
CS 446 Machine Learning Fall 2016 Oct 20, 2016

Support Vector Machines
Professor: Dan Roth Scribe: C. Cheng

Overview

• COLT approach to explaining learning

• Data-dependent VC dimension

• SVM and optimization

• Soft SVM

1 Computational Learning Theory Approach

When discussing computational learning theory, we made the key assumptions
that we don’t know the distribution that governs the generation of examples,
but that the training and test distributions are the same.

Given this assumption, we were able to derive the generalization bound as

ErrD(h) < ErrTR(h) + P (VC(H), log(1/δ), 1/m)

We showed that the true error over the distribution is bounded by the train-
ing error plus something that depends on the complexity parameters. Figure 1

expressive

Figure 1: Trade-off between expressivity and generalization

shows two important curves. As the complexity of the hypothesis goes up, the
training error goes down (an expressive enough hypothesis can always fit the

Support Vector Machines-1

data). However, given the generalization bound above, the capacity increases;
in effect, test error increases as training error decreases. This is the trade-off
between the expressivity of the hypothesis class and the ability to generalize.
Ideally, we want to be somewhere in the middle, balancing between small em-
pirical error and generalizable hypothesis. This is also referred to as structural
risk minimization.

1.1 VC Dimension and Linear Classification

So far, we’ve discussed VC dimension to help with model selection; classes of
functions with smaller VC dimensions are better (eg. linear is better than
quadratic). However, this does not help us to choose between functions; when
we have two possible linear hypotheses, VC dimension alone doesn’t enable us
to distinguish between them.

Let X = R2, Y = {+1,−1}. In Figure 2, both hypotheses have zero training
error, but intuitively we might think h2 is the better classifier. We cannot use

Figure 2: Linear Hypotheses

VC dimension to quantify this intuition, as the generalization bound is the same
for both

Err(h) ≤ errTR(h) + Poly{VC(H), 1/m, log(1/δ)}

ErrTR(h1) = ErrTR(h2) = 0

h1, h2 ∈ Hlin(2),VC(Hlin(2)) = 3

In order to distinguish between these two hypotheses, we must develop the
notion of a data-dependent VC dimension: which – rather than simply being
dependent on a class of functions – takes the data into account. In the linear
classification setting, we must first define the notion of a margin.

Support Vector Machines-2

1.2 Margin and Data-Dependent VC Dimension

The margin γi of a point xi ∈ Rn with respect to a linear classifier h(x) =
sign(w ·x+b) is defined as the distance of xi from the hyperplane w ·x+b,

γi = |(w · x+ b)/‖w‖|

or the size of the dot product divided by the size of the hyperplane.

For a set of points, the margin is the distance of the point closest to the hyper-
plane

γ = min
i
γi = min

i
|(w · x+ b)/‖w‖|

With this in mind, we can develop the definition of data-dependent VC dimen-
sion

If Hγ is the space of all linear classifiers in Rn that separate the training data
with margin at least γ, then,

VC(Hγ) ≤ min(R2/γ2, n) + 1

where R is the radius of the smallest sphere in Rn that contains the data. Recall
that this is the mistake bound for Perceptron.

For such classifiers, then, we have a generalization bound in the form

Err(h) ≤ errTR + [(O(R2/γ2) + log(4/δ))/m]
1
2

Thus, if we use such a hypothesis class, and our training error is given by errTR,
then we have guarantees that our true error will be bounded as above, meaning
that we want as large of a margin as possible. Simply, large γ values gives small
data-dependent VC dimension of Hγ . In order to maximize this γ, we must
then minimize the size of w.

The algorithm that behaves in this way is referred to as a support vector ma-
chine.

1.3 Maximal Margin

Given dataset S, we define a maximal margin as

γ(S) = max
‖w‖=1

min
(x,y)∈S

|ywTx|

For a given w, first find the closest point. Then, find the w of size 1 that gives
the maximal margin value. Note that the selection of the point is in the min
and therefore the max does not change if we scale w, so its okay to only deal
with normalized w values.

Support Vector Machines-3

To derive the best hypothesis from these hypotheses, we look only at w values
that have a fixed size, and choose the one that gives minimum distance, such
that

argmax‖w‖=1 min
(x,y)∈S

|ywTx|

1.4 Margin and VC dimension

There are two principles that will help us derive the algorithm. The first one is
the Vapnik Theorem, and it is also the reason we want to maximized the margin.
It basically says that learnability is determined by the size of γ. Specifically,
if Hγ is the space of all linear classifiers in Rn that separate the training data
with margin at least γ, then

VC(Hγ) ≤ R2/γ2

where R is the radius of the smallest sphere in Rn that contains the data. The
VC dimension is inversely proportional to γ, which means that we would want
to maximize γ. This is the first observatio that will lead to an algorithmic
approach.
The second observation gives us a way to maximize the margin. It says that
the margin can be maximized if a small size w is retained. Consequently, the
algorithm will be: from among all those ws that agree with the data, find the
one with the minimal size ‖w‖.

