Reasoning-driven Question Answering

Daniel Khashabi

Committee:
Prof. Mitch Marcus (Chair), Prof. Zach Ives,
Prof. Chris Callison-Burch, Dr. Ashish Sabhrawal (external)

Thesis proposal meeting
Feb 9, 2018
QA is everywhere

- One of the oldest problems in AI
- Remarkable features of QA

QA systems are still far from exhibiting human-like intelligence, even in relatively simple ways (vs. human-level)
Programs with Commonsense

(John McCarthy, 1959)

Formalize world in **logical** form!

Example:
"My desk is at home" → at(I, desk)
"Desk is at home" → at(desk, home)

McCarthy was right that, once you understand language you can do reasoning; but he missed that NLU is difficult.

Hypothesis: Commonsense problems are solved by logical reasoning
What they missed: Variability and Ambiguity

- The difficulty of mapping from nature (including natural language) to symbols

One cannot simply map natural language to a representation that gives rise to reasoning

“Chicago”

Meaning

Variability

Ambiguity

Language
Reasoning is often studied in a very narrow sense.

Examples typically span multiple reasoning aspects.

Reasoning has many (infinite?) forms.

- quantitative reasoning
- paraphrasing
- temporal
- deductive
- inductive
- causal (cause to effect)
- causal (effect to cause)
- abductive
- analogy
- exemplar (learn. by ex.s)
- conditional
- non-monotonic
- coref
-
Formal reasoning

- **Abductive reasoning**
 - Incomplete Observations → Best conclusion (maybe true)
 - (Bayesian Nets; Fuzzy Logic; Dampster-Shafer Theory)

- **Deductive reasoning**
 - General Rule → Specific conclusion (always true)
 - (modus ponens; modus tollens)

- **Inductive reasoning**
 - Specific Observation → General Conclusion (maybe true)

The grass is wet, …
- It must have rained.
- Someone has watered them

When it rains, objects get wet.
It rained.
- The grass must be wet.

Every time that it rains, the grass gets wet.
- It must be the case that with rain grass always get wet.
The many faces of reasoning

Q: When did Jack pass out?

- The sunlight hit Jack and he passed out. Options: morning, noon, night
 - “after” (temporal)
 - “And” shows a temporal relation.
 - “sunlight” can be:
 - morning; opening a window?
 \[\Rightarrow\text{Abduction: (probably) morning}\]

- Jack passed out after the dinner. Options: morning, noon, night
 - “after” (temporal)
 - “dinner” happens at night (temporal)
 - how long is “dinner” (temporal)
 \[\Rightarrow\text{Deduction: night}\]

Q: When did Jack pass out?

- The sunlight hit Jack and he passed out. Options: morning, noon, night
 - “after” (temporal)
 - “And” shows a temporal relation.
 - “sunlight” can be:
 - morning; opening a window?
 \[\Rightarrow\text{Abduction: (probably) morning}\]

- Jack passed out after the dinner. Options: morning, noon, night
 - “after” (temporal)
 - “dinner” happens at night (temporal)
 - how long is “dinner” (temporal)
 \[\Rightarrow\text{Deduction: night}\]

In language, things are not clearly disjoint. \[\Rightarrow\text{An instance might have elements of both phenomena.}\]

There is overlap between all of them.

What a linguist would interpret “reasoning”

What a logician would interpret “reasoning”

Generalization bounds

Very little understanding
Answering natural language questions, require a wide spectrum of reasoning abilities working together coherently, while affecting each other. Focusing on creating this harmony and interplay is a key to making progress in natural language question answering.
It’s a convoluted subject and hard to define.

- **Fact Space**
 - Facts about the world (commonsense)
 - Facts about the assumed scenario (problem specific)

- **Reasoning**

- **Abstraction**
 - A formalism that maps texts with the same meaning to the same representation.

- **Knowledge**

- **Access the knowledge**

- **Reasoning engine**

- **Conclusion**
Roadmap

- Motivation

- Background

- Previous work
 - A formalism for abductive reasoning (IJCAI’16, AAAI’18)
 - Learning what to pay attention to in questions (CoNLL’17)
 - A dataset for reasoning over multiple sentences (submitted)

- Proposed research
Standardized science exams (Clark et al, 2015):

- Simple language; kids can solve them well, but they need to have the ability use the knowledge and abstract over it.

