
On “Structured Perceptron with Inexact
Search”, NAACL 2012

John Hewitt
CIS 700-006 : Structured Prediction for NLP

2017-09-23

All graphs from Huang, Fayong, and Guo (2012) unless
otherwise specified. All other figures are original to this lecture.

1

Setup: tagging and perceptrons

x: The pizza runs

2

Setup: tagging and perceptrons

x: The pizza runs

y: Determiner, Noun, Verb : [D,V,N] (part of speech (POS) tagging)

3

Setup: tagging and perceptrons

x: The pizza runs

Φ(x, [N,V,N]) : a featurization of the input sequence and output tags
 Ex. previous word, previous POS, 2-character suffix

y: Determiner, Noun, Verb : [D,V,N] (part of speech (POS) tagging)

4

Setup: tagging and perceptrons

x: The pizza runs

Φ(x, [N,V,N]) : a featurization of the input sequence and output tags
 Ex. previous word, previous POS, 2-character suffix

w*Φ(x, [N,V,N]) : score given to the output sequence [N,V,N] by the
model for input x.

y: Determiner, Noun, Verb : [D,V,N] (part of speech (POS) tagging)

5

Setup: tagging and perceptrons

x: The pizza runs

Φ(x, [N,V,N]) : a featurization of the input sequence and output tags
 Ex. previous word, previous POS, 2-character suffix

w*Φ(x, [N,V,N]) : score given to the output sequence [N,V,N] by the
model for input x.

y: Determiner, Noun, Verb : [D,V,N] (part of speech (POS) tagging)

Perceptron update rule (informal): when you detect that the model
makes a mistake, update the weight vector, w.

6

Perceptron learning algorithm
1. Initialize weight vector w = 0.
2. For each of i iterations (i in 1,4, 8, 16, etc.):

a. For each (x,y) ∈ observation set D

7

Perceptron learning algorithm
1. Initialize weight vector w = 0.
2. For each of i iterations (maximum may be 1, 4, 8, 16, etc.):

a. For each (x,y) ∈ observation set D
i. Compute the most likely label sequence according to the model:

y* =

8

Perceptron learning algorithm
1. Initialize weight vector w = 0.
2. For each of i iterations (maximum may be 1, 4, 8, 16, etc.):

a. For each (x,y) ∈ observation set D
i. Compute the most likely label sequence according to the model:

y* =

ii. If y* != y, this is considered a violation. Update the weight vector (to
be described below.)

9

Perceptron learning algorithm
1. Initialize weight vector w = 0.
2. For each of i iterations (maximum may be 1, 4, 8, 16, etc.):

a. For each (x,y) ∈ observation set D
i. Compute the most likely label sequence according to the model:

y* =

ii. If y* != y, this is considered a violation. Update the weight vector (to
be described below.)

10

Foreshadowing: the argmax isn’t always tractable. Do we actually need an argmax, or do we
just need to find some incorrect label sequence that’s ranked more highly than the correct
sequence (a violation)?

highlow
Scoring
according
to the
model

x: The pizza runs

A correct violation detectionA correct violation detection

11

highlow w*Φ(x, [N,V,N]) w*Φ(x, [D,N,V])

Scoring
according
to the
model

Correct
sequence

x: The pizza runs

A correct violation detectionA correct violation detection

12

w*Φ(x, [N,N,N]) highlow w*Φ(x, [N,V,N]) w*Φ(x, [D,N,V])

Scoring
according
to the
model

Correct
sequence

Violation

Update weight vector: w ← w + Φ(x, [D,N,V]) - Φ(x, [N,N,N])

x: The pizza runs

A correct violation detection

13

The problem is in inference

14

w*Φ(x, [N,N,N]) highlow w*Φ(x, [N,V,N]) w*Φ(x, [D,N,V])

The difficulty of solving this argmax (or argtopk) depends heavily on the problem.
One consideration is the size of the space Y(x).

For some problems with only local features,Y(x) can be enumerated in its entirety.

The problem is in inference

15

w*Φ(x, [N,N,N]) highlow w*Φ(x, [N,V,N]) w*Φ(x, [D,N,V])

Trigram POS Tagging

45 tags
Bigram condition → search

space is 45^3 = 91125

Incremental Parsing

Exact Inference Possible Not so much

The difficulty of solving this argmax (or argtopk) depends heavily on the problem.
One consideration is the size of the space Y(x).

For some problems with only local features,Y(x) can be enumerated in its entirety.

