
CS 446 Machine Learning Fall 2016 Oct 04, 2016

Neural Networks
Professor: Dan Roth Scribe: C. Cheng, C. Cervantes

Overview

• Introduction

• Learning rules

• Over-training prevention

• Input-output coding

• Auto-associative networks

• Convolutional Neural Networks

• Recurrent Neural Networks

1 Introduction

Neural networks can be thought of as a robust approach to approximating real-
valued, discrete-values, and vector-valued target functions. They’re particularly
effective for complex and hard to interpret input data, and have had a lot of
recent success in handwritten character recognition, speech recognition, object
recognition, and some NLP problems.

We can write neural networks as functions such that

NN :X → Y,

where X can be a continuous space [0, 1]n or a discrete space {0, 1}n and Y =
[0, 1] or {0, 1}, correspondingly. In this way, it can be thought of as a classifier,
but it can also be used to approximate other real-valued functions.

Neural networks themselves were named after – and inspired by – biological
systems. However, there is actually very little connection to this architecture
and anything we know (thought we don’t know a lot) about a real neural system.
In essence, a neural network is a machine learning algorithm with a specific
architecture.

We are currently on rising part of a wave of interest in neural network archi-
tectures, after a long downtime from the mid-nineties, for multiple reasons.
The wave came back in the last five years or so, because of better computer

Neural Networks-1



architecture (GPUs, parallelism) and a lot more data than before. Tiny al-
gorithmic changes were made since the late-eighties for the optical character
recognition problem (OCR), but the recent change has been driven by the ar-
chitecture.

Interestingly, one emerging perspective on neural networks is that of interme-
diate representations. In the past, neural networks were thought of as one of
of the family of function approximators (perceptron, boosting, decision trees,
etc.). Now, there is a belief that the hidden layers – that is, intermediate neural
network representations – that age generated during learning may be meaning-
ful. Ideas are being developed on the value of these intermediate representations
for transfer learning etc.

1.1 Basic units

In a linear function, we’re interested in the basic unit oi = w ·x: the dot product
of the weights and the input that gives an output. In neural networks, however,
we want to introduce non-linearity to increase expressivity. If all units were
linear, stacking them together would still be a linear function, and thus we add
no expressivity.

One way to add this non-linearity is to take the sign of the dot product, such
that oi = sgn(w · x). However, this unit would not be differentiable and thus
would be inappropriate for gradient descent.

In neural networks, we must propagate error from the top of the network to the
bottom. To do so using gradient descent, we must use threshold units that are
differentiable.

Figure 1: Linear units in the network

One option for introducing differentiable non-linearity is with a smooth non-
linear approximation oi = [1 + exp(−w · x)]

−1
.

As shown in Figure 2, it looks quite similar to a step function. This key idea
was invented in 1970s, though not originally in the context of neural networks.

The basic operation is the linear sum. The net input to a unit is defined as

Neural Networks-2



Figure 2: A differentiable threshold unit

netj =
∑
wijxi, and the output of a unit is given by

oj =
1

1 + exp(−(netj − Tj))
,

where Tj is the threshold. This threshold is something we don’t necessarily have
to carry with us, as it behaves like a weight.

1.2 History: neural computation

In 1943, McCollough and Pitts showed that linear threshold units were expres-
sive, could be used to compute logical functions, and – by properly setting
weights – could be used to build basic logic gates

• AND: wij = Tj/n

• OR: wij = Tj

• NOT: use negative weight

Given these basic gates, arbitrary logic circuits, finite-state machines, and com-
puters can be built. Also, since DNF and CNF are universal representations,
any Boolean function could be specified using a two layer network (with nega-
tion).

Learning came just a bit later. In 1949, Hebb suggested that if two units are
both active (firing) then the weights between them should increase:

wij = wij +Roioj ,

where R is a constant called learning rate, acting upon the product of activa-
tions.

Following that, in 1959, Rosenblatt suggested that when a target output value
is provided for a single neuron with fixed input, it can incrementally change
weights and learn to produce the output using the perceptron learning rule.
This led to the perceptron learning algorithm, which is really the basic learning
machinery that we use in machine learning.

Neural Networks-3



1.3 Learning Rules

If the neuron sees xi as input, and the output it produces is oj , given the target
output tj for the output unit, the perceptron learning algorithm updates weights
according to

wij ← wij +R(tj − oj)xi.

