
CS446: Machine Learning Spring 2017

Problem Set 5

Handed Out: March 30th, 2017 Due: April 11th, 2017

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please try to keep the solution brief
and clear.

• Please use Piazza first if you have questions about the homework. Also feel free to send us e-mails
and come to office hours.

• Please, no handwritten solutions. You will submit your solution manuscript as a single pdf file.

• Please present your algorithms in both pseudocode and English. That is, give a precise formulation of
your algorithm as pseudocode and also explain in one or two concise paragraphs what your algorithm
does. Be aware that pseudocode is much simpler and more abstract than real code.

• The homework is due at 11:59 PM on the due date. We will be using Compass for collecting
the homework assignments. Please submit your solution manuscript as a pdf file via Compass
(http://compass2g.illinois.edu). Please do NOT hand in a hard copy of your write-up. Contact
the TAs if you are having technical difficulties in submitting the assignment.

1. [Neural Networks - 50 points] For this problem, you will construct a single hidden
layer neural network to solve a non-linear classification task. Each node in your neural
network will use the following activation function:

f(x) = max(0, x)

This function is called the rectifier; a neural network node using the rectifier for
its activation function is often called a ReLU, which stands for rectified linear unit.
Additionally, you will use the squared error loss function, defined as the following:

Err(xi, w) =
1

2

∑
k∈K

(tk − ok)2

Where K is the set of nodes in the output layer, td is the correct value for output node
d, and od is the output of node d.

(a) [10 points] Derive the backpropagation weight update rules for this activation
function and loss. Note that there are two different kinds of updates you need
to find: one representing weights of connections between the output layer and
the hidden layer, and one representing weights for the connections between the
hidden layer and the input layer.

(b) [30 points] For this problem, we will experiment with training a neural network
for learning two different functions. First, we have generated a dataset consisting
of two concentric circles; the points on the inner circle are labeled as positive, and
the points on the outer circle are labeled as negative. Here is a small sample of
the dataset:

1

The second dataset consists of a subset of the mnist digits dataset 1. This dataset
consists of images of hand-drawn (single) digits; for this assignment, you will be
receiving a subset consisting of 3s and 8s. Specifically, we are asking you to do
the following:

i. [10 points] For your convenience, we have already implemented most of the
backpropagation algorithm for you. However, we have left out a few im-
portant computations. To complete this, implement the following functions,
found in NN functions.py:

• squared loss gradient(output, label): this should return the gradi-
ent of the squared loss with respect to each coordinate of the output.

• relu derivative(z): this should return the derivative of the rectifier
function f(z) = max(0, z).

ii. [10 points] Using the provided neural network code (see description below
for more details), run a 5-fold cross validation parameter tuning experiment
to find the top-performing parameter setting for each dataset. See below for a
description of the parameters being tuned and the specific values you should
try. Specifically, for each parameter setting, complete the following steps:

• Split the training data into 5 portions of equal size

• For each split: train on the rest of the training data and test on the
held-out split.

• Record the average accuracy over the splits.

For both data sets, report the average accuracy for each parameter setting,
and make a note of which parameter setting performed the best.

1http://yann.lecun.com/exdb/mnist/

2

iii. [10 points] We want you to compare the performance of the neural network
with a simple Linear Classifier. To that end, we have provided you with an
implementation of the Perceptron algorithm to train linear separators for each
dataset. For this task, you will have to generate a learning curve (accuracy
vs. number of iterations) during training for both Perceptron and the neural
network using the best parameter settings found in the previous step. For
each data set, plot these learning curves on the same graph; thus, your answer
will include two graphs, one for each dataset. You have been provided with
functions that keep track of these values for your convenience (see below).
After training your models on a given data set, test each of them using the
corresponding test data. Record the accuracy of both models on the test data
for each of the two data sets and comment on their performances relative to
each other.

Parameter Tuning: One crucial aspect of training Machine Learning models is
to tune the available free parameters so that you can achieve the best performance
from your learning algorithm. The parameters depend highly on the dataset and
also on the complexity of the task. When training neural networks, there are
some critical decisions to make regarding the structure of the network and the
behaviour of its individual units. In this section we describe some parameters
that you will tweak while training your classifier:

• Batch Size for training : This is the number of examples that are processed
at the same time. Use the following values: [10, 50, 100]

• Activation Function : The (nonlinear) function applied at the end of com-
putation for each node. Use the ReLU and tanh activation functions.

• Learning rate : The learning rate for gradient descent. Use the following
values: [0.1, 0.01].

• Number of units in each hidden layer : The number of nodes contained
within each hidden layer. Use the following values: [10, 50]

Experiment Code: The code consists of the following files:

• data loader.py: Contains the function load data(), which loads the
dataset from the files and initializes it in the appropriate way

• NN.py: Contains the implementation of the neural network train-
ing/testing procedures. Take note of the function create NN(batch size,

learning rate, activation function, hidden layer width) - this
takes in the specified parameters and correctly returns an instance of the NN

class, which will simplify the process of initializing the neural network for
parameter tuning purposes.

• NN functions.py: Contains functions used during neural network train-
ing/testing. This file contains the two functions mentioned earlier
that need to be completed.

• perceptron.py: Contains a perceptron implementation.

• sample run.py: Contains a sample showing how to use the provided code.
This is the best resource to learn how to run the provided code.

3

Both the NN and Perceptron classes contain the following functions:

• train(self, training data): Trains the classifier represented by the ob-
ject. Returns the final accuracy on the training data.