Q: Which physical structure would best help a bear to survive a winter in New York State?
A: (A) big ears (B) black nose (C) thick fur (D) brown eyes

P: … Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger …

Biology exams (Berant et al, 2014):

- Technical terms and answer not easy to find.
- Requires understanding complex relations.

Q: What does meiosis directly produce?
(A) Gametes (B) Haploid cells

P: … Meiosis produces not gametes but haploid cells that then divide by mitosis and give rise to either unicellular descendants or a haploid multicellular adult organism. Subsequently, the haploid organism carries out further mitoses, producing the cells that develop into gametes.
Evaluation: notable baselines

- **IR (Clark et al, AAAI’15)**
 - Information retrieval baseline (Lucene)
 - Using 280 GB of plain text

- **TupleINF (Khot et al, ACL’17)**
 - Inference over independent rows
 - Auto-generated short triples
 - And type-constrained rules

- **BiDaF (Seo et al, ICLR‘16)**
 - Neural model: attention & LSTM
 - Extractive, i.e. select a contiguous phrase in a given paragraph
Roadmap

- Motivation
- Background

- Previous work
 - A formalism for abductive reasoning (IJCAI’16, AAAI’18)
 - Learning what to pay attention to in questions (CoNLL’17)
 - A dataset for reasoning over multiple sentences (submitted)

- Proposed research
Semantic variability

Which physical structure would best help a bear to survive a winter?

(A) big ears (B) black nose (C) thick fur (D) brown eyes

Thick fur helps a bear survive a winter.

A thick coat of white fur helps bears survive in these cold latitudes.

Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities.

A given “meaning” can be phrased many surface forms!
QA is a language understanding problem!

Which physical structure would best help a bear to survive a winter?
(A) big ears (B) black nose (C) **thick fur** (D) brown eyes

Polar bears, saved from the bitter cold **by** their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities.

QA is fundamentally an NLU problem

A single abstraction is not enough
Collections of semantic graphs

Create a **unified representation of families of graphs**
- predicate-argument, trees, clusters, sequences

A single representation is not enough to capture the complexity of language
- e.g. named-entities
- e.g. dependency parse
- e.g. semantic role labeling (verb, preposition, comma)
- e.g. co-reference
- e.g. tables

TableILP: IJCAI’16

Our representation has nothing to do with the QA task. It reflects our understanding of the language
Augmented Graph is the graph which contains potential alignments between elements of any two graphs.

Connections via similarity / entailment

Reasoning formulated as best subgraph reasoning
Question: Which physical structure would best help a bear survive a winter?

Knowledge: ... Polar bears, saved from the bitter cold by their thick fur coats, are among the animals in danger of extinction because of the global warming and human activities. ...

Answer: thick fur
Search for the best **Support Graph** connecting the Question to an Answer through Tables.

Q: In **New York State**, the **longest period of daylight** occurs during which **month**?

<table>
<thead>
<tr>
<th>Subdivision</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York State</td>
<td>USA</td>
</tr>
<tr>
<td>California</td>
<td>USA</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Brazil</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orbital Event</th>
<th>Day Duration</th>
<th>Night Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Solstice</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Winter Solstice</td>
<td>Short</td>
<td>Long</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
<td>.....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemisphere</th>
<th>Orbital Event</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a realization of **abductive reasoning**!

Best explanation

(Incomplete) Observations

Best explanation

(maybe true)
SemanticILP, some details.

Translate QA into a search for an optimal subgraph.

Constraint: Incorporate **global** and **local** constraints
- **Global** e.g.
 - Have ends in question and paragraph
 - Connected graph
- **Local** e.g.
 - If using a pred-arg graphs,
 - use at least predicate and argument, or
 - use at least two arguments

Objective: Capture what’s preferred:
- **Preferences** e.g.
 - Use sentences nearby
 - If using a pred-arg graph, give priority to the subject

Formulate as Integer Linear Program (ILP) optimization
- Solution points to the best supported answer
Results #1: Science Questions

We compare with the best baseline on each domain. However we use one version of our systems across all the datasets.

