
CS446: Machine Learning Spring 2017

Problem Set 3

Handed Out: February 15th, 2017 Due: February 27th, 2017

• Feel free to talk to other members of the class in doing the homework. I am more concerned that
you learn how to solve the problem than that you demonstrate that you solved it entirely on your
own. You should, however, write down your solution yourself. Please try to keep the solution brief
and clear.

• Please use Piazza first if you have questions about the homework. Also feel free to send us e-mails
and come to office hours.

• Please, no handwritten solutions. You will submit your solution report as a single pdf file. Follow the
instructions in the “What to submit” section for more details.

• A large portion of this assignment deals with programming the online learning algorithms as well as
running experiments to see them in action. While we do provide some pieces of code, you are required
to try and test several online learning algorithms by writing your own code. While we encourage
discussion within and outside of the class, cheating and code copying is strictly prohibited. Copied
code will result in the entire assignment being discarded from grading at the very least.

• The homework is due at 11:59 PM on the due date. We will be using Compass2g
for collecting the homework assignments. Please submit an electronic copy via Compass
(http://compass2g.illinois.edu). Please do NOT hand in a hard copy of your write-up. Contact
the TAs if you face technical difficulties in submitting the assignment.

Online Algorithm Comparison - 100 points

In this problem set, you will implement five online learning algorithms – Perceptron (with
and without margin), Winnow (with and without margin), and AdaGrad ; and experiment
with them by comparing their performance on synthetic datasets. We provide Python code
that generates the synthetic dataset, but you do not need to code your algorithms in Python.

In this problem set, you will get to see the impact of parameters on the performance
of learning algorithms and, more importantly, the difference in the behavior of learning
algorithms when the target function is sparse and dense. You will also assess the effect of
noisy training data on the learning algorithms.

First, you will generate examples that are labeled according to a simple l-of-m-of-n
boolean function. That is, the function is defined on instance space {0, 1}n, and there is a
set of m attributes such that an example is positive iff at least l of these m are active in the
example. l, m and n define the hidden concept that your algorithms will attempt to learn.
The instance space is {0, 1}n (that is, there are n boolean features in the domain). You will
run experiments on several values of l, m, and n.

To make sure you understand the above function, try to write it as a linear threshold
function. This way, you will make sure that Winnow and Perceptron can represent this
function (recall these algorithms learn linear separators). Also, notice that the l-of-m-of-n
concept class is a generalization of monotone conjunctions (when l = m) and of monotone
disjunctions (when l = 1).

Your algorithm does not know the target function and does not know which are the rel-
evant attributes or how many are relevant. The goal is to evaluate these algorithms under
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several conditions and derive some conclusions on their relative advantages and disadvan-
tages.

Algorithms

You are going to implement five online learning algorithms. Notice that they are essentially
the same algorithm, only that their update rules are different.

We will prescribe the weight initialization and options for the parameter(s) for each
algorithm, and you should determine the best parameters for each algorithm via tuning on
a subset of training data. More details on this in the Parameter Tuning section.

In all the algorithms described below, labeled examples are denoted by (x, y) where
x ∈ {0, 1}n and y ∈ {−1, 1}. In all cases, your prediction is given by

y = sign(wᵀx+ θ)

1. Perceptron: The simplest version of the Perceptron Algorithm. In this version, an
update will be performed on the example (x, y) if y(wᵀx+ θ) ≤ 0.

There are two things about the Perceptron algorithm that should be noted.

First, the Perceptron algorithm needs to learn both the bias term θ and the weight
vector w. When the Perceptron algorithm makes a mistake on the example (x, y), both
w and θ will be updated in the following way:

wnew ← w + ηyx

and θnew ← θ + ηy

where η is the learning rate. See the lecture notes for more information.

Second (and more suprisingly), if we assume that the order of the examples presented
to the algorithm is fixed, and we initialize

[
w θ

]
with a zero vector and learn w and

θ together, then the learning rate η, in fact, does not have any effect1.

Initialization: wᵀ = {0, 0, · · · , 0}, θ = 0

Parameters: Given the second fact above, we can fix η = 1. So there are no param-
eters to tune.

2. Perceptron with margin: This algorithm is similar to Perceptron; but in this al-
gorithm, an update will be performed on the example (x, y) if y(wᵀx + θ) < γ, where
γ is an additional positive parameter specified by the user. Note that this algorithm
sometimes updates the weight vector even when the weight vector does not make a
mistake on the current example.

Parameters: learning rate η (to tune), fixed margin parameter γ=1.

1In fact you can show that, if w1 and θ1 is the output of the Perceptron algorithm with learning rate
η1, then w1/η1 and θ1/η1 will be the result of the Perceptron with learning rate 1 (note that these two
hyperplanes give identical predictions).
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Given that γ > 0, using a different learning rate η will produce a different weight
vector. The best value of γ and the best value of η are closely related given that you
can scale γ and η.

