
CS 446: Machine Learning
Lecture 4: On-line Learning

1 Introduction
This section of the notes will discuss ways of quantifying the performance of
various learning algorithms. It will be possible, then, to say something rigorous
about performance and work towards determining which learning algorithm is
best for a given task. This section will concentrate on discussing the number of
examples that are needed in order to claim that our learned hypothesis is good.

2 Learning Conjunctions
Assume that there is a hidden conjunction which you, the learner, want to learn.
How many examples are needed in order to learn it? How is it learned from these
examples?

For example, assume that the hidden conjunction is:

f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

This section will discuss learning the conjunction with three different learning
protocols.

2.1 Protocol I
In the first learning protocol, the learner proposes instances as queries to the
teacher. Assume we know we are after a monotone conjunction, so the possible

1

Table 1: Queries for Protocol I
Query Example Valuation Conclusion

Is x100 in? < (1, 1, 1, . . . , 1, 0), ? > f(x) = 0 Yes
Is x99 in? < (1, 1, . . . , 1, 0, 1), ? > f(x) = 1 No

. . .
Is x1 in? < (0, 1, . . . , 1, 1, 1), ? > f(x) = 1 No

terms are the variables x1 through x100 and not their negations. A straightforward
algorithm requires n = 100 queries, and it will produce the hidden conjunction
exactly as a result:

The final result of the queries is that h = x2∧x3∧x4∧x5∧x100. This algorithm
gets the right function for the data, but it requires a query for each variable.

2.2 Protocol II
In the second protocol, the teacher knows what the hidden function is and provides
training examples to the learner. The teacher gives the learner a superset of the
positive examples from which implications can be made. Then each variable that
is in the hidden function is shown to be important. For example, the learner has
the hypothesis < (0, 1, 1, 1, 1, 0, . . . , 0, 1), 1 >, which is a superset of the good
variables. In order for the teacher to show that each and only the variables in the
hidden conjunction are needed, negative examples are provided. For example:

Table 2: Queries for Protocol II
Example Needed Variable

< (0, 0, 1, 1, 1, 0, . . . , 0, 1), 0 > x2

< (0, 1, 0, 1, 1, 0, . . . , 0, 1), 0 > x3

. . .
< (0, 1, 1, 1, 1, 0, . . . , 0, 0), 0 > x100

Model Teaching is tricky because it involves choosing the right examples
needed to get the learner to make accurate inferences. A straightforward al-
gorithm requires k = 6 examples to produce the hidden conjunction exactly.
f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

2

2.3 Protocol III
In the third protocol, some random source, for example, Nature, provides training
examples and a Teacher provides the labels (f(x)).
< (1, 1, 1, 1, 1, 1, . . . , 1, 1), 1 >
< (1, 1, 1, 0, 0, 0, . . . , 0, 0), 0 >
< (1, 1, 1, 1, 1, 0, . . . , 0, 1, 1), 1 >
< (1, 0, 1, 1, 1, 0, . . . , 0, 1, 1), 0 >
< (1, 1, 1, 1, 1, 0, . . . , 0, 0, 1), 1 >
< (1, 0, 1, 0, 0, 0, . . . , 0, 1, 1), 0 >
< (1, 1, 1, 1, 1, 1, . . . , 0, 1), 1 >
< (0, 1, 0, 1, 0, 0, . . . , 0, 1, 1), 0 >

The basic algorithm for this protocol is one of elimination.

Elimination Algorithm

Start with the set of all literals as candidates
Eliminate a literal that is not active in a positive example

The basic idea behind the algorithm is that, since the conjunctions are monotone,
the literals that are not active (i.e., that have a zero) in positive examples can
provide information. Specifically, we know that these literals are not part of the
hidden conjunction.

In the example below, for each example, either the hypothesis is modified or
nothing is learned:

Table 3: Queries for Protocol III
Example Fact Learned

< (1, 1, 1, 1, 1, 1, . . . , 1, 1), 1 > f = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ . . . ∧ x100

< (1, 1, 1, 0, 0, 0, . . . , 0, 0), 0 > learned nothing
< (1, 1, 1, 1, 1, 0, . . . , 0, 1, 1), 1 > f = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x99 ∧ x100

< (1, 0, 1, 1, 0, 0, . . . , 0, 0, 1), 0 > learned nothing
< (1, 1, 1, 1, 1, 0, . . . , 0, 0, 1), 1 > f = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

< (1, 0, 1, 0, 0, 0, . . . , 0, 1, 1), 0 >
< (1, 1, 1, 1, 1, 1, . . . , 0, 1), 1 >

The resulting hypothesis is not exactly right, but it is consistent with the right
hypothesis:

3

h = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

Most of the work that will be covered in these notes uses the third protocol:
Some source gives the data, the teacher gives the label, and the learning problem
is to find a hypothesis for the labels.

3 On-line Learning
On-Line learning constitutes a different approach to the learning problem. In order
to understand the motivation for On-line Learning, consider a learning problem in
a very high dimensional space.