(exam scores, shown as a percentage)

Higher is better
Results #2: Biology Questions

One single system tested on different datasets.

Using additional supervision

More experiments in the paper!
• Reasoning over language requires dealing with diverse set of semantic phenomena.
• Semantic variability ⇒ collection of semantic abstractions that are linguistically informed
• We decoupled “reasoning for QA” from “abstraction”
• Strong performance on two domains simultaneously
Roadmap

- Motivation

- Background

- Previous work
 - A formalism for abductive reasoning (IJCAI’16, AAAI’18)
 - Learning what to pay attention to in questions (CoNLL’17)
 - A dataset for reasoning over multiple sentences (submitted)

- Proposed research
As a part of QA reasoning engine, any system has to have an *attention mechanism* in reading questions (i.e. know what is important in questions).

Challenge for QA systems: *Is a word in a question important, redundant, or distracting?*
We introduce and study the notion of *essential question terms* with the goal of improving such QA solvers.

Essentiality in Questions

- Important for humans!
- State-of-the-art
 - Essentiality classifier:
 - F1 = 0.8, MAP = 0.9

- 2K annotated questions
- 19K annotated terms

Up to 5% increase in end-to-end QA performance
Crowd-Sourced Essentiality Dataset

- Collected ~2k science exam questions for the annotation.
- Questions annotated by 5 workers, resulted in ~20k annotated terms.

Instructions

Below is an elementary science question along with a few answer options. Using checkboxes, tell us which words or phrases of the question are essential for choosing the correct answer option, keeping in mind that:

- Essential phrase will change the core meaning.
- Non-essential item will not change the answer.
- Grammatical correctness is not important.

Examples

1. Which type of energy does a person use to pedal a bicycle? (A) light (B) sound (C) mechanical (D) electrical

2. A turtle eating worms is an example of (A) breathing (B) reproducing (C) eliminating waste (D) taking in nutrients

3. A duck's feathers are covered with a natural oil that keeps the duck dry. This is a special feature ducks have that helps them (A) feed their young (B) adapt to the environment (C) attract a mate (D) search for food

Mark the essential words:

How does the length of daylight in New York State change from summer to fall?

1) It decreases. 2) It increases. 3) It remains the same.
Validity of the collected scores

An extra step to validate our hypothesis.

Specifically, we create a challenge for annotators by dropping terms, that:

- Have the high essentiality scores.
- Have the low essentiality scores.

And ask them **whether they can answer the question or not.**

An **** grows thicker hair as a season changes. This **** helps to _______.
(A) find food (B) keep warmer (C) grow stronger (D) scape from predators (E) I don’t know. The information is not enough

Hypothesis:

- with dropping essential terms, humans would answer **very little** questions.
- with dropping non-essential terms humans still can answer **majority** of questions.
An Essential-Term Classifier

- Trained a linear SVM classifier
 - Real-valued essentiality scores are binarized
 - Features include
 - Syntactic (e.g., dependency parse based)
 - Semantic (e.g., Brown cluster representation of words)
 - As well as their combinations.
 - In total, we use 120 types of features.

- Supervised baselines:
 - PropSurf and PropLem: Score for a term is proportional to times it was marked as essential in the annotated dataset.

- Unsupervised baselines:
 - MaxPMI and SumPMI: score the importance of a word x by max-ing or summing, resp., PMI scores $p(x, y)$ across all answer options y for q.

Hypothesis: Essentiality is a function of context.

A proxy for how relevant two terms are, based on lots of unsupervised data.

Is this problem even learnable?
Binary Classification of Terms.
- Our classifier performs significantly better than the baselines.

Ranking Question Terms.
- Rank all terms within a question in the order of [essentiality] score.
IR + Essential Terms Classifier
Instead of querying (q, a) pair, we query (q’, a), with q’ being subset of q, which has essentiality score above some threshold.
There is a need to understand *what is important* questions.

We introduce and study the notion of *essential question* terms with the goal of improving such QA solvers.
Roadmap

- Motivation
- Background
- Previous work
 - A formalism for abductive reasoning (IJCAI’16, AAAI’18)
 - Learning what to pay attention to in questions (CoNLL’17)
 - A dataset for reasoning over multiple sentences (submitted)

- Proposed research
MultiRC: Reasoning over multiple sentences.

