
CS 446: Machine Learning
Lecture 4, Part 3: On-Line Learning

1 Introduction
In the previous section we discussed SNoW which is a learning architecture that
supports several linear update rules (Winnow, Perceptron, and Naive Bayes). SNoW
has many options for regularization including pruning, and average Winnow/Perceptron.
Later we will discuss what is meant by ‘True’ multi-class classification. SNoW
allows variable sizes of examples and offers very good support for domains which
are large-scale in terms of the number of examples and number of features. SNoW
allows ‘explicit’ kernels, which will be discussed below. SNoW is very efficient,
being 1-2 order of magnitude faster than SVMs. LBJ makes use of the SNoW ar-
chitecture. SNoW can be downloaded from: http://L2R.cs.uiuc.edu/˜cogcomp

2 Kernel Based Methods
A Kernel method is a method to run Perceptron on a very large feature set, without
incurring the cost of keeping a very large weight vector. Computing the weight
vector can still be done in the original feature space. The benefits pertain only
to efficiency: The classifier is identical to the classifier that would result from
blowing up the feature space. Generalization with Kernels is still relative to the
real dimensionality (or related properties). Kernels were popularized by SVMs,
although most applications actually use linear kernels. The basic equation for
kernels (below) will be explained in the following sections.

f(x) = Thθ(
∑
z∈M

S(z)K(x, z))

1

The basic idea behind kernels is as follows. First, promotion and demotion are
defined as in previous examples:

If Class = 1 but w · x ≤ θ, wi ← wi + 1(ifxi = 1) (promotion)

If Class = 0 but w · x ≥ θ, wi ← wi − 1(ifxi = 1) (demotion)

Given the examples, x ∈ {0, 1}n, the hypothesis, w ∈ Rn, and the formula:

f(x) = Thθ(
n∑
i−1

wixi(x))

Let I be the set t1, t2, t3... of monomials (conjunctions) over the feature space
x1, x2, . . . xn.

For example, t1 = x1x2x4(11010) = 1, The value of t1 on the string 11010 is
true. t2 = x3x4(11010) = 0. The value of t2 on the string 11010 is false because
x3 is off.

We can then write a linear function over the new feature space:

f(x) = Thθ(
∑
i∈I

witi(x))

This new representation allows a great increase in expressivity. It is possible to
run Perceptron and Winnow, but the convergence bound may suffer exponential
growth. In each example, an exponential number of monomials are true. Also,
many weights still have to be stored. The problem is similar to that encountered
by embedding, when we blow up the feature space to make the discriminator
functionally simpler. The next section will discuss some ways of dealing with the
accompanying problems.

2.1 The Kernel Trick
Given the rules for promotion and demotion in the previous section, consider the
value of w used in the prediction. For each previous mistake, on and example,
z, there is an additive contribution of +/ − 1 to w, iff t(z) = 1. The value of w
is determined by the number of mistakes on which t() was satisfied. The ones in
which t() was not satisfied make no contribution.

f(x) = Thθ(
∑
i∈I

witi(x))

2

Let the set P be the set of examples which were Promoted and let the set D be
the set of examples which were Demoted.

Let M = P ∪D

The weight vector w can be written equivalently as the sum of all promoted
examples minus the sum of all demoted examples:

f(x) = Thθ(
∑
i∈I

 ∑
z∈P,ti(z)−1

1−
∑

z∈D,ti(z)=1

1

 ti(x)) =

Let S be a function which tells what type of mistake was made on an example
z ∈ M . Where S(z) = 1 if z ∈ P and S(z) = −1 if z ∈ D. So S of z is +1
if there was a Positive mistake and −1 if there was a Negative. The formula is
re-written as follows:

f(x) = Thθ(
∑
i∈I

[∑
z∈M

S(z)ti(z)ti(x)

]
)

Notice that, in the notation above, there is as sum on examples (i.e., z) and a
sum on features, i ∈ I . So the formula can be reordered as below:

f(x) = Thθ(
∑
z∈M

S(z)
∑
i∈I

ti(z)ti(x))

