Question Answering as Global Reasoning over Semantic Abstractions

Daniel Khashabi, Dan Roth (University of Pennsylvania)
Tushar Khot, Ashish Sabharwal (Allen Institute for Artificial Intelligence)

Feb 6, 2018
Standardized science exams (Clark et al, 2015):
- Broad knowledge (general and scientific)
- Connecting question to

Q: Which physical structure would best help a bear to survive a winter in New York State?
A: (A) big ears (B) black nose (C) thick fur (D) brown eyes

P: … Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger …

Biology exams (Berant et al, 2014):
- Technical terms and answer not easy to find.
- Requires understanding complex relations.

Q: What does meiosis directly produce?
(A) Gametes (B) Haploid cells

P: … Meiosis produces not gametes but haploid cells that then divide by mitosis and give rise to either unicellular descendants or a haploid multicellular adult organism. Subsequently, the haploid organism carries out further mitoses, producing the cells that develop into gametes.
Which physical structure would best help a bear to survive a winter?

(A) big ears (B) black nose (C) thick fur (D) brown eyes

Thick fur helps a bear survive a winter.

A thick coat of white fur helps bears survive in these cold latitudes.

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities.

A given “meaning” can be phrased many surface forms!
Which physical structure would best help a bear to survive a winter?

(A) big ears (B) black nose (C) thick fur (D) brown eyes

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities.

QA is fundamentally a NLU problem

A single abstraction is not enough
High-level view

Question Answering

as **Global Reasoning**

over **Semantic Abstractions**
Collections of semantic graphs

Create a **unified representation as a family of graphs**
- predicate-argument, trees, clusters, sequences

A single representation is not enough to capture the complexity of language:
- e.g. named-entities
- e.g. dependency parse
- e.g. semantic role labeling (verb, preposition, comma)
- e.g. co-reference
- e.g. tables

Our representation has nothing to do with the QA task. It reflects our understanding of the language.
Reasoning With a Meaning Representation

- **Augmented Graph** is the graph which contains potential alignments between elements of any two graphs.

Connections via similarity / entailment

Reasoning formulated as best subgraph reasoning
Example subgraph

Question Instance
- Question
- Paragraph
- Answer

(Irrelevant edges and graphs are dropped for simplicity)

Question: Which physical structure would best help a bear survive a winter?

Knowledge: ... Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities. ...
Translate QA into a search for an optimal subgraph

Constraint: Incorporate **global** and **local** constraints

- **Global** e.g.
 - Have ends in question and paragraph
 - Connected graph
- **Local** e.g.
 - If using a pred-arg graphs,
 - use at least predicate and argument, or
 - use at least two arguments

Objective: Capture what’s a valid reasoning, what’s preferred

- **Preferences** e.g.
 - Use sentences nearby
 - If using a pred-arg graph, give priority to the subject

Formulate as Integer Linear Program (ILP) optimization

- Solution points to the best supported answer
Evaluation: notable baselines

- IR (Clark et al, AAAI’15)
 - Information retrieval baseline (Lucene)
 - Using 280 GB of plain text

- TupleINF (Khot et al, ACL’17)
 - Inference over independent rows
 - Auto-generated short triples
 - And type-constrained rules

- BiDaF (Seo et al, ICLR’16)
 - Neural model: attention & LSTM
 - Extractive, i.e select a contiguous phrase in a given paragraph

We compare with the best baseline on each domain.
However we use one version of our systems across all the datasets.
Results #1: Science Questions

(exam scores, shown as a percentage)

Higher is better
Results #2: Biology Questions

Using additional supervision

More experiments in the paper!

One single system tested on different datasets.
Concluding remarks

- Reasoning over language requires dealing with diverse set of linguistic phenomena.
- Linguistic variability ⇒ collection of semantic abstraction that are linguistically informed
- We decoupled “reasoning for QA” from “abstraction”
- Strong performance on two domains simultaneously

Give it a try:
https://github.com/allenai/semanticilp

CogComp-NLP:
https://github.com/CogComp/cogcomp-nlp
Extra slides
Reasoning over language requires dealing with linguistic phenomena.

Reasons over a wide range of semantic abstractions of the text.

Strong performance on two domains simultaneously.

Give it a try:
https://github.com/allenai/semanticilp

CogComp-NLP:
https://github.com/CogComp/cogcomp-nlp
Linguistic variability

Which physical structure would best *help a bear to survive a winter*?

(A) big ears (B) black nose (C) **thick fur** (D) brown eyes

Thick fur helps a bear survive a winter.

A thick *coat of white fur* helps bears survive in these cold latitudes.

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities.

A given “meaning” can be phrased many surface forms!
Semantic understanding can help!

Which physical structure would best help **a bear to survive a winter**?
(A) big ears (B) black nose (C) **thick fur** (D) brown eyes

- **Verb predicate: survive**
 - Survivor: “a bear”
 - Adverse circumstances: “a winter”

- **A single abstraction is not enough:**
 - We use off-the-shelf linguistically-informed annotators
 - Coref, Shallow semantic representations, etc.

- **Comma predicate: , (sense: substitute)**
 - indicates an apposition structure
SemanticILP: Example

Question: Who did Chelsea purchase this season?

Details in the paper!
One argument is a part of another.

- The governor is a number
- The object is a group modified by the governor.
QA is everywhere

- One of the oldest problems in AI
- Remarkable features of QA

QA systems are still far from exhibiting human-like intelligence, even in relatively simple ways (vs. human-level)
Results #2: Biology Questions

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BiDAF</th>
<th>BiDAF tuned</th>
<th>IR</th>
<th>SyntProx Baseline*</th>
<th>ProRead* (structural supervision)</th>
<th>SemanticILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Bank**</td>
<td>58.7</td>
<td>61.3</td>
<td>63.8</td>
<td>61.9</td>
<td>68.1</td>
<td>67.9</td>
</tr>
</tbody>
</table>

SemanticILP does not rely on domain-specific process structure annotation
- Close to the specialized, state-of-the-art ProRead system
- Substantially better than syntax-based and neural baselines

One single system tested on different datasets.

* Berant et al. (EMNLP, 2014)
** ~70% of the original dataset; true/false and temporal questions currently out of scope
Widely accepted that QA systems get lucky when answering questions, because they fail with small variations.
Results #1: Science Questions

- Paragraphs obtained by concatenating top k Lucene-retrieved sentences for various answer options

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Best Overall</th>
<th>Best Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regents 4th</td>
<td>56.3</td>
<td>53.1</td>
</tr>
<tr>
<td>Public 4th</td>
<td>50.7</td>
<td>57.4</td>
</tr>
<tr>
<td>Regents 8th</td>
<td>53.5</td>
<td>62.8</td>
</tr>
<tr>
<td>Public 8th</td>
<td>47.7</td>
<td>51.9</td>
</tr>
</tbody>
</table>

(exam scores, shown as a percentage)
How many ways can we encode the knowledge required for the following question?

Which physical structure would best help a bear to survive a winter?

(A) big ears (B) black nose (C) thick fur (D) brown eyes

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities.

Linguistic understanding can help!

- Verbs, preposition, punctuation
- Domain agnostic => can use pre-trained NLP modules