
CS 446 Machine Learning Fall 2016 Oct 18, 2016

Boosting
Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes

1 Boosting

Boosting is a general learning paradigm for putting together a strong learner,
given a collection (possibly infinite) of weak learners.

The original boosting algorithm was proposed as an answer to a theoretical
question in PAC learning The Strength of Weak Learnability; Schapire, 89. This
paper shows that boosting has interesting theoretical implications, like the re-
lation between PAC learnability and compression.

If a concept class is efficiently PAC learnable, then it is efficiently PAC leanrable
by an algorithm whose required memory is bounded by a polynomial in n, size
c, and log(1

ε). Therefore, there is no concept class for which efficient PAC
learnability requires that the entire sample be contained in memory at one time;
there is always another algorithm that ”forgets” most of the sample.

The key contribution of boosting, however, has been in providing a practical way
to compose a strong learner from multiple weak learners. In fact, boosting is a
member of a family of ensemble algorithms, but has stronger guarantees.

1.1 Example: How May I Help You

Boosting can be viewed in the context of chatbots. In the early 1990s AT&T had
a chatbot system such that calling a number and answering a set of automated
questions would enable the system to navigate you to the right recipient.

Goal
Automatically categorize type of call requested by phone customer.

”I’d like to place a collect call long distance please” → (Collect)

”Operator I need to make a call but I need to bill it to my office” →
(ThirdNumber)

”I’d like to place a call on my master card please” → (CallingCard)

Observation
It is easy to find ”rules of thumb” that are often correct (eg. if the utterance
contains ”card”, predict ”CallingCard”). However, it is hard to find a single
highly accurate prediction rule. Therefore, we want an algorithm that can
generate a strong learner from a set of weak learners.

Boosting-1

1.2 Procedure

1. Select a small subset of examples

2. Derive a rough rule of thumb

3. Examine second set of examples

4. Derive second rule of thumb

5. Repeat T times

6. Combine learned rules of thumb into a single hypothesis

1.3 Theoretical Motivation

We define a Strong PAC algorithm to be – for any distribution, for any ε, δ > 0,
given polynomially many random examples – an algorithm that finds hypothesis
with error ≤ ε with probability ≥ (1− δ).

We can also define a Weak PAC algorithm as one as above, except for ε ≤ 1
2−γ.

In this case, ε is not required to be as small as we want, instead, it is only
bounded by the notion that it predicts correctly more than it predicts incor-
rectly. This weaker requirement means that such an algorithm is still learning
something, just not as well.

Kearns and Valiant ’88 asked the question, Does weak learnability imply strong
learnability? In other words, can we boost from weak to strong?

1.4 History

Schapire ’89
First provable boosting algorithm: Call weak learner three times on three mod-
ified distributions, get slight boost in accuracy, then apply recursively.

Freund ’90
”Optimal” algorithm that ”boosts by majority”.

Drucker, Schapire and Simard ’92
First experiments using boosting, limited by practical drawbacks.

Freund and Schapire ’95
Introduced AdaBoost algorithm, has strong practical advantages over previous
boosting algorithms.

AdaBoost was followed by a huge number of papers and practical applica-
tions.

Boosting-2

1.5 A Formal View of Boosting

Given training set (x1, y1), ...(xm, ym)
yi ∈ {−1,+1} is the correct label of instance xi ∈ X
For t = 1...T

Construct a distribution Dt on {1, ...m}
Find weak hypothesis (”rule of thumb”)

ht : X → {−1,+1}
with small error εt on Dt

εt = PrD[ht(xi)¬ = yi]
Output: final hypothesis Hfinal

2 AdaBoost

Typically when people talk about boosting, they are referring to AdaBoost.

In AdaBoost, the basic procedure requires choosing a distribution over the data,
learning a weak hypothesis based on the data as drawn from that distribution,
and choosing a new distribution – such that mistakes are weighted more heavily
– from which a new weak hypothesis can be learned, where this process can be
repeated for any arbitrary number of weak learners.