A mistake on z contributes the value +/ − 1 to all monomials satisfied by z.
The total contribution of z to the sum is equal to the number of monomials that
satisfy both x and z. Therefore, we can define a dot product in the t-space:

K(x, z) =
∑
i∈I

ti(z)ti(x)

By substitution, this gives the standard notation below:

f(x) = Thθ(
∑
z∈M

S(z)K(x, z))

2.2 Kernel Based Methods
It has been shown above how the representation f(x) = Thθ(

∑n
i−1wixi(x)) can

be written equivalently as f(x) = Thθ(
∑
z∈M S(z)K(x, z)). But what are the

benefits? What does the new representation give us?

3

Consider the substitution instance below:

K(x, z) =
∑
i∈I

ti(z)ti(x)

In this representation, we can view the Kernel as the distance between x, z
in the t−space. But K(x, z) can also be measured in the original space, without
explicitly writing the t-representation of x, z.

With the Kernel Trick, given an example x, instead of computing ti and then
multiplying by the +/ − 1 weights, we take all examples z, on which we made
mistakes, and compute the distance between the current point, x, and all those
examples in M . Then we compute the distance via this Kernel function K(x, z).
The ‘trick’ is that it is still defined as a sum in the I−space. It is necessary to
touch ti of z, ti of x. So far, the derivation is only about reordering terms. But
the benefit is that K(x, z) can be measured, or evaluated, in the original space
without explicitly writing the representation of x and z. So, given x and z, you
can compute this sum, the dot product over all I .

Consider the space of all 3n monomials, allowing both positive and negative
literals. Then, K(x, z) = 2same(x,z). Where same(x, z) is the number of features
that have the same value for both x and z. The resulting formula is:

f(x) = Thθ(
∑
z∈M

S(z)(2same(x,z)))

For example, take the case where n = 2; x = (00), z = (01), Other Kernels
can be used too.

2.2.1 Example

Consider a Boolean space over 4 variables: X = {x1, x2, x3, x4}, and let I be the
space of all monomials over X . There are a total of 3n in the I−space. In this
example: 34 = 81 for |I|. Some monomials in the I − space are x1;x1x3;x2x3x4,
for example.

Consider two points x = (1100), z = (1101) in X . Their representation in the
I − space would be the list of all 81 monomials with values of 0 or 1 depending
on whether or not the monomial represented that point:

I(x) x1(1100) = 1
x1x2(1100) = 1
x2x3x4(1100) = 0

4

x1x2x4(1100) = 0
...

I(z) x1(1101) = 1
x1x2(1101) = 1
x2x3x4(1101) = 0
x1x2x4(1101) = 1
...

Now, in order to compute I(x) · I(z), only the examples in which both I(x)
and I(z) have a positive valuation contribute to the dot product. In this example,
there are eight such cases:

I(x) · I(z)

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3

the constant monomial (everything is on)

Show that the following holds:

K(x, z) = I(x) · I(z) =
∑

iti(z)ti(x) = 2same(x,z) = 8

Try to develop another kernel, for example where I is the space of all conjunc-
tions of exactly size 3.

By doing the sum in the t-space looking over all the features, it is possible to
just look at X and Z in the original space instead of the 81 dimensions of space.
This type of kernel was the kernel of all monomials. For each type of kernel you
will have to figure out how to compute it in the original space, but the general
theorem says that if you have a kernel, then it is always possible to compute it in
the original space.

5

2.3 Implementation
In order to implement the Kernel, Perceptron is run in an on-line mode and the
algorithm keeps track of the set M . Keeping track of the set M allows us to keep
track of S(z). Rather than remembering the weight vector w, it is necessary to
remember the set M (consisting of the sets P and D of all examples on which we
made mistakes.

2.4 Summary - Kernel Trick (Polynomial Kernel)
Separating hyperplanes produced by Perceptron and SVM can be computed in
terms of dot products over a feature based representation of examples.

We want to define a dot product in a high dimensional space. Given two
examples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), we want to map them to
a high dimensional space.