Specifically, perceptron updates in a mistake-driven way. If the output is correct,
the weights won’t be changed. Only if the output is wrong, we update the
weights for all inputs which are 1.

About the same time, Widrow and Hoff developed a slightly different update
rule, which is called the Widrow-Hoff rule. Essentially, an least-mean-square
error is defined, such that

Err(w(j)) =
1

2

∑
d∈D

(td − od)2,

where od =
∑

i wijxi = w(j) · x is the output of linear unit on example d, and
td is the target output for example d. They suggested to use gradient descent
to determine the weight vector that minimizes the error.

These update rules are related to gradient descent. Even multiplicative update
rules, which are not directly related to gradient descent, can be thought of as ex-
ponential gradient descent. The gradient descent is happening in an exponential
way, rather than additive.

2 Learning with a Multi-Layer Perceptron

2.1 Intuition

So far, everything we’ve done so far has involved modifying the feature space;
we start with a space that a linear function cannot express, and move to a
representation that can be expressed linearly.

One question that can be asked is: can the learning algorithm learn this expres-
sive representation directly?

Decision trees are one family of algorithms that do this, and multi-layer neural
networks is another. By stacking several layers of threshold elements, where each
layer uses the output as the previous as input, a multi-layer neural network can
overcome the expressivity limitation of a single threshold element.

Neural Networks-4



2.2 Learning

It is easy to learn the top layer of a network, as it is just a linear unit; the
feedback (truth) given at the top layer, the weights of the layer below can be
updated using either the perceptron update rule or gradient descent, depending
on which loss function is applied.

Figure 3: Stack of several layers of threshold elements

The intuition for why downstream weights can be updated in this way is given
by the chain rule

If y is a function of x, and z is a function of y, then z is a function of x

To differentiate z relative to x, then, we must also differentiate that intermediate
function, such that

∂z

∂x
=
∂z

∂y

∂y

∂z

In the case of neural networks, all the activation units are differentiable, as
is the output of the network. Thus, if we can define an error function (eg.
sum of squares) that is a differentiable function of the output, we can evalu-
ate the derivatives of this error with respect to the weights, and find weights
that minimize the error using gradient descent or other methods. This method
of propegating error from the top layers to lower layers is called backpropaga-
tion.

3 Backpropagation

The backpropagation algorithm learns the weights for a multi-layer network,
given a network with a fixed set of units and interconnections. The error function
used here is the squared error (LMS). Every other error function could work,
but here the learning rules are developed according to LMS. Since there could

Neural Networks-5



be multiple output units, we define the error as the sum over all the network
output units

Err(w) =
1

2

∑
d∈D

∑
k∈K

(tkd − okd)2,

where D is the set of training examples and K is the set of output units.

Figure 4: A multi-layer network with k output units

This is used to derive the (global) learning rule which performs gradient descent
in the weight space in an attempt to minimize the error function

∆wij = −R ∂E

∂wij

.

3.1 Derivation of the Learning Rule

For each training example d, every weight wij is updated incrementally by
adding to it ∆wji

∆wij = −R ∂Ed

∂wij

where R is the learning rate, and Ed is the error on training example d, summed
over all output units in the network

Ed(w) =
1

2

∑
k∈K

(tk − ok)2.

Here tk is the target output value of unit k for training example d, and ok is
the output of unit k given training example d.

Notice that wij can only influence the output through netj , such that

netj =
∑

wijxij

where xij is the ith input to unit j (thus xij is from the previous layer of unit
j).

Neural Networks-6



Therefore, we can use the chain rule to write

∂Ed

∂wij
=

∂Ed

∂netj

∂netj
∂wij

=
∂Ed

∂netj
xij .

Now our task is to derive a convenient expression for ∂Ed

∂netj
. We consider two

cases: the case where unit j is an output unit in the network, and the case
where unit j is a hidden unit.

3.1.1 Derivation of Learning Rules for Output Unit Weights

Just as wij can only influence the rest of the network only through netj , netj
can influence the network only through oj . Therefore, we can again invoke the
chain rule to write

∂Ed

∂netj
=
∂Ed

∂oj

∂oj
∂netj

.