A reading comprehension challenge set with questions that require ‘reasoning’ over more than one sentences in order to answer

S1: Most *young mammals*, including *humans*, play.
S2: Play is how they learn the *skills that they will need as adults*.
S6: Big cats also play.
S8: At the same time, they also practice their hunting skills.
S11: *Human children* learn by playing as well.
S12: For example, playing games and sports can help them learn to follow rules.
S13: *They also learn to work together*

What do human children learn by playing games and sports?
A)* They learn to follow rules and work together
B) hunting skills
C)* skills that they will need as adult

Number of correct answers not specified
(finding correct answers vs finding the most-correlated response)
Why do we need yet another RC dataset?

- **Datasets are often easy to solve.**
 - Most datasets are relatively easy and can be ‘solved’ with simple lexical matching.
 - >75% of SQUAD questions can be answered by the sentence that is lexically most similar to the question.
Why “multi-sentence” questions?

There are efforts to design “reasoning-forcing” challenges

A prominent example:

- bAbI (Weston et al, 2015): small dataset on 10 tasks (reasoning forms).
- Issue: reasoning-specific questions (templated text).

While not making too restricted assumptions, we want to define a proxy for reasoning content of questions.

“Multi-sentence” assumption:

- Does not restrict us to a narrow class of “reasoning” phenomena
- While forcing questions to have something more than trivial
Verifying multi-sentence-ness of questions

Given a sentence and a question, answer if the question can be answered.

If turkers say “yes”, for at least one sentence → the question is not multi-sentence.

Instructions

Answering Questions

You will be shown a sentence and a question. For each question,

- You have to say whether (Yes/No) the information provided in the sentence is enough to answer the question. If the answer is yes, you have to write the correct answer.
- When saying Yes/No do not use any background knowledge. Only use the information given in the sentence.

Below are a few example sentences and questions (and answers).

Sentence: GOP leaders submitted the new offer Tuesday afternoon in an effort to appease Democrats, whose votes are needed to avert a shutdown of federal agencies, several House and Senate aides said.

Question: Who has to be appeased to keep the government open?

Can the above question be answered using only the information provided in the given sentence?

- Yes; the information provided in the sentence is enough to answer the question.
- No; the information provided in the sentence is not enough to answer the question.

Answer:

the Democrats

Explanation: The sentence says that "the Democrats" have to be appeased, which answers the question.
MultiRC: Question generation pipeline

- +10,000 questions (6.5k are multi-sentence)
- on +700 paragraphs
- From 8 domains (fictions, news, science, social articles, Wikipedia, ...)

Generate multi-sentence questions
Verify multi-sentence-ness
Generate candidate correct / incorrect answers
Dataset quality verification
Baseline performances

- Predict real-valued score per answer-option.
- For a fixed threshold, select answer-options that have score above it.
- We need reading comprehension playground which requires deeper “reasoning”

- An approach proposed here: enforcing dependence on multiple sentences.
Roadmap

- Motivation
- Background
- Previous work
 - A formalism for abductive reasoning (IJCAI’16, AAAI’18)
 - Learning what to pay attention to in questions (CoNLL’17)
 - A dataset for reasoning over multiple sentences (submitted)

- Proposed research
Proposal 1: a programming language for reasoning over abstractions of NL

Recent models are highly complex in design

- Hard to modify and extend
- No one is going to continue developing it

Despite the apparent complexity:
- There is much redundancy
- Some behaviors could be described with a higher level abstraction

The models are actually describable in less than a page, when described in English!
Proposal 1: a programming language for reasoning over abstractions of NL

The current systems are inaccessible to other researchers.

Create a high-level programming language to model reasoning over semantic abstractions of natural language.

Expected features:

➔ Bring in knowledge in user’s data-structures, or use the internal ones
➔ Define general properties of the “reasoning” alignment
➔ Define scoring mechanism for edge alignments
➔ Higher-level definitions for addition constraints:
 ◆ Inside each connected component
 ◆ Between the connected components
 ◆ The whole alignment
Proposal 1: a programming language for reasoning over abstractions of NL

Example: for any (verb/nominal) predicate-argument graph, use the predicate and at least an argument (if not, don’t use it).