{x1, x2, x3, . . . , x1,000,000}

And assume that the function space is very sparse, so that every function of interest
depends on a small number of attributes. For example:

f = x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

An example of such a domain is context sensitive spelling. For example, if all
of the words of a sentence are considered to be features, the space is very large. In
this space, only one word per sentence will represent the target concept and only
a few of the words in the sentence will be relevant for disambiguation.

Middle Eastern deserts are known for their sweetness

The question is, can we develop an algorithm that depends only weakly on the
space dimensionality and mostly on the number of relevant attributes? If so, how
should the hypothesis be represented? The goal it to find a simple and intuitive
model that makes the smallest number of mistakes in the long run.

The basic model for On-line Learning is below:

Model:

Instance space: X (dimensionality − n)

Target: f : X → {0, 1}, f ∈ C (where C is a concept class parameterized
by n)

4

Protocol: learner is given x ∈ X

learner predicts h(x), and is then given f(x) as feedback

Performance: learner makes a mistake when h(x) 6= f(x)

Some definitions used in the following algorithms are:

MA(f, S) is the number of mistakes algorithm A makes on sequence S of exam-
ples, for the target function f .

MA(C) = maxf∈C,SMA(f, S)

A is a mistake bound algorithm for the concept class C, if MA(C) is polynomial
in n, the complexity parameter of the target concept.

We could ask how many mistakes do we need to get to ε− δ PAC behaviour.1

But, instead, we are looking for exact learning which is easier to analyze. In a
worst-case model, there is no notion of distribution. In order to improve memory,
we can get an example, update the hypothesis, then get rid of it. But there are
drawbacks to this approach. First, it is too simple. Also, the behaviour is global,
and it is not clear when the mistakes will be made. The advantage, however, is that
it is simple. Many issues arise already in this setting. It is possible to do generic
conversion to other learning models. In addition to this, it is equivalent to PAC for
‘natural’ problems.

3.1 Generic Mistake Bound Algorithms
This section will present a generic algorithm that sets a bound on the number of
mistakes.

The CON algorithm

Let C be a concept class. Learn f ∈ C
CON:
In the ith stage of the algorithm:
For Ci, all concepts in C consistent with all i− 1 previously seen examples
Choose randomly fi ∈ Ci and use it to predict the next example

1PAC will be described in 05-Lec.

5

The intuition behind the CON algorithm is that Ci+1 ⊆ Ci and, if a mistake is
made on the ith example, then |Ci+1| < |Ci|. Progress is made in this way, and
the CON algorithm makes at most |C| − 1 mistakes.

3.2 The Halving Algorithm
This algorithm attempts to solve the problem of setting a bound on the number of
mistakes better than the CON algorithm.

The Halving Algorithm

Let C be a concept class. Learn f ∈ C
Halving:
In the ith stage of the algorithm:
For Ci, all concepts in C consistent with all i− 1 previously seen examples
Given an example ei, consider the value fj(ei) for all f ∈ Ci and predict by
majority.

Predict 1 if

|{fj ∈ Ci; fj(ei) = 0}| < |{fj ∈ Ci; fj(ei) = 1}|

The intuition is that Ci+1 ⊆ Ci and if a mistake is made in the ith example, then
|Ci+1| < 1

2
|Ci|. The Halving algorithm makes at most log(|C|) mistakes.

The problem with the Halving algorithm is that it is hard to compute. When
the class C is the class of all Boolean functions, then Halving is optimal. But,
in general, to be optimal, instead of guessing in accordance with the majority of
the valid concepts, we should guess according to the concept group that gives the
least number of expected mistakes. This is, however, even harder to compute.

4 Learning Disjunctions
Assume that there is a hidden disjunction that the learner is to learn.

f = x2 ∨ x3 ∨ x4 ∨ x5 ∨ x100

There are 3n possible disjunction. Each value can be positive, negative, or
absent. For this case, log(|C|) = n. The elimination algorithm makes n mistakes.

6

The algorithm learns from negative examples and eliminates the literals which are
active in negative examples. For k − disjunctions : Assume that only k << n
attributes occur in the disjunction. The number of k-disjunctions is: 2kC(n, k) ≈
2knk. In this case, log(|C|) = klog(n). Is it possible to learn efficiently with this
number of mistakes?

Theorem :

Given a sample on n attributes that is consistent with a disjunctive
concept, it is NP-hard to find a pure disjunctive hypothesis that is both
consistent with the sample and has the minimum number of attributes.

The same theorem holds for Conjunctions. The intuition is that the problem
can be reduced to a minimum set cover problem. Given a collection of sets that
cover X , define a set of examples so that learning the best disjunction implies
a minimal cover. Consequently, we can not learn the concept efficiently as a
disjunction. In the later notes, we will see that it is possible, however, to learn the
concept efficiently as a Linear Threshold Function.

7