1.5 Hard SVM

We want to choose the hyperplane that achieves the largest margin. That is,
given a data set S, find

w∗ = argmax‖w‖=1 min
(x,y)∈S

|ywTx|

This is basically the same as before. For a given w, first find the closest point.
Then, among all ws of size 1, find the w that maximizes this points margin.
To find this w∗, define w0 to be the solution to the following optimization
problem

w0 = argmin‖w‖2 : ∀(x, y) ∈ S, ywTx ≥ 1

Then, the normalization of w0

w0/‖w0‖ = argmax‖w‖=1 min
(x,y)∈S

ywTx

is returned as the solution. We claim that it corresponds to the largest margin
separating hyperplane.
To prove the claim, define w′ = w0/‖w0‖ and let w∗ be the largest-margin

Support Vector Machines-4

separating hyperplane of size 1. We need to show that w = w∗.
First note that w∗/γ(S) satisfies the constraints in the optimization problem.
Therefore, the size of w0 is

‖w0‖ ≤ ‖w∗/γ(S)‖ = 1/γ(S)

where ‖w∗‖ = 1.
Consequently, for any example (x, y) in the dataset S, from the definition of w′,
we have

yw′Tx = 1/‖w0‖
By the definition of w0, we have

ywT0 x ≥ 1/‖w0‖ ≥ γ(S)

but since ‖w‖ = 1 this implies that w corresponds to the largest margin, that
is w = w∗.
Essentially, what we’ve shown is that if we are solving this optimization problem,
the solution is the one that maximizes the margin. Immediately, it gives us an
algorithm. The sought after weight vector w is the solution of the following
optimization problem:

min
1

2
‖w‖2

Subject to ∀(x, y) ∈ S, ywTx ≥ 1

This is an optimization problem in (n+ 1) variables, with —S| = m inequality
constraints, since all data points have to satisfy the ywTx ≥ 1 constraints.

2 Support vector machines

2.1 Dual representation

The name Support Vector Machine stems from the fact that w∗ is supported by
(i.e. is the linear span of) the examples that are exactly at a distance 1/‖w∗‖
from the separating hyperplane. These vectors are therefore called support
vectors. In the figure below, the circles points are the ones we really care about.

To see it more clearly, we can move to what we call the dual representation.
Let w∗ be the minimizer of the SVM optimization problem that we formulated
before. Consider the set of all the examples S = {(xi, yi)}, let I be the set of all
the points that have distance 1 from the hyperplane, such that I = {i : w∗Tx =
1}. Then there exists coefficients αi > 0 such that w∗ can be written as a linear
combination of examples in I

w∗ =
∑
i∈I

yixi

Support Vector Machines-5

Figure 3: Support vectors

This representation should ring a bell. The solution is a linear combination
of important examples only, because the other examples can be moved around
without changing the margin. The examples that can change w are those that
are closest to the hyperplane. This is really the same representation we have
seen before in dual Perceptron.

2.2 Margin of a separating hyperplane

With the threshold unit included, a separating hyperplane is represented as

wTx+ b = 0

The above formulations are then represented in the figure below.

Figure 4: Margin of a separating hyperplane

With the assumption that data is linearly separable, the distance between wTx+

Support Vector Machines-6

b = 1 and wTx + b = −1 is 2/‖w‖. Then, the margin of a linear separator
wTx+b = 0 is 2/‖w‖. Since maximizing 2/‖w‖ is equivalent to minimizing ‖w‖,
thus minimizing 1

2w
Tw, the optimization problem can be formalized as

min
w,b

1

2
wTw

s.t. yi(w
Txi + b) ≥ 1,∀(x, y) ∈ S

2.3 Footnote about the threshold

We were cheating a little bit on the ease of transfer from the homogeneous
representation that goes through the origin to the one that does not, but the
difference is actually minimal. It does not matter so much. Here is how you can
observe this.
Similar to Perceptron, we can augment vectors to handle the bias term. Let
−→x = (x, 1) and −→w = (w, b), so that −→w T−→x = wTx+ b.
Then, consider the optimization formulation we derived

min−→w

1

2
−→w T−→w

s.t. yi
−→w Txi ≥ 1,∀(x, y) ∈ S

which is what we would write when −→w goes through the origin.
However, if the bias term b is explicitly written, the formulation is slightly
different from the above one, because it is equivalent to

min
w,b

1

2
wTw +

1

2
b2

s.t. yi(w
Txi + b) ≥ 1,∀(x, y) ∈ S

and we got 1
2b

2 as an additional term of the regularizer. This bias term usually
doesnt matter. For simplicity, we ignore the bias term, although it is regularized
mathematically.

3 Soft SVM

3.1 Key issues

Training of an SVM used to be very time consuming, because people had to solve
quadratic programs. Nowadays, stochastic gradient descent (SGD) algorithm
can be used to learn SVM. It is kind of interesting, because even though SGD
method has been with us since Newton was around, people haven’t made a
connection. It took time for people to realize that it is the way to do it, due to
some technical difficulties.

Support Vector Machines-7

We were kind of convinced that what we want is to maximize the margin. Is
it really what we want to do? Is the objective function we are optimizing the
right one?
The figure below shows the data of 17,000 dimensional context sensitive spelling.
The histogram illustrate the distances of points from the hyperplane.