Initialization: wᵀ = {0, 0, · · · , 0}, θ = 0

Parameter Recommendation: Choose η ∈ {1.5, 0.25, 0.03, 0.005, 0.001}.

3. Winnow: The simplest version of Winnow. Notice that all the target functions we
deal with are monotone functions, so we are simplifying here and using the simplest
version of Winnow.

When the Winnow algorithm makes a mistake on the example (x, y), w will be updated
in the following way:

wt+1,i ← wt,iα
yxi

where α is promotion/demotion parameter and wt,i is the ith component of the weight
vector after t mistakes.

Parameters: Promotion/demotion parameter α

Initialization: wᵀ = {1, 1, · · · , 1}, θ = −n (θ is fixed here, we do not update it)

Parameter Recommendation: Choose α ∈ {1.1, 1.01, 1.005, 1.0005, 1.0001}.

4. Winnow with margin: This algorithm is similar to Winnow; but in this algorithm,
an update will be performed on the example (x, y) if y(wᵀx + θ) < γ, where γ is an
additional positive parameter specified by the user. Note that, just like perceptron
with margin, this algorithm sometimes updates the weight vector even when the weight
vector does not make a mistake on the current example.

Parameters: Promotion/demotion parameter α, margin parameter γ.

Initialization: wᵀ = {1, 1, · · · , 1}, θ = −n (θ is fixed here, we do not update it)

Parameter Recommendation: Choose α ∈ {1.1, 1.01, 1.005, 1.0005, 1.0001} and
γ ∈ {2.0, 0.3, 0.04, 0.006, 0.001}.

5. AdaGrad: AdaGrad adapts the learning rate based on historical information, so that
frequently changing features get smaller learning rates and stable features get higher
ones. Note that here we have different learning rates for different features. We will use
the hinge loss:

Q((x, y), w) = max(0, 1− y(wᵀx+ θ)).

Since we update both w and θ, we use gt to denote the gradient vector of Q on the
(n+ 1) dimensional vector (w, θ) at iteration t.

The per-feature notation at iteration t is: gt,j denotes the jth component of gt (with
respect to w) for j = 1, · · · , n and gt,n+1 denotes the gradient with respect to θ.

In order to write down the update rule we first take the gradient of Q with respect to
the weight vector (wt, θt),
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gt =

{
0 if y(wᵀ

t x+ θ) > 1

−y(x, 1) otherwise

That is, for the first n features, that gradient is −yx, and for θ, it is always −y.

Then, for each feature j (j = 1, ..., n+ 1) we keep the sum of the gradients’ squares:

Gt,j =
t∑

k=1

g2k,j

and the update rule is

wt+1,j ← wt,j − ηgt,j/(Gt,j)
1/2

By substituting gt into the update rule above, we get the final update rule:

wt+1,j =

{
wt,j if y(wᵀ

t x+ θ) > 1

wt,j + ηyxj/(Gt,j)
1
2 otherwise

where for all t we have xn+1 = 1.

We can see that AdaGrad with hinge loss updates the weight vector only when y(wᵀx+
θ) ≤ 1. The learning rate, though, is changing over time, since Gt,j is time-varying.

You may wonder why there is no AdaGrad with Margin: note that AdaGrad updates
w and θ only when y(wᵀx + θ) ≤ 1 which is already a version of the Perceptron with
Margin 1.

Parameters: η

Initialization: wᵀ = {0, 0, · · · , 0}, θ = 0

Parameter Recommendation: Choose η ∈ {1.5, 0.25, 0.03, 0.005, 0.001}.
Warning: If you implement AdaGrad in MATLAB, make sure that your denominator
is non-zero. MATLAB may not give special warning on this.

Important: Note that some of the above algorithms update the weight vector even
when the weight vector does not make a mistake on the current example. In some of the
following experiments, you are asked to calculate how many mistakes an online algorithm
makes during learning. In this problem set, the definition of the number of mistakes is as
follows: for every new example (x, y), if y(wᵀx + θ) ≤ 0, the number of mistakes will be
increased by 1. So, the number of mistakes an algorithm makes does not necessary equal
the number of updates it makes.
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Data generation

This section explains how the data to be used is generated. We recommend that you use the
python file gen.py to generate each of the data sets you will need. The input parameters
of this data generator include l,m,n, the number of instances, and a {True, False} variable
noise. When noise is set False, it will produce clean data. Otherwise it will produce noisy
data. (Make sure you place add noise.py with gen.py in the same workspace. See Problem
3 for more details.) Given values of l,m, n and noise set False, the following call generates
a clean data set of 50,000 labeled examples of dimensionality n in the following way (y and
x are Numpy arrays)

from gen import gen

(y, x) = gen(l, m, n, 50000, False)

For each set of examples generated, half will be positive and half will be negative. Without
loss of generality, we can assume that the first m attributes are the relevant attributes, and
generate the data this way. (Important: Your learning algorithm does NOT know that.)
Each example is generated as follows:

• For each positive example, pick randomly and uniformly l attributes from among
x1, . . . , xm and set them to 1. Set the other m − l attributes to 0. Set the rest of
the n−m attributes to 1 uniformly with a probability of 0.5.

