Integer Linear Programming Inference for Conditional Random Fields By Dan Roth and Wen-tau Yih, ICLM'05

Ran Chen

University of Pennsylvania

ran1chen@wharton.upenn.edu

October 18, 2017

- Incorporating general constraints over the output space is natural and important in many settings
- Though Viterbi, a dynamic programming algorithm can be used efficiently to output the labels that maximize the joint conditional probability given the observation (in CRF setting), it fails to encode general constraints.
- Integer linear programming can be used to incorporate a wide range of general constraints
- Experimentally, the post-training inference incorporating general constraints by integer linear programming dramatically improves the performance of both CRF based methods and local learning algorithms.

Review of Linear Chain Conditional Random Field and Viterbi Algorithm

- Formulation of Linear Chain CRF and Viterbi Algorithm
- Incorporating Constraints in Viterbi

Inference Using Integer Linear Programming

- Solving Shortest Path Problem a different perspective of Viterbi
- Incorporate General Constraints with ILP

B Experiments

- Experiment Setting
- Experiment Results

Take-Away Points

- Assume there are K feature functions, f¹, ..., f^K, each of them maps a pair of sequence (y, x) and token index i to f^k(y, x, i) ∈ ℝ. Where y stands for the sequence of label and x stands for the sequence of observation.
- The global feature vector is defined by $F(\mathbf{y}, \mathbf{x}) = \sum_{i} \langle f^{1}(\mathbf{y}, \mathbf{x}, i), \cdots, f^{K}(\mathbf{y}, \mathbf{x}, i) \rangle$
- the probability distribution is defined as

$$Pr_{\lambda}(\mathbf{Y}|\mathbf{X}) = \frac{exp(\lambda \cdot F(\mathbf{Y}, \mathbf{X}))}{Z_{\lambda}(\mathbf{X})}$$

, where $Z_{\lambda}(\mathbf{X}) = \sum_{\mathbf{Y}} exp(\lambda \cdot F(\mathbf{Y}, \mathbf{X}))$ is a normalization factor

• The goal is to find **y** maximizing the above quantity.

- When $f^k(\mathbf{y}, \mathbf{x}, i)$ is only related to \mathbf{x}, y_{i-1} and y_i , define $M_i(y', y|x) = exp(\sum_j \lambda_j f_j(y', y, \mathbf{x}, i))$, where $y', y \in \mathcal{Y}$
- The sequence probability is $p(\mathbf{y}|\mathbf{x}, \lambda) = \frac{1}{Z_{\lambda}(\mathbf{x})} \prod_{i=0}^{n} M_i(y_{i-1}, y_i|\mathbf{x})$, where y_{-1}, y_n are two augmented special nodes before and after the **start** and **end** of the sequence.

•
$$\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{y}} \frac{1}{Z_{\lambda}(\mathbf{x})} \prod_{i=0}^{n} M_i(y_{i-1}, y_i | \mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} \prod_{i=0}^{n} M_i(y_{i-1}, y_i | \mathbf{x})$$

- Viterbi Algorithm computes the most likely label sequence (ŷ) given the observation x. At step i, it records all the optimal sequences ending at label y, ∀y ∈ 𝔅, y^{*}_i(y), and also the corresponding product P_i(y).
- The recursive function of Viterbi Algorithm

1
$$P_0(y) = M_0(start, y|\mathbf{x})$$
 and $\mathbf{y}_0^*(y) = y$
2 For $1 \le i \le n$, $\mathbf{y}_i^*(y) = \mathbf{y}_{i-1}^*(\hat{y}) \cdot (y)$ and
 $P_i(y) = \max_{y' \in \mathcal{Y}} P_{i-1}(y') \mathcal{M}(y', y|(x))$, where
 $\hat{y} = \operatorname{argmax}_{y' \in \mathcal{Y}} P_{i-1}y' \mathcal{M}(y', y|\mathbf{x})$ and "." is the concatenation operator

• Training is to estimate the values of the weight vector λ given the training set $T = \{(\mathbf{x}_k, \mathbf{y}_k)\}_{k=1}^N$, where \mathbf{x}_k and \mathbf{y}_k are observation sequence and label sequence.

$$egin{aligned} &\hat{\lambda} = rgmax_{\lambda} \mathcal{L}_{\lambda} = rgmax_{\lambda} \sum_{k} log(p_{\lambda}(\mathbf{y}_{k}|\mathbf{x}_{k})) \ = rgmax_{\lambda} \sum_{k} [\lambda \cdot F(\mathbf{y}_{k},\mathbf{x}_{k}) - \log Z_{\lambda}(\mathbf{x}_{k})] \end{aligned}$$

- Training methods:
 - 1 maximum likelihood training Find $\hat{\lambda}$, e.g. generalized iterative scaling, conjugate-gradient, limited-memory quasi-Newton
 - 2 discriminatively learning reducing the number of error predictions directly (find λ̃ = argmax_λ −|{k : y_k ≠ argmax_y log(p_λ(y|x_k))}|), e.g. sturctured (Voted) perceptron (Collins 2002)