(difficulty)

Exact Search
Finds true argmax

16 : subsequence up to this point will be scored by the model

Exact Search
Finds true argmax

w*Φ(x, [D,N,V])

17 : subsequence up to this point will be scored by the model

 : subsequence up to this point will be scored by the model

w*Φ(x, [D,N,V])

Exact Search
Finds true argmax

Beam Search (beam = 3)
May prune correct hypothesis due

to low scores early in search

w*Φ(x, [D,N,V])

18

highlow w*Φ(x, [N,V,N]) w*Φ(x, [D,N,V])

Scoring
according
to the
model

Correct sequence
(missing due to
search error)

Not a
Violation

x: The pizza runs

An incorrect violation detection

19

highlow w*Φ(x, [N,V,N]) w*Φ(x, [D,N,V])

Scoring
according
to the
model

Correct sequence
(missing due to
search error)

Not a
Violation

We still update the weight vector, even though it was correct:
w ← w + Φ(x, [D,N,V]) - Φ(x, [N,N,N])

x: The pizza runs

An incorrect violation detection

20

Perceptron Convergence

21

Perceptrons are proven to converge in a finite number of
updates as long as they are given valid violations with which

to update weight vectors. If one cannot guarantee a proposed
violation is valid, convergence may be lost*.

Perceptron Convergence

Perceptrons are proven to converge in a finite number of
updates as long as they are given valid violations with which

to update weight vectors. If one cannot guarantee a proposed
violation is valid, convergence may be lost*.

*In this paper, it is assumed that convergence is lost without valid violations found
during inference, but there are relaxations of this requirement not discussed in the

paper.

22

Notation for structured perceptron proofs
Notation 1:

Let x be an input sequence, y be the correct output sequence, and z be some
incorrect output sequence. Then we denote the difference between the
featurization of the correct hypothesis and that of z to be the difference:

 ∆Φ(x,y,z) = Φ(x,y) - Φ(x,z)

23

Notation

Definition 1: Confusion Set
Let D be a dataset. Let x be an input sequence and Y(x) the set of possible

output sequences for x. Let y be the correct output sequence, and z be some
incorrect output sequence. Then the confusion set of D is the set of triples of x, y,
and any sequence z.

Notation for structured perceptron proofs

24

Notation 1:
Let x be an input sequence, y be the correct output sequence, and z be some

incorrect output sequence. Then we denote the difference between the
featurization of the correct hypothesis and that of z to be the difference:

 ∆Φ(x,y,z) = Φ(x,y) - Φ(x,z)

Definition 2:
A dataset D is said to be linearly separable with margin δ if there exists an

oracle vector u, ||u|| = 1, such that for all x, y, and z in D, the weight vector u
scores the sequence y at least δ better than z.

u · ∆Φ(x, y, z) ≥ δ

NotationNotation for structured perceptron proofs

25

Definition 2:
A dataset D is said to be linearly separable with margin δ if there exists an

oracle vector u, ||u|| = 1, such that for all x, y, and z in D, the weight vector u
scores the sequence y at least δ better than z.

u · ∆Φ(x, y, z) ≥ δ

Notation

Definition 3:
The diameter, denoted R, of dataset D is the largest norm of the vector

difference between the featurization of any pair (x,y) and (x,z).

Notation for structured perceptron proofs

26

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2

27

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

We bound the norm of w, |wk|, from two directions. First:
Recall that the weight update when a violation z is found is

wi+1 ← wi + ∆Φ(x, y, z)

28

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

We bound the norm of w, |wk|, from two directions. First:
Recall that the weight update when a violation z is found is

wi+1 ← wi + ∆Φ(x, y, z)

Let u be an oracle weight vector that achieves δ separation. Then dot both sides of this
equation by u.

u·wi+1 = u·wi + u·∆Φ(x, y, z)
 ≥ u·wi + δ

29

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

We bound the norm of w, |wk|, from two directions. First:
Recall that the weight update when a violation z is found is

wi+1 ← wi + ∆Φ(x, y, z)

Let u be an oracle weight vector that achieves δ separation. Then dot both sides of this
equation by u.

u·wi+1 = u·wi + u·∆Φ(x, y, z)
 ≥ u·wi + δ

By induction, we have u·wi+1≥ kδ. Further, we recall that |a||b| ≥ a·b, for any a,b.
|u||wi+1| ≥ u·wi+1 ≥ kδ
|wi+1| ≥ kδ (since u is a unit vector.)