Recall that Ed = 1
2

∑
k∈K(tk − ok)2, thus

∂Ed

∂oj
=

∂

∂oj

1

2

∑
k∈K

(tk − ok)2

Figure 5: Output unit weights

The derivatives ∂
∂oj

(tk − ok)2 will be zero for all output units k except when

k = j. Therefore,

∂Ed

∂oj
=

∂

∂oj
(tj − oj)2 =

1

2
2(tj − oj)

∂(tj − oj)
∂oj

Next, consider the sigmoid function y = 1
1+exp(−(x−T )) , its derivative w.r.t. x is

given by
∂y

∂x
=

exp(−(x− T ))

(1 + exp(−(x− T )))
2 = y(1− y)

Neural Networks-7



Since oj = 1
1+exp(−(netj−Tj))

is a sigmoid function, we have

∂oj
∂netj

= oj(1− oj)

Then, we have
∂Ed

∂netj
= −(tj − oj)oj(1− oj)

Hence, the learning rule of weights of output units can be written as

∆wij = −R ∂Ed

∂wij
= R(tj − oj)oj(1− oj)xij

or
∆wij = Rδjxij

where δj = (tj−oj)oj(1−oj) is dependent on the output and its feedback.

3.1.2 Derivation of Learning Rules for Hidden Unit Weights

Now we already know how to update the output layer, we need to figure out how
to propagate the error to hidden units. In the case of where j is a hidden unit in
the network, the derivation of the training rule for wij must take into account
the indirect ways in which wij can influence the network outputs and thus Ed.
For this reason, we will find it useful to refer to the set of all units immediately
downstream of unit j in the network (i.e., all units whose direct inputs include
the output of unit j). We denote this set of units by downstream(j).

Figure 6: Hidden unit weights

Notice that netj can influence the network outputs only through the units in
downstream(j). Therefore, we have

∂Ed

∂netj
=

∑
k∈downstream(j)

∂Ed

∂netk

∂netk
∂netj

=
∑

k∈downstream(j)

−δk
∂netk
∂netj

Neural Networks-8



=
∑

k∈downstream(j)

−δk
∂netk
oj

∂oj
∂netk

=
∑

k∈downstream(j)

−δkwjkoj(1− oj)

Using δj to denote − ∂Ed

∂netj
, we have

δj = oj(1− oj)
∑

k∈downstream(j)

δkwjk

and hence the learning rule of weights of hidden units can be written as

∆wij = −R ∂Ed

∂wij
= −R ∂Ed

∂netj
xij = Rδjxij

Basically, what we have is an incrementing algorithm. We started by determin-
ing the error for the output units. Then, backpropagate this error layer by layer
through the network, changing weights appropriately in each layer.

3.2 The Backpropagation Learning Rule

Now let’s summarize what we have done. It is described for three layers, but
exactly the same is going to work for k layers.

First, create a fully connected three layer network and initialize weights. Then,
go example by example, until all examples produce the correct output within ε
(or other criteria).

For each example in the training set
Compute the network output for this example ok
Compute the error between the output and the target value

δk = (tk − ok)ok(1− ok)
For each output unit k, compute error term

δj = oj(1− oj)
∑

k∈downstream(j) δkwjk

For each hidden unit, compute error term
∆wij = Rδjxij

Update network weights wij

wij ← wij + ∆wij

The algorithm described above updates weights incrementally, one example at
a time, just like stochastic gradient descent. In principle, you may want to do it
in batches, but that would complicate the derivations. Conceptually, they are
the same algorithm.
The same algorithm holds for more hidden layers. Once we describe the second
layer, exactly the same thing will work with more layers.

Neural Networks-9



Figure 7: More hidden layers

4 Training

It is important to remember that there is no guarantee of convergence: the al-
gorithm may oscillate or reach a local minima. In practice, many large networks
can be trained on large amounts of data requiring many hours of computation
time.

As in all gradient algorithms driven algorithms, and important question is ter-
mination criteria: number of epochs, threshold on training set error, no decrease
in error, increased error on a validation set, etc.

To avoid local minima, one useful technique is to use several trials with different
random initial weights with majority or voting.

4.1 Over-training and over-fitting

Running too many epochs may over-train the network and result in over-fitting
(improved result on training, decrease in performance on test set).

We have talked about some standard techniques to avoid over-training, and
some of them you have experimented with.

Keeping a hold-out validation set and test accuracy after every epoch is going
to work. You can also maintain weights for best performing network on the
validation set and return it when performance decreases significantly beyond
that. To avoid losing training data to validation, use k-fold cross-validation to
determine the average number of epochs that optimizes validation performance
and train on the full data set using this many epochs to produce the final
results.