Incorporating Constraints in Viterbi—Natural Constraints on output spaces 1

- In many NLP problems (e.g. chunking, semantic role labeling, information extraction), there is a need to identify segments of consecutive words in the sentence and classify them to one of several classes
- BIO representation:
 - label B- (Begin): the first word of a segment, "-" indicates the phrase type
 - label I- (Inside): the word is part of , but not first in the segment
 - label O (Outside): all other words in the sentence

B-PERS I- PERS B-ORG

tim cook is the ceo of apple

Figure: suppose we have types: person, location, time, money, organization

Incorporating Constraints in Viterbi—Natural Constraints on output spaces 2

- When no consecutive segments share the same type, BIO representation can be simplified to the **IO representation**
- **Constraints**: "no duplicate segments" (e.g. semantic role labeling); "I" does not follow "O" in BIO representation; a known label of a specific position or disallow some tokens

- I label does not immediately follow O label \Rightarrow set $M_i(y_{i-1} = O, y_i = I | \mathbf{x}) = 0, \forall 1 \le i \le n-1$
- Label at position i has to be $a \Rightarrow \text{set } M_i(y_{i-1}, y_i) = 0, \forall y_{i-1} \in \mathcal{Y} \text{ and}$ all $y_i \in \mathcal{Y} - \{a\}$
- Global constraints? (e.g. no duplicate segments, relation between distant tokens) ⇒ unable to incorporate in Viterbi

Modification of matrix M is not sufficient to incorporate long distant, more general constraints

Reformulatin gthi problem in Shortest Path Problem

- Graph G=(V,E)
- mn + 2 nodes: start, end, $v_{i,j}$ ($v_{i,j}$ i th point with j th label)
- $2m + (n-1)m^2$ edges: (start, $v_{0,j}$), ($v_{n-1,j}$, end), ($v_{i,j}$, $v_{i+1,k}$)
- edge weight: edge weight of $v_{i-1,y}$ and $v_{i,y'}$ is $-log(M_i(y,y'|\mathbf{x}))$
- reformulate to shortest path problem: find $argmax_{\mathbf{y}}\prod_{i=0}^{n-1}M_i(y_{i-1}y_i|\mathbf{x})$ \Leftrightarrow find the shortest path

Reformulating the problem in ILP Setting-1

The shortest path problem could be reformulated in integer linear programming

Reformulating the problem in ILP Setting-2

Taking the objective function into the formulation, we have

Incorporating global constraints through ILP-examples

• no duplicate argument labels

$$m(n-1-i)x_{i,ab} \le \sum_{\substack{0 \le y \le m-1 \ i+1 \le j \le n-1}} 1 - x_{j,ya}$$

, $\forall i, a, b \text{ s.t. } 1 \leq i \leq n-2, \ 0 \leq b \leq m-1, \ a \neq b$

(

• at least one Argument At least one segment should not be O:

$$\sum_{\substack{0 \le i \le n-1\\ 0 \le y \le m-1}} x_{i,y0} \le n-1$$

• Known verb position The verb (at position i) should be labeled O:

$$\sum_{0 \le y \le m-1} x_{i,y0} = 1$$

Ran Chen

October 18, 2017

14 / 27

Incorporating global constraints through ILP-examples

• segment \mathcal{A} of tokens share the same label Denote $v_{i,y} = \sum_{0 \le y' \le m-1} x_{i,y'y}$, then the constraint is

$$|\mathcal{A}| v_{p,l} \leq \sum_{i \in \mathcal{A}} v_{i,l}$$

$$\forall p \in \mathcal{A}, \forall l, 0 \leq l \leq m-1$$

• a appears \Rightarrow b appears

$$\sum_{\substack{0 \le y \le m-1 \\ 0 \le i \le n-1}} x_{j,ya} \le \sum_{\substack{0 \le y \le m-1 \\ 0 \le i \le n-1}} x_{i,yb}$$

 $\forall j, 0 \leq j \leq n-1$

Incorporating global constraints in Integer Linear Prgramming Setting-2

Theorem

All possible Boolean functions over the variables of interest can be represented as sets of linear (in)equalities (Gueret et al., 2002)

Definition (TU)

A matrix A is totally unimodular if the determinant of every square submatrix of **A** is +1,-1,0.

Theorem (Veinott & Dantzig)

Let **A** be an (m,n)-integral (integer) matrix with full row rank m. Then solution to the linear program $max(\mathbf{cx} : \mathbf{Ax} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n_+)$ is integral (integer) vector **b**, if and only if **A** is totally unimodular.

Theorem (Wolsey, 1998)

The coefficient matrix of the linear programming for the shortest path problem is totally unimodular

\Rightarrow (Computing Complexity)

Shortest path problem could be transformed from integer linear programming into a common linear programming (adding constraints $x_{i,uv} \leq 1, -x_{i,uv} \leq 0$). Therefore, interior point could be used to solve it, which only takes polynomial time.

