume that you toss a (p,1-p) coin m times and get k Heads m-k Tails.

log[P(D|p)] = log [ pk (1-p)m-k ]= k log p + (m-k) log (1-p) 

To maximize, set the derivative w.r.t. p equal to 0:

d log P(D|p)/dp = k/p – (m-k)/(1-p) = 0

Solving this for p, gives:      p=k/m
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Key Intuition (2)
If we knew which of the data points (HHHT), (HTHT), (HTTH)  came from 
Coin1 and which from Coin2, there was no problem.

Instead, use an iterative approach for estimating the parameters:

 Guess the probability that a given data point came from Coin 1 or 2;   
Generate fictional labels, weighted according to this probability.

 Now, compute the most likely value of the parameters. [recall NB example]

 Compute the likelihood of the data given this model.

 Re-estimate the initial parameter setting: set them to maximize  the likelihood 
of the data.

(Labels Model Parameters) Likelihood of the data

This process can be iterated and can be shown to converge to a local 
maximum of the likelihood function
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EM Algorithm (Coins) -I
We will assume (for a minute) that we know the parameters             
and use it to estimate which Coin it is (Problem 1)

Then, we will use this “label” estimation of the observed tosses, to 
estimate the most likely parameters 

 and so on...

Notation: n data points; in each one: m tosses, hi heads. 
What is the probability that the ith data point came from Coin1 ?

STEP 1 (Expectation Step):                                                         (Here h=hi )
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EM Algorithm (Coins) - II
Now, we would like to compute the likelihood of the data, and find the 
parameters that maximize it.

We will maximize the log likelihood of the data (n data points)  

 LL = 1,n logP(Di |p,q,a)

But, one of the variables – the coin’s name - is hidden. We can 
marginalize:

 LL=  i=1,n log y=0,1 P(Di, y | p,q, a) 

However, the sum is inside the log, making ML solution difficult. 

Since the latent variable y is not observed, we cannot use the complete-
data log likelihood. Instead, we use the expectation of the complete-data 
log likelihood under the posterior distribution of the latent variable to 
approximate log p(Di| p’,q’,®’)

We think of the likelihood logP(Di|p’,q’,a’) as a random variable that 
depends on the value y of the coin in the ith toss. Therefore, instead of 
maximizing the LL we will maximize the expectation of this random 
variable (over the coin’s name).  [Justified using Jensen’s Inequality; later & above] 
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LL= i=1,n log y=0,1 P(Di, y | p,q, a) =
= i=1,n log y=0,1 P(Di|p,q, a )P(y|Di,p,q,a) = 
= i=1,n log E_y P(Di |p,q, a) ¸
¸ i=1,n E_y log P(Di |p,q, a)

Where the inequality is due to Jensen’s Inequality.
We maximize a lower bound on the Likelihood. 
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EM Algorithm (Coins) - III
We maximize the expectation of this random variable (over 
the coin name).

E[LL] = E[i=1,n log P(Di| p,q, a)] = i=1,nE[log P(Di| p,q, a)] =    

=  i=1,n P1
i log P(Di, 1 | p,q, a)] + (1-P1

i) log P(Di, 0 | p,q, a)]  

- P1
i log P1

i - (1-P1
i) log (1- P1

i )     

(Does not matter when we maximize)

This is due to the linearity of the expectation and the random 
variable definition:

log P(Di, y | p,q, a)  =    log P(Di, 1 | p,q, a)   with Probability  P1
i

log P(Di, 0 | p,q, a)   with Probability (1-P1
i) 
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EM Algorithm (Coins) - IV
Explicitly, we get:
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EM Algorithm (Coins) - V
Finally, to find the most likely parameters, we maximize the 
derivatives with respect to             : 

STEP 2: Maximization Step

(Sanity check: Think of the weighted fictional points)
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When computing the derivatives, 
notice P1

i here is a constant; it was 
computed using the current 

parameters in the E step

16



EM CS446 –Spring ‘17

Models with Hidden Variables 

17



EM CS446 –Spring ‘17

EM: General Setting

The EM algorithm is a general purpose algorithm for finding the 
maximum likelihood estimate in latent variable models. 

In the E-Step, we “fill in” the latent variables using the posterior, 
and in the M-Step, we maximize the expected complete log 
likelihood with respect to the complete posterior distribution.