Neural Networks-10



4.2 Network Architecture

Apart from parameters and tuning methodologies, there is also question on what
should be the architecture of the network: how many hidden layers and in what
arrangement.

Since it was known that a single hidden layer is enough to approximate any
function, it used to be the case that few hidden layers were used. However,
using too few hidden units might prevent the system from adequately fitting
the data and learning the concept, while using too many hidden units leads to
over-fitting.

Various modern systems train very deep networks, which is not a simple issue
because the gradients are going to be smaller and smaller as you go down. This
vanishing gradient problem is difficult to deal with.

As with the number of layers, there is no theory behind the size of the layers
themselves, and the cross-validation method is one way to approximate number
of hidden units in a layer.

Another approach to prevent over-fitting is weight-decay: all weights are mul-
tiplied by some fraction in (0,1) after every epoch. In this way, smaller weights
and less complex hypothesis are encouraged. Equivalently, we can change the
error function to include a term for the sum of the squares of the weights in
the network. These are general techniques that can be applied to other algo-
rithms.

4.3 Dropout Training

Previously, we’ve discussed that having weights of value zero simplifies the
learned hypothesis function, which should reduce overfitting. Dropout train-
ing simulates the notion of zero weights by eliminating some of the hidden units
while training. In dropout training, each time an example is read, some hidden
units are removed with probability p, and the network is trained and propagates
error as if those weights were not there.

(a) Dropout Training (b) Dropout of 50% of the hidden units
and 20% of the input units

Experiments showed that if dropout scheme is used, a more robust result can
be obtained.

Neural Networks-11



Though dropout training was introduced in the context of neural networks, it
can be applies to all learning algorithms; rather than changing the architecture
of the network, dropout can be thought of as a change in the input.

Given a set of examples, a learning algorithm will determine which features are
important. The weights for those important features will then be large and
thus dominate the prediction. In the scheme of dropout learning, some features
are randomly dropped as examples are read, forcing the learning algorithm to
attend to all features.

In practice, it turns out that this idea is effective and often much stronger than
other known regularizers.

5 Inputs, Outputs, and Hidden Layers

5.1 Input / Output Coding

What should the inputs and outputs to the network be?

Typically, each output of the network can be thought of independently as a real
or binary value.

Where inputs are concerned, people prefer binary values over categorical, since
it is difficult to encode categorical relations (5 > 4) in a way the network can
understand. In the past, it was common to binarize inputs, but these quickly
became very high dimensional. In NLP, for example, inputs could have a million
dimensions and cause backpropagation to be extremely slow.

It is currently common practice to encode inputs in relatively few units, where
these encodings are produced by a different process. For example, though words
can be encoded as sparse, high-dimensional bit-vectors, it is common to use
dense, real-valued representations as input to a network.

Sparse representations can be used with neural networks, but only in conjunction
with dimensionality reduction methods.

Assume m examples, each with a million features (n = 106; input matrix is m×
n). It is not possible to run backpropogation on this input, but by multiplying
the input by a normally distributed random matrix of size n×300, you produce
a dense m × 300 matrix: that is, each example has gone from a sparse 106

element vector to a sense 300 element vector.

One of the reasons that it works is that what you had was a very sparse million-
dimension vector with just a few 1s. These 1s choose which column in the
random matrix that are summed up. Although some meaning is lost along the
way, similarities between any two vectors are maintained.

Neural Networks-12



5.2 Hidden Layer Representation

In essence, backpropagation (until the last layer) is a form of learning features
over inputs, and the last layer is just a linear learning algorithm over these new
features.

Sometimes backpropagation will define new hidden layer features that are not
explicit in the input representation, but which capture properties of the input
instances that are most relevant to learning the target function. Since the last
layer is a linear function over these features, trained hidden units can be seen
as newly constructed features that re-represent the examples so that they are
linearly separable.

5.3 Auto-Associative Networks

Backpropogation can be used to generate this hidden layer feature representa-
tion, as is the case in auto-associative networks, where the output must repro-
duce the input, and the item of interest is the hidden layer between them.

For example, assume numbers 1 to 8 are encoded as 8-bit vectors with only one
bit on (eg., 2 encoded as 01000000), and a hidden layer is three nodes. If the

Figure 9: An auto-associative network with 8 inputs, 3 hidden units and 8
outputs

network is trained in this way, the hidden layer becomes a binary encoding of
eight numbers; learning, here, is a compression mechanism.