• train with learning curve(self, training data): Trains the classifier
represented by the object while keeping track of performance at each iteration.
Returns a list of tuples (i, acci) where acci is the accuracy of the classifier after
training for i iterations.

We have included a README providing more information about running the
code.

2. [Multi-class classification - 30 points]

Consider a multi-class classification problem with k class labels {1, 2, . . . k}. Assume
that we are given m examples, labeled with one of the k class labels. Assume, for
simplicity, that we have m/k examples of each type.

Assume that you have a learning algorithm L that can be used to learn Boolean
functions. (E.g., think about L as the Perceptron algorithm). We would like to explore
several ways to develop learning algorithms for the multi-class classification problem.

There are two schemes to use the algorithm L on the given data set, and produce a
multi-class classification:

• One vs. All: For every label i ∈ [1, k], a classifier is learned over the following
data set: the examples labeled with the label i are considered “positive”, and
examples labeled with any other class j ∈ [1, k], j 6= i are considered “negative”.

• All vs. All: For every pair of labels 〈i, j〉, a classifier is learned over the following
data set: the examples labeled with one class i ∈ [1, k] are considered “positive”,
and those labeled with the other class j ∈ [1, k], j 6= i are considered “negative”.

(a) [5 points] For each of these two schemes, answer the following:

i. How many classifiers do you learn?

ii. How many examples do you use to learn each classifier within the scheme?

iii. How will you decide the final class label (from {1, 2, . . . , k}) for each example?

iv. What is the computational complexity of the training process?

(b) [5 points] Based on your analysis above of two schemes individually, which
scheme would you prefer? Justify.

(c) [5 points] You could also use a KernelPerceptron for a two-class classifica-
tion. We could also use the algorithm to learn a multi-class classification. Does
using a KernelPerceptron change your analysis above? Specifically, what is
the computational complexity of using a KernelPerceptron and which scheme
would you prefer when using a KernelPerceptron?

(d) [5 points] We are given a magical black-box binary classification algorithm (we
dont know how it works, but it just does!) which has a learning time com-
plexity of O(dn2), where n is the total number of training examples supplied

4

(positive+negative) and d is the dimensionality of each example. What are the
overall training time complexities of the all-vs-all and the one-vs-all paradigms,
respectively, and which training paradigm is most efficient?

(e) [5 points] We are now given another magical black-box binary classification
algorithm (wow!) which has a learning time complexity of O(d2n), where n is
the total number of training examples supplied (positive+negative) and d is the
dimensionality of each example. What are the overall training time complexities
of the all-vs-all and the one-vs-all paradigms, respectively, and which training
paradigm is most efficient, when using this new classifier?

(f) [5 points] Suppose we have learnt an all-vs-all multi-class classifier and now want
to proceed to predicting labels on unseen examples.

We have learnt a simple linear classifier with a weight vector of dimensionality
d for each of the m(m − 1)/2 classes (wT

i x = 0 is the simple linear classifier
hyperplane for each i = [1, · · · ,m(m− 1)/2])

We have two evaluation strategies to choose from. For each example, we can:

• Counting: Do all predictions then do a majority vote to decide class label

• Knockout: Compare two classes at a time, if one loses, never consider it
again. Repeat till only one class remains.

What are the overall evaluation time complexities per example for Counting and
Knockout, respectively?

3. [Probability Review (20 points)]

(a) There are two towns A and B, where all families follow the following scheme for
family planning:

• Town A: Each family has just one child – either a boy or a girl.

• Town B: Each family has as many children as it wants, until a boy is born,
and then it does not have any more children.

Assume that the boy to girl ratio is 1:1 for both towns A and B (number of boys
equals number of girls), and the probability of having a boy child is 0.5, the same
as that of having a girl child. Answer the following questions:

i. What is the expected number of children in a family in towns A and B?

ii. What is the boy to girl ratio at the end of one generation in towns A and B?

(b) i. For events A and B, prove

P (A|B) =
P (B|A)P (A)

P (B)

ii. For events A,B, and C, rewrite P (A,B,C) as a product of several conditional
probabilities and one unconditional probability involving a single event. Your
conditional probabilities can use only one event on the left side of the condi-
tioning bar. For example, P (A|C) and P (A) would be okay, but P (A,B|C)
is not.

5

(c) Let A be any event, and let X be a random variable defined by

X =

{
1 if event A occurs

0 otherwise

X is sometimes called the indicator random variable for the event A. Show that
E[X] = P (A), where E[X] denotes the expected value of X.

(d) Let X, Y , and Z be random variables taking values in {0, 1}. The following table
lists the probability of each possible assignment of 0 and 1 to the variables X, Y ,
and Z:

Z = 0 Z = 1
X = 0 X = 1 X = 0 X = 1

Y = 0 1/15 1/15 4/15 2/15
Y = 1 1/10 1/10 8/45 4/45

For example, P (X = 0, Y = 1, Z = 0) = 1/10 and P (X = 1, Y = 1, Z = 1) =
4/45.

i. Is X independent of Y ? Why or why not?

ii. Is X conditionally independent of Y given Z? Why or why not?

iii. Calculate P (X = 0|X + Y > 0).

What to Submit

• A pdf file which contains answers to each question.

• Your source code. This should include your implementation of the missing neural
network functions and the code that runs your experiments. You must include a
README, documenting how someone should run your code.

• Please upload the above three files on Compass.
(http://compass2g.illinois.edu)

6

