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Overview
- Background and motivation
- Theorems and approximations
- Experimental results in Semantic Role Labeling
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Background and Motivation

If we solve a lot of inference problems, can we sometimes 
reuse the results for new problems instead of starting from 

scratch?



Background and Motivation
- Integer linear programming (ILP) can be used to do inference on any 

structured prediction problem
- Parts of speech tagging
- Dependency parsing
- Semantic role labeling



Example from Semantic Role Labeling
- From (Punyakanok et al., 2008)
- Given a sentence and a verb, label the corresponding arguments of the 

verb:



Example from Semantic Role Labeling
- Train classifiers that score how well each label fits each word/phrase
- Use ILP to maximize overall sum of scores given restrictions:



- Sometimes, there are many theoretically possible structures for a problem, 
but only a handful of commonly-seen ones:

[I] [left] [my pearls] [to my daughter-in-law] [in my will].

[He] [left] [his house] [to his son] [in a letter].
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- Sometimes, there are many possible structures for a problem, but only a 
handful of commonly-seen ones
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Background and Motivation

If we solve a lot of inference problems, can we sometimes 
reuse the results for new problems instead of starting from 

scratch?



Main theorems



Main contributions of paper
- 3 "exact" theorems

- If conditions hold, the solution to an older ILP problem is necessarily also the optimal solution 
to a new ILP problem

- Approximations for the theorems
- Experimental results for Semantic Role Labeling (SRL)

- Makes ½ the number of ILP calls while getting exact optimal solutions
- Makes ⅓ the number of ILP calls when using approximations, with minimal loss of accuracy



Review of ILP
- For the purposes of this paper, we restrict ourselves to 0-1 ILP

- Given some linear inequalities...
- … find a solution that maximizes some linear objective function...
- … with each component of the solution either 0 or 1

- ILP (unlike the non-integer version) is NP-hard



Equivalence classes of ILPs
- Two ILPs are in the same equivalence class if they have:

a. the same number of inference variables
b. the same feasible set
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b. the same feasible set



- Increasing weights on "active" variables (variables that are set to 1) or 
decreasing weights on "inactive" variables (variables that are set to 0) doesn't 
change the optimal solution

Theorem 1
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decreasing weights on "inactive" variables (variables that are set to 0) doesn't 
change the optimal solution
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Proof of Theorem 1
- Let c be the original weights, with y* the optimal solution for the original 

problem. WLOG, assume c' increases the first component of c by k, and that 
the first component of y* is 1.



Proof of Theorem 1
- For the "inactive" case, the argument is similar
- Apply both cases repeatedly to all components of c



Theorem 1
- Another way of putting it: take the difference between weights, compare 

positive and negatives of the difference to the solution found



Theorem 1



Theorem 2
- If a solution works for two different vectors of weights, it works for a 

(nonnegative) linear combination of them too.



Theorem 2



Theorem 3
- Can we combine Theorem 1 and 2?



Theorem 3
1. Look for a linear combination of vectors (Theorem 2) such that…
2. … the difference between this combination and the ILP problem we are 

solving fulfills Theorem 1



Theorem 3



Implementation
- Theorem 1: loop through all previously solved problems in the same 

equivalence class, check weights to see if theorem fulfilled
- Theorem 2 and 3: solve a linear (non-integer!) program for combining the 

existing ILP instances
- Can also optimize further by only selectively including ILP instances



Approximations
- Top-1/Top-K (approximation "baseline")

- Since many similar instances tend to have the same structure, just cache the most frequently 
seen instances for each equivalence class, and use those as our guesses



Approximations
- Approximate Theorem 1/Theorem 3

- Allow inequalities to be violated by some epsilon
- Can reuse solutions more often, even if not necessarily the optimal solution



Experimental results



Recap of Semantic Role Labeling
- From (Punyakanok et al., 2008)
- Given a sentence and a verb, label the corresponding arguments of the 

verb:



Experimental results



Extensions
- Kundu, Srikumar, Roth (2013)

- Margin based generalization of Theorem 1
- Also decompose each inference problem into parts, try to use technique on smaller 

subproblems rather than on large problems
- Further improvements: e.g. only makes 16% of inference calls (vs 41%) in Semantic Role 

Labeling

- Chang, Upadhyay, Kundu, Roth (2015)
- Another extension of Theorem 1
- Further improvements to learning using amortized inference
- Only makes 10%-24% of inference calls in Entity Relation Extraction
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