ILP-level implementation of this requires at least 30 lines of code!

```java
predicateArgumentGraph.
addConstraint(atleast 1 predicate and atleast 1 argument)
```

Evaluation
- Reimplement previous systems, in a much simpler language.
- Show easy extensions; e.g. unifying TableILP + TupleILP
Proposal 2: QA “robustness” and “generalization”

Commonly accepted that QA systems are often brittle, because they fail with small variations.

Replace incorrect answers with arbitrary co-occurring terms.

In New York State, the longest period of daylight occurs during which month?

(A) eastern (B) June (C) history (D) years

<table>
<thead>
<tr>
<th>Solver</th>
<th>Original Score (%)</th>
<th>% Drop with Perturbation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>absolute</td>
</tr>
<tr>
<td>IR</td>
<td>70.7</td>
<td>13.8</td>
</tr>
<tr>
<td>PMI</td>
<td>73.6</td>
<td>24.4</td>
</tr>
<tr>
<td>TableILP</td>
<td>85.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Recent studies show that the models trained on these datasets don’t do much of ‘reasoning’ (Jia & Liang, EMNLP’17).
Proposal 2: QA “robustness” and “generalization”

The brittleness in the current systems is due to not using the “right” paradigm.

A QA system that answers a question for the “right” reason, would not fail with small *variations*.

In New York State, the longest period of daylight occurs during which month?
(A) June
(B) March
(C) December
(D) September

In New Zealand, the *shortest* night occurs during which month?
Proposal 2: QA “robustness” and “generalization”

Define equivalence class $[R]$ to be the space of all (Q,A,K) tuples that are answerable using reasoning R.

- Two different axes of “reasoning” generalization:

 - Generalization within classes: If a solver answers $(Q,A,K) \in [R]$, it should also be able to answer the rest of the questions in $[R]$.

 - Generalization across classes: A solver should be able to cover more reasoning classes, upon seeing instances of classes $\{[R]\}$.
Proposal 2: QA “robustness” and “generalization”

Goal in this project:
- Create a reasoning-driven measure of robustness

Questions to Answer:
- Find ways to define the equivalence class
- Construct a playground with the definition of the equivalence class
- Evaluate existing SOTA systems with these measures.
Expected timeline

First idea:
- Initial implementation
- Reimplementing SemanticILP
- Reimplementing TableILP
- Unification or other extensions

~ 6 months

Second idea:
- Initial formalisms and pilot studies
- Creating the playground
- Evaluation
Conclusion

- Studying “reasoning” is a crucial element towards solving QA.

- We studied a few aspects of reasoning:
 - An abductive model, on top of semantically-informed representation.
 - What is important in questions
 - A playground for reasoning

- Next:
 - A programming language for reasoning over abstractions
 - A new notion “generalization”

And many issues remain open!
Thank you!

Questions?
1. A challenge set for reading comprehension over multiple sentences, D. K., S. Chaturvedi, M. Roth, and D. Roth. 2018. (Submitted)
3. Learning What is Essential in Questions, D. K., T. Khot, A. Sabharwal, and D. Roth, CoNLL, 2017
4. Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks, P. Kordjamshidi, S. Singh, D.K, …, StarAI, 2017
What they missed: Language is context-dependent

Chickens are ready

+ to eat
Lack of attention in TableILP

TableILP (Khashabi et al., 2016) does not recognize that “thicker hair” is an essential aspect of the question.

This problem is solved by augmenting the solver with essentiality scores:
Proposal 2: QA “robustness” and “generalization”

Goals in this project:
- Create a “linguistically-motivated” measure of robustness
- Steps towards measuring “generalization bound” beyond learning theory.
Reasoning in real life

General Principle

Induction

Observations

Deduction

Prediction

Inductive Reasoning

Observation Experiment

Generalizations

Deductive Reasoning

Predictions

Paradigm/Theory

Theoretical

Deductive Reasoning

(What must be so)

Monitoring & Reflection

Present (Real/Built Environment)

Inductive Reasoning

(What is so)

Empirical

New Tools

Experiments

General Principle

Special Case

deductive reasoning

inductive reasoning
Many faces of reasoning

- **Abductive reasoning**

 The process of finding the best minimal explanation from a set of observations

 The grass is wet, …
 - It must have rained.
 - Someone has watered them

- **Inductive reasoning**

 The derivation of general principles from specific observations

 The grass has been wet every time it has rained.
 Thus, when it rains, the grass gets wet

- **Deductive reasoning**

 Drawing conclusion from previous known facts and definitions

 The grass has been wet every time it has rained.
 Thus, when it rains, the grass gets wet
How does it compare to SQL query?