An example of a mapping in a high dimensional space is that of quadratic
examples:

Φ(x1, x2, . . . , xn) = (1, x1, . . . , xn, x
2
1, . . . , x

2
n, x1 · x2, . . . , xn−1 · xn)

Φ(y1, y2, . . . , yn) = (1, y1, . . . , yn, y
2
1, . . . , y

2
n, y1 · y2, . . . , yn−1 · yn)

And we want to compute the dot product A = Φ(x) · Φ(y). We could also
compute this in the orginal space:

B = f(x · y) = [1 + (x1, x2, . . . , xn) · (y1, y2, . . . , yn)]2

Theorem: A = B

2.5 Summary - Kernel Based Methods I
In summary, Kernels are a method to run Perceptron on a very large feature set,
without incurring the cost of keeping a very large weigh vector. Computing the
weight vector can, in fact, still be done in the original feature space. The benefits
of Kernels pertain only to efficiency: The classifier is identical to the classifier that
results from blowing up the feature space. Generalization is still relative to the
real dimensionality (or related properties). Kernel were popularized by SVM, but
the algorithms for using them with SVMs are different. Most applications today
use linear kernels.

6

2.6 Efficiency-Generalization Tradeoff
There is a trade off between the computational efficiency with which these ker-
nels can be computed and the generalization ability of the classifier. For exam-
ple, using such kernels, the Perceptron algorithm can make an exponential num-
ber of mistakes, even when learning simple functions (Khardon, Roth, Servedio,
NIPS’01; Ben David et al.). In addition to the high number of mistakes possible,
computing with kernels depends strongly on the number of examples present. It
turns out that sometimes working in the blown up space is more efficient than
using kernels (Cumby, Roth ICML’03).

2.7 Learning from Structured Input
Consider the cases when we want to extract features from structured domain el-
ements. It might be the case that we want to encode their internal (hierarchical)
structure, for example, as in Figure 1 below. Features are useful for this. A feature
is a mapping from the instance space to {0, 1} or [0, 1]. With the appropriate rep-
resentation language it is possible to represent expressive features that constitute
an infinite dimensional space (for example, with a feature extractor like FEX).
Learning can then be done in the infinite attribute domain.

What does it mean to extract features? Conceptually, it means that differ-
ent data instantiations may be abstracted to yield the same representation (for in-
stance, with quantified elements). Computationally it requires some kind of graph
matching process as in Figure 2 below.

The challenge is to provide the expressivity necessary to deal with large scale
and highly structured domains. It is also a challenge to meet the strong tractability
requirements for these tasks.

7

Figure 1: Structured Input

8

Only those descriptions that are ACTIVE in the input are listed. Kernels over
parse trees have been developed (Collins) as well as parameterized kernels over
structures (Cumby/Roth).

3 Kernels: Complexity
It’s possible to define kernels for structured data. This is equivalent to blowing
up the feature space by generating functions of primitive features. Is it worth
doing in structured domains? Computationally, there is the hand-waving argument
discussing which is preferable between t1m2 and t2m. Where m is the number of
examples and t1, t2 are the sizes of the feature space. Typically, t1 << t2, so the
question really concerns the number of examples we need to consider. In theory,
we do not need to consider all of the examples, but in practice, we usually need to
consider quite a few.

4 Kernels: Generalization
It is important to use generalization with kernels. Using the most expressive ker-
nels possible is equivalent to working in a larger feature space and will lead to
overfitting.

The following is a simple argument that shows that simply adding irrelevant
features does not help.

Given a linearly separable set of points S = {x1, . . . , xn} ∈ Rn with separator
w ∈ Rn,

Embed S into an n′ > n dimensional space by adding zero-mean random noise
e to the additional dimensions.

Then w′ · x = (w, 0) · (x, e) = w · x

So w′ ∈ Rn′ still separates S.

What is the new margin?

γ(S,w′) = minsw
′Tx′/ ‖w′‖ ‖x′‖ = minsw

Tx// ‖w′‖ ‖x′‖

But ‖x′‖ = ‖(x, e)‖ > ‖x′‖

The new margin is smaller and therefore bad for generalization.

