Mixture Models

1 Introduction

[TBW]

2 EM for a mixture model

We want to train a Gaussian mixture model using EM. Let assume we have this mixture model:

\[g(x) = \sum_{k=1}^{K} \pi_k g_k(x), \quad g_k = \mathcal{N}(\mu_k, \sigma^2 I) \]

such that \(\sum_{k=1}^{K} \pi_k = 1 \) and \(\Theta = \left\{ \{\pi_k, \mu_k\}_{k=1}^{K}, \sigma^2 \right\} \) are unknown variables. Assuming that we have the training data \(\{x_n, g_n\}_{i=1}^{n} \), we can write the likelihood as following:

\[
L = \log \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \sigma^2 I) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | \mu_k, \sigma^2 I). \quad (1)
\]

Now we could find the MLE estimation of the parameters using gradient with respect to parameters of the model:

\[
\frac{\partial L}{\partial \pi_k} = 0, \quad \frac{\partial L}{\partial \mu_k} = 0, \quad \frac{\partial L}{\partial \sigma^2} = 0.
\]

Because taking the derivatives of the likelihood in Eq. (1) is hard, we could change its form by adding a categorical latent variables, \(\{z_k\}_{k=1}^{K} \) s.t. \(z_k = 0, \ldots, K \), that determine each of the samples come from which component:

\[
z_i \sim \text{Cat}(K, p)
\]

\[
x_i | z_i = k \sim \mathcal{N}(\mu_k, \sigma^2 I)
\]
\[\mathcal{L} = \sum_{k=1}^{K} \sum_{i}^{n} \log \mathcal{N}(x_i | \mu_k, \sigma^2 I) + \log \pi_k. \]

If we know \(z_i \), the MLE estimation for each of the parameters could be found by

\[
\hat{\pi}_k = \frac{n_k}{n}, \quad \hat{\mu}_k = \frac{1}{n_k} \sum_{i: z_i = k} x_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i} (x_i - \hat{\mu}_i)^T (x_i - \hat{\mu}_i). \]

Now based the values of the model parameters we can calculate the probability of \(x_i \) belonging to one the component \(k \) by

\[
\gamma_{ik} = \Pr(z_i = k | x_i, \theta) = \frac{\pi_k \mathcal{N}(x_i | \mu_k, \sigma^2 I)}{\sum_{k'}^{K} \pi_{k'} \mathcal{N}(x_i | \mu_{k'}, \sigma^2 I)}. \tag{2} \]

Using the above criterion we can modify the likelihood updates as

\[
\hat{\pi}_k = \frac{\sum_{i=1}^{n} \gamma_{ik}}{n}, \quad \hat{\mu}_k = \frac{\sum_{i=1}^{n} \gamma_{ik} x_i}{\sum_{i=1}^{n} \gamma_{ik}}, \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \gamma_{ik} (x_i - \hat{\mu}_i)^T (x_i - \hat{\mu}_i)}{\sum_{i=1}^{n} \gamma_{ik}}. \tag{3} \]

One important question is that how to initialize the model parameters? A good way to construct initial guesses for \(\mu_1 \) and \(\mu_2 \) is simply to choose \(K \) of the training data at random. For \(\sigma^2 \) we can set it equal to the sample variance \(\sum_{i=1}^{N} (x_i - \bar{x})^2 / N \), and the mixing proportions, \(\pi_k = 0.5 \).

2.1 Gaussian Mixture Model as special case of k-means clustering!

First we have a short review on k-means clustering. In k-means clustering algorithm we aim to partition \(X = \{x_1, \ldots, x_n\} \) into \(k \) clusters. Thus we define \(\{\mu_i\}_{i=1}^{K} \) as centre of clusters, and \(\{r_{i,k}\}_{i=1}^{n} \) as indicator variables. Each \(r_{i,k} \) is 1 if and only if, \(x_i \) belongs to cluster \(k \). The goal of the clustering is to minimize the sum of distances of points in the same cluster from the mean of the cluster:

\[
J(r, \mu) = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{i,k} \|x_i - \mu_j\|^2
\]

It can be shown that iterative repetition of the following two steps will result in the above objective function:

Step1: Assuming \(\mu \) is determined, we can find \(r \) by

\[
r_{i,k} = 1 \text{ if } k = \arg \min_j \|x_i - \mu_j\|^2
\]
Step 2: Assuming r is fixed, we can find each centre of cluster by

$$
\mu_k = \frac{\sum_{i=1}^{n} r_i x_i}{\sum_{i=1}^{n} r_i} \quad (4)
$$

If we assume that $\sigma \to 0$, the Gaussian distribution becomes one infinite mass at mean. So $\gamma_{i,k}$ in Eq. 2 becomes 1 only for x_i which is closest to μ_k, which is like $r_{i,k}$ in k-means clustering. Consequently Eq. 3 reduces to Eq. 4 and in overall results in k-means clustering algorithm.