To begin, the first distribution D1 (where D1(i) is the weight of the ith example)
is uniform

D1(i) =
1

m

Now, for any arbitrary time t, we can compute the next distribution Dt+1 given
the current distribution Dt and the current hypothesis ht.

Dt+1(i) =
Dt(i)

zt
× e−αtyiht(xi)

In one equation, this expresses that the next distribution Dt+1(i) is going to

correspond to the normalized current distribution Dt(i)
zt

times either e−αt – when
ht predicts correctly – or eαt when ht makes a mistake.

Note that zt is a normalization constant

zt =
∑
i

Dt(i)× e−αtyiht(xi)

and αt is given by

αt =
1

2
ln{ (1− εt)

εt
}

Note that in weak learners, ε < 1
2 so since αt is half of the natural log of quantity

that’s greater than 1, we know that α must be a positive number (α > 0).

Boosting-3

Therefore, examples on which ht makes a correct prediction are demoted and
examples on which ht makes mistakes are promoted. Intuitively, this means
that the next hypothesis will have to focus more on those examples that the
previous hypothesis got wrong, because they will be heavier according to the
distribution.

The final hypothesis, then, is a linear combination of all the hypotheses weighted
by α

Hfinal(x) = sign(
∑
t

αtht(x))

Recall that if εt is small, αt is large, which corresponds to the notion that if ht
made few mistakes, it will contribute more to the final hypothesis.

2.1 A Toy Example

Consider the following AdaBoost example.

(a) Round 1 (b) Round 2 (c) Round 3

In the first round (top left), the vertical line indicates that positive examples are
on the left, negative are on the right. The three examples on which mistakes
were made are then weighed more heavily by the next distribution (bottom
left). This results in the next learner choosing a vertical line that classifies the
previous mistakes correctly (center middle), but it makes mistakes of its own,
which are in turn re-weighted (bottom middle). In round three, these mistakes
are classified correctly via the horizontal line (bottom right).

To produce the final hypothesis, we create a weighted combination of the three
hypotheses, shown in Figure 2.

Boosting-4

Figure 2: Final Hypothesis

Note that it is possible that the combined hypothesis makes no mistakes on
the training data, but boosting can still learn by adding more weak hypotheses.
Doing so does not improve performance on the training data, but can generalize
well (perform better on test).

2.2 Theorem

Consider running AdaBoost, where the error the hypothesis at time t is bounded
away from one half

εt =
1

2
− γt

Claim
If we can bound εt away from a half, then the training error is bounded as
below

training error(Hfinal) ≤
∏
t

[2
√
εt(1− εt]

≤
∏
t

√
1− 4γ2t

≤ exp(−2
∑
t

γ2t)

(1)

Consider that these bounds are the result of the following

εt(1− εt) = (
1

2
− γt)(

1

2
+ γt) =

1

4
− γ2t

1− (2γt)
2 ≤ exp(−(2γt)

2)

Therefore, if – for all t – γt ≥ γ ≥ 0, then

training error(Hfinal) ≤ e−2γ
2T

Boosting-5

This means that given a fixed γ, we can make training error as small as we
want, given a large enough T .

This is stated in terms of training error, which we care less about, considering
that we want to minimize error during test time. However, framing this in terms
of training error is satisfying enough because – according to PAC learning – if
we can bound our hypothesis space (in this context, T), we will perform well on
test if we perform well on train.

Now we must prove this inequality.

Proof
Let f(x) =

∑
t
αtht(x)⇒ Hfinal(x) = sign(f(x))

Step 1: Unwrapping Recursion

Dfinal =
1

m
·
exp(−yi

∑
t
αtht(xi))∏

t
Zt

=
1

m
· e
−yif(xi)∏
t
Zt

(2)

Here Dfinal(i) is the final distribution for example i.