• For each negative example, pick randomly and uniformly l − 2 attributes from among
x1, . . . , xm and set them to 1. Set the other m− l + 2 attributes to 0. Set the rest of
the n−m attributes to 1 uniformly with a probability of 0.5.

Of course, you should not incorporate this knowledge of the target function into your
learning algorithms. Note that in this experiment, all of the positive examples have l active
attributes among the first m attributes and all of the negative examples have l − 2 active
attributes among the first m attributes.

Parameter Tuning

One of the goals of this this homework is understanding the importance of parameters in
the success of a machine learning algorithm. We will ask you to tune and report the best
parameter set you chose for each setting. Lets assume you have the training data set and
the algorithm. We now describe the procedure you will run to tune the parameters. As will
be clear below, you will run this procedure and tune the parameters for each training set
you will use in the experiments below.

Parameter Tuning Procedure

• Generate two distinct subsamples of the training data, each consisting of 10% of the
data set; denote these data sets D1 and D2 respectively. For each set of parameter
values that we provided along with the algorithm, train your algorithm on D1 by
running the algorithm 20 times over the data. Then, evaluate the resulting model on
D2 and record the accuracy.

5



• Choose the set of parameters that results in the highest accuracy on D2.

Note that if you have two parameters, a and b, each with 5 options for values, you have
5× 5 = 25 sets of parameters to experiment with.

Experiments

Note: For the following experiments, you will generate data sets for multiple configurations
of l, m, and n parameters. For each configuration, make sure to use the same training data
and the same testing data across all learning algorithms so that the results can be compared
across algorithms.

1. [20 points] Number of examples versus number of mistakes

First you will evaluate the online learning algorithms with two concept parameter
configurations: (a) l = 10, m = 100, n = 500, and (b) l = 10, m = 100, n = 1000.

Your experiments should consist of the following steps:

(a) You should generate a clean data set of 50,000 examples for each of the two given
l, m, and n configuration.

(b) In each case run the tuning procedure described above and record your optimal
parameters.

Algorithm Parameters Dataset
n=500

Dataset
n=1000

Perceptron
Perceptron
w/margin
Winnow
Winnow
w/margin
AdaGrad

(c) For each of the five algorithms, run it with the best parameter setting over each
training set once. Keep track of the number of mistakes (W) the algorithm makes.

(d) Plot the cumulative number of mistakes made (W) on N examples (≤ 50, 000) as
a function of N (i.e. x-axis is N and y-axis is W)2

For each of the two datasets (n=500 and n=1000), plot the curves of all five algorithms
in one graph. Therefore, you should have two graphs (one for each dataset) with five
curves on each. Be sure to label your graphs clearly!

Comment: If you are getting results that seem to be unexpected after tweaking the
algorithm parameters, try increasing the number of examples. If you choose to do so,
don’t forget to document the attempt as well. It is alright to have an additional graph
or two as a part of the documentation.

2If you are running out of memory, you may consider plotting the cumulative error at every 100 examples
seen instead.
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2. [35 points] Learning curves of online learning algorithms

The second experiment is a learning curve experiment for all the algorithms. Fix
l = 10, m = 20. You will vary n, the number of variables, from n = 40 to n = 200 in
increments of 40. Notice that by increasing the value of n, you are making the function
sparse. For each of the 5 different functions, you first generate a dataset with 50, 000
examples. Tune the parameters of each algorithm following the instructions in the
previous section. Note that you have five different training sets (for different values of
n), so you need to tune each algorithm for each of these separately. Like before, record
the chosen parameters in the following table:

Algorithm Parameters n=40 n=80 n=120 n=160 n=200

Perceptron
Perceptron
w/margin
Winnow
Winnow
w/margin
AdaGrad

Then, run each algorithm in the following fashion:

(a) Present an example to the learning algorithm.

(b) Update the hypothesis if needed; keep track of the number W of mistakes the
algorithm makes.

Keep doing this, until you get a sequence of R examples on which the algorithm makes
no mistakes. Record W at this point and stop.

For each algorithm, plot a curve of W (the number of mistakes you have made before
the algorithm stops) as a function of n on one graph. Try this with convergence
criterion R = 1000. It is possible that it will take many examples to converge3 ; you
can do it by cycling through the training data you generated multiple times. If you
are running into convergence problems (e.g., no convergence after cycling through the
data more than 10 times), try to reduce R, but also think analytically about the choice
of parameters and initialization for the algorithms. Comment on the various learning
curves you see as part of your report.