 Let D = (x1, · · · , xN ) be the observed data, and 

 Let Z denote hidden random variables. 

 (We are not committing to any particular model.)

 Let θ be the model parameters. Then

µ* = argmaxµ p(x|µ) = argmaxµ z p(x,z |µ) = 

= argmaxµ z [p(z|µ)p(x|z, µ)] 

This expression is called the complete log likelihood. 
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EM: General Setting (2)

To derive the EM objective function, we re-write the complete 
log likelihood function by multiplying it by q(z)/q(z), where q(z) 
is an arbitrary distribution for the random variable z. 

log p(x|µ) = log z p(x ,z |µ) = log z p(z|µ) p(x|z,µ) q(z)/q(z) = 

= log Eq [p(z|µ) p(x|z,µ) /q(z)] ¸

¸ Eq log [p(z|µ) p(x|z,µ) /q(z)], 

Where the inequality is due to Jensen’s inequality applied to the 
concave function, log.  

We get the objective:

L(µ, q) = Eq [log p(z|µ)] + Eq [log p(x|z,µ)] - Eq [log q(z)]  

The last component is an Entropy component; it is also possible 
to write the objective so that it includes a KL divergence (a 
distance function between distributions) of q(z) and p(z|x,µ).

19

Jensen’s Inequality  for 
convex functions: 

E(f(x)) ¸ f(E(x)) 
But log is concave, so 

E(log(x)) · log (E(x)) 
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EM: General Setting (3)
EM now continues iteratively, as a gradient accent algorithm, 
where we choose q = p(z|x, µ). 

At the t-th step, we have q(t) and µ(t).

E-Step: update the posterior q, while holding µ(t) fixed: 

q(t+1) = argmaxq L(q, µ(t)) =  p(z|x, µ(t)). 

M-Step: update the model parameters to maximize the expected 
complete log-likelihood function:

µ(t+1) = argmaxµ L(q(t+1), µ) 

To wrap it up, with the right q:   

L(µ, q) = Eq log [p(z|µ) p(x|z,µ) /q(z)] 

= z p(z|x, µ) log [p(x, z|µ)/p(z|x, µ)] = 

= z p(z|x, µ) log [p(x, z|µ) p(x|µ)/p(z, x|µ)] = 

= z p(z|x, µ) log [p(x|µ)] = log [p(x|µ)] z p(z|x, µ) = log [p(x|µ)] 

So, by maximizing the objective function, we are also maximizing 
the log likelihood function. 
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Other q’s can be chosen [Samdani & Roth2012] to give other EM algorithms. Specifically, you can choose a 
q that chooses the most likely z in the E-step, and then continues to estimate the parameters (called 
Truncated EM, or Hard EM).
(Think back to the semi-supervised case)
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The General EM Procedure 

21
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EM Summary (so far)
EM is a general procedure for learning in the presence of  unobserved 
variables. 

We have shown how to use it in order to estimate the most likely density 
function for a mixture of (Bernoulli) distributions. 

EM is an iterative algorithm that can be shown to converge to a local 
maximum of the likelihood function.

It depends on assuming a family of probability distributions.

In this sense, it is a family of algorithms. The update rules you will derive 
depend on the model assumed.

It has been shown to be quite useful in practice, when the assumptions 
made on the probability distribution are correct,  but can fail otherwise.
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EM Summary (so far)
EM is a general procedure for learning in the presence of  unobserved 
variables. 

The (family of ) probability distribution is known; the problem is to 
estimate its parameters  

In the presence of hidden variables, we can often think about it as a 
problem of a mixture of distributions – the participating distributions are 
known, we need to estimate:  

 Parameters of the distributions 

 The mixture policy

Our previous example: Mixture of Bernoulli distributions
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Example: K-Means Algorithm
K- means is a clustering algorithm.
We are given data points, known to be sampled independently 
from  a mixture of k Normal distributions, with 
means  i, i=1,…k and the same standard variation   

x

p(x)

12
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Example: K-Means Algorithm
First, notice that if we knew that all the data points are taken 
from a normal distribution with mean  , finding its most likely 
value is easy.