Stated more generally, given examples x, an auto-associative network learns to
produce x as output, where a hidden layer is of lower dimensionalty. The learned
representation is thus more compact, and can be used to chain auto-associative
networks, as shown in Figure 10. In such a network, the reconstruction layer is
dropped after optimization and a new layer is added. These kinds of tricks have
been found to be useful for computer vision, and more generally people have
found that the final layer of a network can be transferred; using the final layer
of one network can be helpful for slightly different problems. This is something
interesting that has not been completely explored yet.

Neural Networks-13



Figure 10: Stacking Auto-encoder

6 Receptive Fields

Consider the problem of encoding input into mathematical models. Humans
have sensory elements – eyes and ears – to encode information from the environ-
ment. Neural networks also require eyes and ears – things to encode information
– in order to process images and sentences. This is a big challenge and there
are different ways to handle this, for different tasks and different types of data.
However, no ideal, one-size-fits-all solution exists.

In neural network jargon, the input connections can be referred to as receptive
fields. This term is borrowed from biology, and refers to the individual sensory
neuron for which a stimulus will trigger the neuron to fire. For example, in the
auditory system, receptive fields can correspond to volumes in auditory space.
However, designing proper receptive fields for the input Neurons is a significant
challenge.

Consider using a neural network to predict whether an image contains a face.
Receptive fields should provide expressive features from the raw image data,
converting the image to inputs that the neural network can use. One approach

Figure 11: Task with image inputs

to do so would be to design a filter to tell how ”edgy” the picture is, and give
the value to the neural network. Based on this encoding, the whole picture, no
matter how big it is, is converted to a real-valued signal. Although it might not
be an ideal approach to detecting faces, it is a very good starting point.

Another idea is that for every pixel in the input image, give all the pixels to

Neural Networks-14



each unit in the input layer. It will work even when you have images with
different sizes. However, the problem is that this network does not have any
understanding of the local connections between pixels (spatial correlations are
lost).

(a) All image info to all units (b) Image divided into blocks

Rather than giving all the image data to all units in the input layer, we could
create small blocks within the image. Each unit is then responsible for a certain
block in the image. As shown in Figure 12b above, the blocks are disjoint. Inside
each block, we still have the problem of losing spatial correlations. Another issue
is when we are moving from block to block, the smoothness of moving from pixel
to pixel is lost. Therefore, this approach is also not ideal.

7 Convolutional layers

These days, people commonly create filters to capture different patterns in the
input space. For images, these filters are matrices. Each of the filters scans

Figure 13: Convolutional layer

over the image and creates different outputs. For each filter, there is a different
output. For example, a filter can be designed to be sensitive to sharp corners.
Using the filters, not only the spatial correlations are preserved, desired prop-
erties of the image can also be obtained. This idea can be generalized to other
problems – such as text – but this idea also lies at the heart of convolutional
neural networks.

Neural Networks-15



7.1 Convolutional Operator

Convolution is a mathematical operator (denoted by ∗ symbol), in one-dimension
it is defined as

(x ∗ h)(t) =

∫
x(τ)h(t− τ)dτ

(x ∗ h)[n] =
∑
m

x[m]h[n−m]

for continuous and discrete cases, respectively. In the definition above, x and
h are both functions of t (or n). Let’s say x is the input, and h is the filter.
Convolution of x and h is just an integration of product of x and flipped h.
Convolution is very similar to cross-correlation, except that in convolution one of

Figure 14: An example of convolution

the functions is flipped. In two dimensions, the idea is the same; flip one matrix
and slide it on the other matrix. In the example below, the image is convolved

Figure 15: Convolution in 2D

with the ’sharpen’ kernel matrix. First, flip the matrix both vertically and
horizontally. Then, starting from one corner of the image, multiply this matrix
element-wise with the matrices representing blocks of pixels in the image. Sum
them up, and put it in another image. Keep doing this for all blocks of size
3-by-3 over the whole image. To deal with the boundaries, we can either start
within the boundaries, or pad zero values around the image. The result is going
to be another picture, sharper than the previous one. Likewise, we can design
filters for other purposes.

In practice, Fast-Fourier-Transform (FFT) is applied to compute the convolu-
tions. For n inputs, the complexity of the convolution operator is n log n. For
two-dimensions, each convolution takes MN logMN time, where the size of
input is MN .