• Semantic Role Labeling using the definition of PropBank, taking only the core arguments. Using IO representation. The goal is to assign each chunk with one of the following labels: O, I-A0, I-A1, I-A2,I-A3,I-A4,I-A5

- features: state features; word; pos,chunk type of the neighboring chunk; edge; end
- general constraints are not used in training procedures, they are only use in inference procedure
- CRFs are trained through maximum log likelihood and discriminative method

• No duplicate argument labels

In the SRL task, a verb in a sentence cannot have two arguments of the same type.

• Argument candidates

- Generate a candidate list with high recall but low precision.
- Each candidate argument is a segment of consecutive chunks.
- Although not every candidate is an argument of the target verb, each chunk in the candidate has to be assigned the same label.
- This is an effective constraint that provides argument-level information.

At least one argument

Each verb in a sentence must have at least one core argument \Rightarrow at least one chunk will be assigned a label other than O.

Known verb position

the known verbs should be labeled 0.

Disallow arguments

- Given a particular verb, not every argument type is legitimate.
- The arguments that a verb can take are defined in the frame files in the PropBank corpus.

- General constraints improve the results significantly, for both CRF training algorithm.
- However, incorporating general constraints to discriminative training method (CRF-D) does not perform satisfactory, which may due to the limited training examples (Punykanok et al., 2005)

		CRF-ML			CRF-D		
		Rec	Prec	\mathbf{F}_{1}	Rec	Prec	\mathbf{F}_{1}
	basic	62.53	70.91	66.46	66.64	71.83	69.14
1	+ no dup	62.52	72.41	67.10	66.21	73.66	69.74
2	+ candidate	65.61	79.23	71.78	68.64	79.44	73.64
3	+ argument	66.54	77.76	71.71	69.42	78.57	73.71
4	+ verb pos	66.56	77.75	71.72	69.52	78.59	73.78
5	+ disallow	66.70	78.08	71.94	69.62	78.76	73.91

Experiment Results - Local Learning Systems

- To totally decoupling learning and inference, the training procedure could be reduced to multi-class classifier. Constraints are only used in the inference procedure.
- The multi-class classifiers used are: regularized versions of perceptron, winnow, voted perceptron and voted winnow. The criteria is F_1 .
- The results shows that with the increasing constraints, local learning systems' performance improve dramatically and even surpass the CRFs when all 5 constraints are encompassed.

		VP	VW	Р	W
	basic	58.15	54.32	53.03	50.78
1	+ no dup	64.33	61.87	60.59	59.13
2	+ candidate	74.17	71.72	70.03	70.20
3	+ argument	74.02	71.76	69.98	70.32
4	+ verb pos	74.03	71.84	70.05	70.42
5	+ disallow	74.49	72.04	70.36	70.67

Experiment Results - Comparison

CRF results

		CRF-ML			CRF-D		
		Rec	Prec	\mathbf{F}_{1}	Rec	Prec	\mathbf{F}_1
	basic	62.53	70.91	66.46	66.64	71.83	69.14
1	+ no dup	62.52	72.41	67.10	66.21	73.66	69.74
2	+ candidate	65.61	79.23	71.78	68.64	79.44	73.64
3	+ argument	66.54	77.76	71.71	69.42	78.57	73.71
4	+ verb pos	66.56	77.75	71.72	69.52	78.59	73.78
5	+ disallow	66.70	78.08	71.94	69.62	78.76	73.91

• Local learning system's result

		VP	VW	Р	W
	basic	58.15	54.32	53.03	50.78
1	+ no dup	64.33	61.87	60.59	59.13
2	+ candidate	74.17	71.72	70.03	70.20
3	+ argument	74.02	71.76	69.98	70.32
4	+ verb pos	74.03	71.84	70.05	70.42
5	+ disallow	74.49	72.04	70.36	70.67

• IBT, L+I, the difficulty of local training

Ran Chen

Local learning based systems are more efficient (w.r.t runtime).

	CRF-ML	CRF-D	CRF-D (IBT)	VP	VW
Time (hrs)	48	38	145	0.8	0.8

- The shortest path problem solved by Viterbi algorithm can be represented and solved through integer linear programming
- Integer linear programming can systematically incorporate general constraints that can not be incorporated in Viterbi
- Experimentally, Incorporating general constraints through integer linear programming indeed dramatically improve the performances of both CRFs and local learning systems.
- Sometimes, in the presence of structure on output, enforcing the constrains only at the evaluation time results in comparable performance at a much lower cost.

Roth D, Yih W (2005)

Integer linear programming inference for conditional random fields[C]

Proceedings of the 22nd international conference on Machine learning ACM, 2005: 736-743.

Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2005)

Learning and inference over constrained output.

Proc. of IJCAI-2005.

Collins, M. (2002)

Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms.

Proc. of EMNLP-2002.

Thanks for your attention!

Ran Chen

ILP inference for CRFs

October 18, 2017 27 / 27

___ ▶