30

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

Now we bound |w| from below.
Recall that |a+b|2 = |a|2 + |b|2 + 2a·b

31

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

Now we bound |w| from below.
Recall that |a+b|2 = |a|2 + |b|2 + 2a·b
Thus,

|wi+1|
2 = |wi + ∆Φ(x, y, z)|2
 = |wi|

2 + |∆Φ(x, y, z)|2 + 2wi·∆Φ(x, y, z)

32

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

Now we bound |w| from below.
Recall that |a+b|2 = |a|2 + |b|2 + 2a·b
Thus,

|wi+1|
2 = |wi + ∆Φ(x, y, z)|2
 = |wi|

2 + |∆Φ(x, y, z)|2 + 2wi·∆Φ(x, y, z)

 ≤ |wi|
2 + R2 + 0 → induction gives |wi| ≤kR2

33

Replacing each term
with the maximum

(diameter.)

By the definition of a valid violation, w*Φ(x, y) < w*Φ(x, z).

Theorem 1: Structured Perceptron Convergence
For a dataset D separable under Φ with margin δ and diameter R, the
perceptron with exact search is guaranteed to converge after k updates,
where

k ≤ R2/δ2
Proof:

Now we bound |w| from below.
Recall that |a+b|2 = |a|2 + |b|2 + 2a·b
Thus,

|wi+1|
2 = |wi + ∆Φ(x, y, z)|2
 = |wi|

2 + |∆Φ(x, y, z)|2 + 2wi·∆Φ(x, y, z)

 ≤ |wi|
2 + R2 + 0 → induction gives |wi| ≤kR2

Now, we combine our two bounds to get k2δ2 ≤ |wi+1| ≤ kR2, which gives us
k ≤ R2/δ2

34

Replacing each term
with the maximum

(diameter.)

By the definition of a violation, w*Φ(x, y) < w*Φ(x, z).

We want ways to ensure the validity of violations without requiring exact
search.

Eliminating Invalid Updates

Beam search behavior

Correct hypothesis falls off
the beam

35

We want ways to ensure the validity of violations without requiring exact
search.

Eliminating Invalid Updates

Beam search behavior

Correct hypothesis falls off
the beam

Let that from this point on, the model would have scored
the correct sequence above all alternatives, making any
found violation invalid

Correct Hypothesis

36

Eliminating Invalid Updates: Early Update

Beam search behavior

Correct hypothesis falls off the
beam. Early Update Here!

Correct Hypothesis

When the correct hypothesis falls off the beam, we have x[1:i], y[1:i], z[1:i] such that

w*∆Φ(x[1:i],y[1:i],z[1:i]) < 0.

That is, the model has clearly made an error, as there are enough subsequences z[1:i] scored
higher than y[1:i] as to push it off the beam.

37

Eliminating Invalid Updates: Max Violation

Beam search behavior

Correct Hypothesis

Score of correct hypothesis up to this point
(according to exact search)

Best in beam

Worst in beam

Max violation : the point in the sequence where
the model is the most errorful. Update here! 38

Recap
Under exact search, a valid violation, if it exists, is always guaranteed to be found
and used to update w.

39

Recap
Under exact search, a valid violation, if it exists, is always guaranteed to be found
and used to update w.

However, any violation prefix sequence will do, because all satisfy w*∆Φ
(x[1:i],y[1:i],z[1:i]) < 0, which is the crucial condition in perceptron convergence.

40

Recap
Under exact search, a valid violation, if it exists, is always guaranteed to be found
and used to update w.

However, any violation prefix sequence will do, because all satisfy w*∆Φ
(x[1:i],y[1:i],z[1:i]) < 0, which is the crucial condition in perceptron convergence.

One way to find such a prefix is to take the prefix of some hypothesis on the beam
as soon as the correct hypothesis falls off. This is called early update.

Another way to find such a prefix is to keep scoring the correct hypothesis after it
falls off the beam, and take some candidate prefix on the beam at the prefix length
at which the correct hypothesis is scored worst. This is called max violation.

41

Results
“I don’t believe any of this for a second.” I want to train my perceptron using full
sequences x, y, and z, and ignore potentially invalid updates.

Turns out, this isn’t a huge
problem for trigram POS
tagging.
For parsing, however, the story
is much worse.

42

Results

Parsing Results:
Ensuring valid
violations is crucial

43

Results

Parsing Results:
Ensuring valid
violations is crucial

Tagging Results:
Ensuring valid violations is “helpful”

Tagging and parsing on standard Penn Treebank splits.
44

Results

Training time much faster for max-violation than early.

Why?
45

Results

Training time much faster for max-violation than early.

Why? Probably has to do with the margin of the dataset and informativeness of each update! Early update
takes minimally informative updates.

46