Neural Networks-16



Figure 16: Example: sharpen kernel

7.2 Convolution and Pooling

So far, we have the inputs and the convolutional layer. The convolution of
the input (vector/matrix) with weights (vector/matrix) results in a response
vector/matrix. We can have multiple filters (four in the example shown in the
figure below) in each convolutional layer, each producing an output. If we have

Figure 17: Convolutional layer

multiple channels in the input – a channel for blue color and a channel for green,
for example – each channel will have a set of outputs.

Now the sizes of the outputs depend on the sizes of the inputs. People in
the community are actually using something very simple called a pooling layer,
which is a layer that reduces input of different sizes to a fixed size. There are

Figure 18: Pooling

different variations of pooling. For max pooling, simply take the value of the

Neural Networks-17



block with the largest value. One could also take the average value of blocks,
or any other combinations of the values.

• Max pooling:
hi[n] = max

i∈N(n)
h̃[i]

• Average pooling:

hi[n] =
1

n

∑
i∈N(n)

h̃[i]

• L-2 pooling:

hi[n] =
1

n

√ ∑
i∈N(n)

h̃2[i]

7.3 Convolutional Neural Networks

Combined, the convolution and pooling operations are said to constitute a single
convolutional stack.

1. Convolve an input with a filter → produce outputs of variable sizes

2. Use pooling to shrink outputs to a single, desired size

Figure 19: One-stage convolutional net

We can then combine these stacks as often as we want; the size of output depends
on the number of features, channels and filters and design choices. We can give
an image as input, and get a class label as prediction. This whole thing is a
convolutional network.

Figure 20: Convolutional Neural Network

7.4 Training a ConvNet

Remember in backpropagation we started from the error terms in the last layer,
and passed them back to the previous layers, one by one. The same procedure
from backpropagation applies here.

Neural Networks-18



Consider the case of max pooling. This layer only routes the gradient to the
input that has the highest value in the forward pass. Therefore, during the
forward pass of a pooling layer it is common to keep track of the index of
the max activation (sometimes called the switches) so that gradient routing is
efficient during backpropagation. Therefore, we have δ = ∂Ed

∂yi
. Derivations are

Figure 21: Backpropagation for ConvNets

detailed in the lecture slides.

7.5 Example of ConvNets

To get more intuition about ConvNets, let’s look at the following example of
identifying whether there is a car in an image. In the first stage, we have
convolutions with a bunch of filters and more sets of convolutions in the following
stages. When we are training, what are we really training? We are training

Figure 22: Example of identifying a car with ConvNet

the filters. Our task is to identify whether a car is in the image, but at each
stage, there are multiple filters. Usually, in the early stages, the filters are more
sensitive to more general and less detailed elements of the picture, as shown in
the figures above. In later stages, more detailed pieces are favored.

Neural Networks-19



7.6 History

In 1980s, Fukushima designed network with same basic structure but did not
train by backpropagation. The first successful applications of Convolutional
Networks was done by Yann LeCun in 1990s (LeNet). The LeNet was used to

Figure 23: Example system: LeNet

read zip codes, digits, etc.

There are many variants nowadays, such as GoogLeNet developed in Google,
but the core idea is the same.

8 Neural Network Depth

It used to be the case that people preferred small, shallow networks, since it
was known that even a single hidden layer could approximate any function.
Recently, however, it’s common to use deeper networks. Consider Figure 24; the
error decreases as depth increases in recent years. Though deeper networks are

Figure 24: Revolution of Depth

generally more accurate, it is not clear theoretically why this is the case.

Neural Networks-20



9 Recurrent Neural Networks

In the feed-forward neural network architecture, there are no cycles, because
error must be propagated backwards. In principle RNNs have cycles, but in
practice these cycles are broken. An RNN is a digraph that has cycles, which

Figure 25: RNN is a digraph

can act as memory; the hidden states can carry information about a potentially
unbounded number of previous inputs. In practice we essentially we break the
cycles in an RNN by unwrapping it across time.

Consider the cyclic representation in Figure 26. Assume that there is a time

Figure 26: Cyclic representation of a neural network

delay of 1 in using each connection. W1, W2, W3, and W4 are the weights.
Starting from the initial states at time=0, keep reusing the same weights, the
cycles are unwrapped over time.

9.1 An NLP Example

Training a general RNNs can be hard. Here we will focus on a special family
of RNNs that predict on chain-like input. Consider the task of Part-of-Speech
(POS) tagging Given a sentence of words, the RNN should output a POS tag
for each of the word in the sentence.