3. [45 points] Use online learning algorithms as batch learning algorithms

The third experiment involves running all learning algorithms in the batch setting
with noisy training data. In the batch setting, you will still make weight updates per
mistake, but will loop over the entire training data for multiple training cycles. The
steps of this experiment are as follows:

3If you are running into memory problems, make sure you are not storing extraneous information, like a
cumulative count of errors for each example seen.
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(a) [Data Generation] For each configuration (l, m, and n), generate a noisy train-
ing data set with 50,000 examples and a clean test data set with 10,000 examples.

(train_y,train_x) = gen(l,m,n,50000,True);

(test_y,test_x) = gen(l,m,n,10000,False);

In the noisy data set, the label y is flipped with probability 0.05 and each attribute
is flipped with probability 0.001. The parameters 0.05 and 0.001 are fixed in this
experiment. We do not add any noise in the test data.

You will run the experiment with the following three different configurations.

• P1: l = 10, m = 100, n = 1000.

• P2: l = 10, m = 500, n = 1000.

• P3: l = 10, m = 1000, n = 1000.

(b) [Parameter Tuning] Use the Tuning Procedure defined earlier on the noisy
training data generated. Record the best parameters (three sets of parameters
for each algorithm, one for each training set).

Since we are running the online algorithms in a batch process, there should be,
in principle, another tunable parameter: the number of training cycles over the
data that an algorithm needs to reach a certain performance. We will not do it
here, and just assume that in all the experiments below you will cycle through
the data 20 times.

(c) [Training] For each algorithm, train the model using 100% of the noisy training
data with the best parameters selected in the previous step. As suggested above,
run through the training data 20 times. (If you think that this number of cycles
is not enough to learn a good model you can cycle through the data more times;
in this case, record the number of cycles you used and report it.)

(d) [Evaluation] Evaluate your model on the test data. Report the accuracy pro-
duced by all the online learning algorithms. (That is, report the number of mis-
takes made on the test data, divided by 10,000).

Recall that, for each configuration (l,m, n), you have generated a training set (with
noise) and a corresponding the test set (without noise), that you will use to evaluate
the performance of the learned model. Note also that, for each configuration, you
should use the same training data and the same test data for all the five learning
algorithms. You may want to use the numpy.save and numpy.load commands to
save the datasets you have created to disk and load them back.
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Use the table below to report your tuned parameters and resulting accuracy.

Algorithm m=100 m=500 m=1000

acc. params. acc. params. acc. params.
Perceptron
Perceptron w/margin
Winnow
Winnow w/margin
AdaGrad

Write down your observations about the resulting performance of the algorithms. Be
sure to discuss how the results vary from the previous experiments?

4. [10 points] Bonus: In our experiments so far, we have been plotting the misclassifi-
cation error (0-1 loss) for each of the algorithms. Consider the AdaGrad algorithm,
where we learn a linear separator by minimizing a surrogate loss function – Hinge loss
instead of directly minimizing the 0-1 loss. In this problem, we explore the relationship
between the 0-1 loss and the surrogate loss function.

We will use the AdaGrad update rule which was derived using Hinge Loss as our
loss function. Run the algorithm for 50 training rounds using the batch setting of
Problem 3. At the end of each round, record the misclassification error and the Hinge
loss over the dataset for that round. Generate two plots: misclassification error as a
function of the number of training rounds, Hinge loss (over the dataset) as a function
of the number of training rounds.

We will use a noisy dataset consisting of 10000 instances. Use the configuration where
l = 10, m = 20 and n = 40 (from Problem 2). Use the procedure gen.py to generate
the training data as follows:

(data_y,data_x) = gen(l,m,n,10000,True);

Recall that, once you generate the data, run the training procedure for 50 rounds
and obtain the required plots for misclassification error against the number of training
rounds and risk (loss over the dataset) against the number of training rounds. You can
re-use the parameters obtained in Problem 2. Write down your observations about the
two plots obtained. Feel free to experiment with other values of n and plot them in
the same graphs.
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What to submit

• A detailed report. Discuss differences you see in the performance of the algorithms
across target functions and try to explain why. Make sure you discuss each of the
plots, your observations, and conclusions.

• Three graphs in total, two from the first experiment (2 different concept parameter
configurations) and one from the second experiment (changing the number of variables
n, but keeping l and m fixed), each clearly labeled. Include the graphs in the report.
If you attempt the bonus problem, you should have two additional graphs to submit.

• One table for each of the first two experiments; three tables for the third experiment,
from P1 through P3. Include the tables in the report.

• Your source code. This should include the algorithm implementation and the code
that runs the experiments. You must include a README, documenting how someone
should run your code.

Comment: You are highly encouraged to start on this early because the experiments and
graphs may take some time to generate.
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