We get many data points, D = {x1,…,xm}

Maximizing the log-likelihood is equivalent to minimizing: 

Calculate the derivative with respect to ,  we get that the 
minimal point, that is, the most likely mean is
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A mixture of Distributions
As in the coin example, the problem is that data is sampled from a 
mixture of k different normal distributions, and we do not know, 
for a given data point xi, where is it  sampled from. 

Assume that we observe data point xi ;what is the probability that it 
was sampled from the distribution j ?
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A Mixture of Distributions
As in the coin example, the problem is that data is sampled from a 
mixture of k different normal distributions, and we do not know, 
for a given each data point xi, where is it  sampled from. 

For a data point xi, define k binary hidden variables, zi1,zi2,…,zik, s.t 
zij =1 iff xi is sampled from the j-th distribution. 
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Example: K-Means Algorithms
Expectation: (here: h =                              ) 

Computing the likelihood given the observed data  D = {x1,…,xm} 
and the hypothesis h  (w/o the constant coefficient)
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Example: K-Means Algorithms
Maximization: Maximizing

with respect to      we get that:

Which yields:
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Summary: K-Means Algorithms
Given a set D = {x1,…,xm} of data points,
guess initial parameters
Compute (for all i,j)

and a new set of means:

repeat to convergence

 ]E[zp ijij 

k21 ,...,,, 

 





k

1n

2

i2

2

i2

])(x
2

1
exp[

])(x
2

1
exp[

n

j







 
]E[z

]xE[z

m

1i ij

m

1i iij

j









Notice that this algorithm will find the best k means in the 
sense of minimizing the sum of square distance.
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Summary: EM

EM is a general procedure for learning in the presence of   
unobserved variables. 

We have shown how to use it in order to estimate the most likely 
density function for a mixture of probability distributions.

EM is an iterative algorithm that can be shown to converge to a 
local maximum of the likelihood function. Thus, might requires 
many restarts.

It depends on assuming a family of probability distributions.

It has been shown to be quite useful in practice, when the 
assumptions made on the probability distribution are correct,  but 
can fail otherwise.

As examples, we have derived an important clustering algorithm,  
the k-means algorithm and have shown how to use it in order to 
estimate the most likely density function for a mixture of 
probability distributions. 
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More Thoughts about EM

Training: a sample of data points, (x0, x1 ,…, xn) 2 {0,1}n+1

Task: predict the value of x0, given assignments to all n 
variables. 
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More Thoughts about EM

Assume that a set xi 2 {0,1}n+1 of data points is  generated 
as follows:

Postulate a hidden variable Z, with k values, 1 · z · k 

with probability ®z, 1,k ®z = 1

Having randomly chosen a value z for the hidden variable, 
we choose the value  xi for each observable  Xi to be 1 
with probability pi

z and 0 otherwise, [i = 0, 1, 2, ….n]

Training: a sample of data points, (x0, x1 ,…, xn) 2 {0,1}n+1

Task: predict the value of x0, given assignments to all n 
variables. 
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More Thoughts about EM

Two options:

Parametric:   estimate the model using EM.                  
Once a model is known, use it to make predictions.
 Problem: Cannot use EM directly without an additional 

assumption on the way data is generated.

Non-Parametric:  Learn x0 directly as a function of 
the other variables.
 Problem: which function to try and learn? 

x0 turns out to be a linear function of the other 
variables, when k=2   (what does it mean)?

When k is known, the EM approach performs well; if 
an incorrect value is assumed the estimation fails; the 
linear methods performs better [Grove & Roth 2001]
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Another important distinction to attend to is the fact that, once you 
estimated all the parameters with EM, you can answer many prediction 
problems e.g., p(x0, x7,…,x8 |x1, x2 ,…, xn) while with Perceptron (say) 
you need to learn separate models for each prediction problem.
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EM 
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The EM Algorithm
Algorithm:
• Guess initial values for the hypothesis h=
• Expectation: Calculate    Q(h’,h) = E(Log P(Y|h’) | h, X)

using the current hypothesis h and the observed data X.

• Maximization: Replace the current hypothesis h by h’, that 
maximizes the Q function (the likelihood function)

set  h = h’,  such that  Q(h’,h) is maximal
• Repeat: Estimate the Expectation again.

k21 ,...,,, 
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