Figure 5: Histogram of distances of points from the hyperplane

In this case, the margin cannot be maximized, because there is a continuum of
examples. It is also not clear whether eliminating some points around the origin
and maximizing the margin is the right thing to do. The data might not be
symmetric. We should take the distribution of points into account, rather than
taking the extreme positives and extreme negatives into account. In principle,
taking the extremes could make the decision very unstable, because adding en
extreme point could bias the linear separator significantly.
In practice, even in the separable case, we may not want to depend on the points
closest to the hyperplane but rather on the distribution of the distance. If only
a few are close, maybe we can dismiss them. This applies both to generalization
bounds and to the algorithm.

3.2 Formulation of soft SVM

In practice, people often need to soften the SVM formulation. By softening, it
means taking into account the fact that perhaps learning of the training data
cannot be consistent. The data might not be linearly separable, so we might not
be able to find the linear separator that leaves all the examples outside some
path which we define to be of width 1.
Therefore, the constraint

ywTx ≥ 1

Support Vector Machines-8

typically has to be relaxed. It can be done by introducing a per-example slack
variable ξi and requiring

ywTx ≥ 1− ξi, ξi ≥ 0

The ξi can be really small, which means the point actually goes into the fixed
the separator. If it is larger, the point could go to the other side of the separator.
Rather than solving the standard SVM optimization problem as before, now we
have to solve

min
w,ξi

1

2
wTw + C

∑
i

ξi

s.t. yiw
Txi ≥ 1− ξi; ξi ≥ 0 ∀i

Notice that coefficient C is introduced and it allows us to weigh which compo-
nent of the objective function is more important to us.
The constraints can also be written as

ξi ≥ 1− yiwTxi; ξi ≥ 0 ∀i

which is very similar with the context of hinge loss.
In optimum,

ξi = max(0, 1− yiwTxi)

Using this notation, basically what we are optimizing is

min
w

1

2
wTw + C

∑
i

max(0, 1− yiwTxi)

What is the interpretation of this?
The second term is really the empirical loss, which is what happens on the data.
The first term is the regularization term. For sample complexity reasons, we
want to make sure that the norm of w is small.
The hard SVM formulation assumes linearly separable data, so the loss is zero.
In the general case, the relaxation attempts to minimize the empirical error.
It is similar with the move we made from consistent learner to agnostic learner
when talking about COLT. Computationally, a natural relaxation is to maximize
the margin while minimizing the number of examples that violate the margin
(separability) constraints. However, this leads to a non-convex problem that is
hard to solve. Instead, we move to a surrogate loss function that is convex, and
minimizing the surrogate loss led us to the optimization problem. SVM relies
on the hinge loss function, such that we need to optimize

min
w

1

2
‖w‖2 + C

∑
(x,y)∈S

max(0, 1− ywTx)

where the parameter C controls the tradeoff between large margin (small ‖w‖)
and small hinge-loss.

Support Vector Machines-9

3.3 SVM Objective Function

The problem we solved is

min
w

1

2
‖w‖2 + C

∑
ξi

where ξi > 0 is called a slack variable (loss on the ith example), and is defined
by

ξi = max(0, 1− yiwTxi)

Equivalently, we can say that

yiw
Txi ≥ 1− ξi; ξi ≥ 0

And this can be written as

min
w

1

2
‖w‖2 + C

∑
ξi

The regularization term 1
2‖w‖

2 can be replaced by other regularization func-
tions. The empirical loss term C

∑
ξi can be replaced by other loss functions.

What we have been talking about is the L1-loss SVM. The regularization term
be changed in multiple ways. One way is to square the hinge loss to obtain

min
w

1

2
wTw + C

I∑
i=1

max(0, 1− yiwTxi)

which gives the L2-loss SVM.
Changing the loss function to the following one

min
w

1

2
wTw + C

I∑
i=1

log(1 + e−yiw
T xi)

gives the logistic regression.
Graphically, the three loss functions are shown in the figure below

Conceptually, it is the same thing, but each replacement gives us a slightly
different algorithm. The general form of a learning algorithm is still minimizing
the empirical loss, while regularizing to avoid over fitting. Theoretically, adding
a regularization term motivated improvement over the original algorithm we
have seen at the beginning of the semester.

3.4 Overfitting and underfitting

We have played with the notion of overfitting and underfitting, or bias and
variance, or empirical error and regularization. They are basically the same

Support Vector Machines-10

Figure 6: Different loss functions with no significant difference

Figure 7

thing. The following figure shows the relationship of expected error versus
model complexity.

When the model is simple, you don’t have many options and have to make a lot
of errors on the training data, thus the bias will be large. However, it will be a
stable model with low variance, because the model is simple and changing the
data a little bit does not affect much. On the other hand, an expressive model
can fit the training data well, but the model will be very sensitive to change of
the data. This also guides you to choose a small C or a large C in the tradeoff
between regularization and empirical error.

Support Vector Machines-11

4 Optimization

See slides for details. Additional slides on optimization are available.

Support Vector Machines-12