Step 2: training error(Hfinal) ≤
∏
t
Zt

Hfinal(x) 6= y ⇒ yf(x) ≤ 0⇒ e−yf(x) ≥ 1

Therefore

training error(Hfinal) =
1

m

∑
i

(1 if yi 6= Hfinal(xi)), (0 else)

≤ 1

m
e−yif(xi)

=
∑
i

Dfinal(i)
∏
t

Zt

=
∏
t

Zt

(3)

Step 3: Zt = 2
√
εt(1− εt)

Zt =
∑
i

Dt(i)exp(−αtytht(xi))

=
∑

i:yi 6=ht(xi)

Dt(i)e
αt +

∑
i:yi=ht(xi)

Dt(i)e
−αt

= εte
αt + (1− εt)e−αt

= 2
√
εt(1− εt)

(4)

Boosting-6

Step 2 and 3 together prove the theorem, that the error of the final hypothesis
can be as low as you want.

3 Conclusion

3.1 Boosting Confidence

Consider the distinction between confidence (1 − δ) and accuracy (1 − ε) from
PAC learning. Boosting the accuracy – what we’ve discussed thusfar – is actually
much harder than boosting the confidence.

Assume a fixed accuracy parameter to ε and a learning algorithm L such that
for any target concept c ∈ C, for any distribution D, L outputs a hypothesis h
such that error(h) < ε with confidence at least δ0 = 1

q(n,|c|) for some polynomial
q.

If we are willing to tolerate a slightly higher error ε + γ, then we can achieve
arbitrarily high confidence 1− δ.

The key idea is to learn multiple times. Given the algorithm L, we construct a
new algorithm L′ that simulates algorithm L multiple (k) times on independent
samples from the same distribution.

Assume h1...hk are the hypothesis produced over k iterations. Since each is
independent, the probability that all of the h1...hk have error > ε is at most
(1− δ0)k, otherwise, at least one hj is good.

Thus, if we want to reduce δ by 2 times, we just need to solve

(1− δ0)k <
δ

2
⇒ k >

1

δ0
ln(

2

δ
)

Here, L′ would simply use the hi that makes the fewest mistakes on sample S,
where we would need to determine the size of S.

Boosting confidence is really the typical thing we do in computer science by
running an algorithm multiple times. Boosting accuracy, however, required the
sophisticated AdaBoost algorithm.

3.2 Ensemble Methods

AdaBoost is actually one of a family of algorithms called ensemble methods.

Boosting

1. Start with a collection of examples (uniform)

Boosting-7

2. Train a model

3. Compute the error

4. Increase the weights on incorrect predictions; decrease on correct predic-
tions

5. Predict

In boosting, the weights are an immediate function of the learned error. Note
that while boosting is a very good algorithm in the general case, it is difficult
to obtain probability estimates from it.

Bagging
As with boosting, bagging is a method that generates multiple predictors and
combines them to make final predictions. The process of generating these hy-
potheses is referred to as creating bootstrap replicates of the learning sets

1. Generate a sample from the dataset (With repetition)

2. Learn a hypothesis on this generated sample

3. Repeat

4. Take the majority or average prediction across all learned hypotheses

Consider the case of bagged decision trees, shown in Figure 3. Here we draw

Figure 3: Bagged decision trees

100 bootstrapped samples of data, we train a tree on each sample to get 100
trees, then we take the average prediction of trees on out-of-bag samples.

Tests on real and simulated data sets using classification and regression trees
and subset selection in linear regression show that bagging can give substantial
gains in accuracy. The vital element is the instability of the prediction method.
If perturbing the learning set can cause significant changes in the predictor
constructed, then bagging can improve accuracy.

Boosting-8

Random Forests
This is an another version of bagged decision trees where you draw 1000+ boot-
strap samples of data and draw sample of available attributes at each split, train
trees on each sample/attribute set and get 1000+ trees, then average prediction
of trees on out-of-bag samples. In effect, we’re training on subsampled examples
and subsampled features.

Boosting-9