9

Figure 2: Graph of Features

10

5 Efficiency-Generalization Tradeoff
There is a tradeoff between the computational efficiency with which these ker-
nels can be computed and the generalization ability of the classifier. For exam-
ple, using such kernels, the Perceptron algorithm can make an exponential num-
ber of mistakes, even when learning simple functions (Khardon, Roth, Servedio,
NIPS’01; Ben David et al.). In addition to this, computing with kernels depends
strongly on the number of examples. It turns out that sometimes working in the
blown up space is more efficient than using kernels (Cumby, Roth, ICML ’03).

6 Winnow - General Setting
Given the update rules as before:

If Class = 1 but w · x ≤ θ, wi ← wi + 1(ifxi = 1) (promotion)

If Class = 0 but w · x ≥ θ, wi ← wi − 1(ifxi = 1) (demotion)

We have:
∀i, wi+1 ← wi · β(y−1[w·x])xi

Where (y − 1[w · x])xi represents thresholding. In general, in vector notation,
it can be written as:

wt+1 ← wt · β(yt−wt·xt)xt

This representation can be used and analyzed also for non-Boolean x’s. The
more common notation is α > 1 for the promotion parameter and 0 < β < 1 for
the demotion parameter. The algorithm is no longer a mistake driven algorithm.

6.1 Predicting form Expert Advice
In this paradigm, an algorithm is given advice from a pool of experts. No quality
or independence assumptions are made. An example is Weather Prediction. What
is the best we can hope for?

In this learning protocol, a trial is a sequence of events in which the algorithm
(1) receives the prediction of the experts (2) makes its own prediction, and (3) is
told the correct answer. It is not possible in this case to achieve an absolute level
of quality in the prediction. A more reasonable goal is to perform nearly as well
as the best expert so far.

11

6.2 Weighted Majority Algorithm
This algorithm maintains a list of weights, w1, w2, . . . , wn. There is one weight
for each expert and the algorithm makes predictions based on a weighted majority
vote of the expert opinions.

1. Initialize: for all I = 1, . . . , n : wi = 1

2. Given a set of predictions, x1, x2, . . . , xn, by the experts, output the prediction
with the highest total weight. That is, output 1 if

∑
{i:xi=1}wi ≥

∑
{i:xi=0}wi

3. If I is the correct answer and l 6= xi, then penalize: wi ← wi/2

The claim is that the number of mistakes made by the weighted majority algorithm
is never more than 2.41(m + logn) where m is the number of mistakes made by
the best expert so far.

So, given: ∑
{i:xi=1}

wi ≥
∑

{i:xi=0}
wi

Let W be the total weight of the experts. Initially, W = n.
If at least half of the experts made a mistake, W is reduced by at least a factor

of 1/4. So, generally, after M mistakes:

W ≤ n(
3

4
)M

The best expert made m mistakes, thus W ≥ 1
2m . Combining gets:

1

2m
≤ n(

3

4
)M ⇒M ≤ 2.41(m+ logn)

6.2.1 Randomized Version

The weight of the experts can be viewed as probabilities:

Choose to output xi with probability wi/
∑
wi

The algorithm can be applied when the experts are strategies or other things that
cannot be combined together. If the experts are programs, it is not necessary to
run all of them in order to predict.

12

6.2.2 Summary - Weighted Majority

The Weighted Majority Algorithm provides a way to accommodate inconsistent
training data. There are no requirements that the expert is mistake-bounded. Also,
the experts can be very general. There is no statistical assumption and optimal
bounds.

6.3 Mistake Bound and PAC
Every Mistake-Bound Algorithm can be converted efficiently to a PAC algorithm.
In the mistake bound model, we don’t know when we will make the mistakes. But
in the PAC model, we want dependence on the number of examples seen and not
the number of mistakes. In order to convert, we wait for a long stretch of examples
with no mistakes (there must be one), then use the hypothesis at the end of this
stretch. The algorithms PAC behaviour is relative to the length of the stretch.

13