Neural Networks-21



Figure 27: POS tagging words in a sentence

There are several issues we have to handle. First of all, there are connections
between labels. For example, verbs tend to appear after adverbs. Second, some
sentences tend to be longer than the other ones. We have to handle variable
sizes of inputs. Also, there is interdependence between elements of the inputs.
The final decision is based on an intricate interdependence of the words on each
other.

9.2 Chain RNN

To handle the chain-like input, we can design an RNN with a chain-like struc-
ture.

Figure 28: An RNN with a chain-like structure

As shown in Figure 28, the xt’s are values obtained from the input space. They
are vector representations of the words. Hidden (memory) units are another set
of vectors. They are computed from the past memory and the current word.
Each input is combined with a current hidden state, and another hidden state
is produced. Each ht contains information about previous inputs and previous
hidden units ht−1, ht−2, etc. They summarize the sentence up to each time step
t, which in this example refers to the words in the sentence.

The structure shown in the above figure is the same structure being applied
multiple times (three in the figure). It is not a three-layer stack model. Instead,
it is a fixed structure, whose output is applied again to the same structure. It
is like applying it multiple times to itself. That is a big difference from the
fully-connected feed-forward networks.

Depending on the task, prediction can be made on each word or each sentence.
That is really a design choice.

Neural Networks-22



9.3 Bi-Directional RNNs

Rather than having just one-directional structure, in which the prediction would
only depend on previous contexts, you can have bi-directional structures like the
one shown in Figure 29 Using the same idea, the model can be made further

Figure 29: An RNN with a bi-directional structure

complicated, like the stack of bi-directional networks shown in the below figure.

Figure 30: stack of bi-directional networks

9.4 Training

In the POS tagging task, each word is represented as a vector of fixed size.
Consider initializing each word with a random weight. Now, the representation
for each word is a set of parameters we must train. These input representations
are then multiplied by a matrix to get the hidden state from the previous state,
which is multiplied by another matrix to get the next hidden state. This process
is how we transfer from one hidden state to the next; the matrices involved are
more parameters that must be trained.

Given these hidden states, we multiply them with a matrix, apply the softmax
function, and produce a distribution over the output labels. This final matrix is

Neural Networks-23



Figure 31: Training an RNN

also another set of parameters that must be learned. The parameters we have
to train include the matrix multiplied to generate outputs, the matrix that gives
the hidden state from the previous state, and the matrix that gives the hidden
state from the vector representations of the input values.

To actually train the RNN, we need to generalize the same ideas from back-
propagation for feed-forward networks.

As a starting point, we first get the total output error E(y, t) =
∑T

t=1Et(yt, tt),
which is computed over time (words across the sentence). Then, we propagate
the gradients of this error in the outputs back to the parameters. The gradients
w.r.t. matrix W are calculated as

∂E

∂W
=

T∑
t=1

∂Et

∂W

where

∂Et

∂W
=

T∑
t=1

∂Et

∂yt

∂yt
∂ht

∂ht
∂ht−k

∂ht−k
∂W

What is a little tricky here is to calculate the gradient of a hidden state w.r.t
another previous hidden state. It can actually be calculated as the product of
a bunch of matrices.

∂ht
∂ht−1

= Whdiag[f ′(Whht−1 +Wixt)]

∂ht
∂ht−k

=

t∏
j=t−k+1

∂hj
∂hj−1

=

t∏
j=t−k+1

Whdiag[f ′(Whht−1 +Wixt)]

9.5 Vanishing/exploding gradients

The gradients of the error function depend on the value of ∂ht

∂ht−k
, and the value

of this term can get very small or very large, because it is a product of k

Neural Networks-24



terms. In such cases, the gradient ∂Et

∂W would become super small or large. This
phenomenon is called vanishing/exploding gradients. In an RNN trained on
long sequences (e.g. 100 time steps), the gradients can easily explode or vanish.
Therefore, RNNs have difficulty dealing with long-range dependencies.

Many methods have been proposed to reduce the effect of vanishing gradients,
although it is still a problem. Those approaches include introducing shorter
path between long connections, abandoning stochastic gradient descent in fa-
vor of a much more sophisticated Hessian-Free (HF) optimization, and adding
fancier modules that are robust to handling long memory, e.g., Long Short Term
Memory (LSTM).

Neural Networks-25