- Database technology has more than 40 years history
 - How are you different from that?
High-level view

Question Answering

as **Global Reasoning**

over **Semantic Abstractions**
Results

Ensemble performs 8-10% higher than IR baselines

Simple logistic regression. Features: (Clark et al, AAAI-2016)
- 4 from each solver’s score
- 11 from TableILP’s support graph (#rows, weakest edge, …)
TableILP + ET

Employ a cascade system: *Questions unanswered by the first system are delegated to the second, and so on.*
Proposal 2: QA “robustness” and “generalization”

How QA systems are evaluated?

Space of all questions

Science exams

4th grade train

4th grade test
Question Answering problem

But there are certain things that we know for sure.

A “good” solution has to have:

- knowledge
- knowledge representation
- “easy” way of accessing the knowledge
- a decision making mechanism

This does not entail isolation/independence of these elements.

“A student leaves a bucket of water outside on a warm, sunny day. The water disappeared after a few hours. What phenomena describes this?”

“Evaporation”
Reasoning as max-likely explanation

\[G^* = \arg \max_{G \in \mathcal{G}} \text{score}(G) \]
Reasoning as max-likely explanation

\[G^* = \arg \max_{G \in \mathcal{G}} \text{score}(G) \]
Reasoning as max-likely explanation

best simple explanation
“Don’t know” questions

- “don’t know” questions

How to know when we don’t know?

Questions + **with** the relevant knowledge to answers

Questions + **without** the relevant knowledge to answers

- Standardize the evaluation / propose a challenge
 - For given datasets create their “don’t know” dual.
- Evaluate existing approaches:
 - IR, NNs, Structured
- Looks for better approaches

Can we do better than thresholding?
Extra assumptions could potentially change the answer to the questions.

Premise: a system that “understands” this phenomenon can correctly answer many variations!
In New York State, the longest period of daylight occurs during which month?
(A) June (B) March (C) December (D) September

What would save animals in a cold weather in New York State?
(A) Size (B) Furry Skin (C) Long arms (D) Eating other animals

- Standardize the evaluation / propose a challenge
 - For given datasets create their “what if” extension.
- Evaluate existing approaches:
 - IR, NNs, Structured
- Looks for better approaches
How to represent “answers”

- The ultimate target should be getting only a question:
 - No candidates or reference text (hence, assumption on answers as substring of paragraph)

- There are two major paradigms used for QA:
 - (a) multi-choice questions (b) answer-substring-of-paragraph

- Both these methodologies have issues:
 - The assumption of “answer-substring-of-paragraph” is limited.
 - Not all questions have answers in a text as a contiguous substring.
 - For example implicit causes, or questions about a fictional scenarios.
 - Can be relaxed by using multiple [non-contiguous] spans.
 - Multiple-choice questions are limited, since it provides candidates
 - Having candidates is not trivial.
 - Too much extra information.
Current solutions to direct-answer QA

- **Generate candidates** and form a multi-choice question

- Multiple reasons to have candidate generation:
 - **Engineering reason**: decouple process of answering question
 - **Conceptual level**: for many questions, it is not necessary to do the complete reasoning to generate candidates
 - For many questions candidate generation is easier than QA.
 - Need shallow reasoning for candidates and then carefully reading the paragraph for determining the answer (deep reasoning)

- Candidate generation have to be:
 - Diverse
 - Type compatible
 - High coverage
 - Domain adaptive

- Intrinsic evaluation
- Extrinsic (end-to-end) evaluation
 - Example: solve multiple-choice questions without answer-options.
Transferability in QA

QA systems suffer when moving to different “domains”

- Genre
 - Vocabulary
 - Grammaticality
 - These two already covers the “Language” axis (English vs Spanish)
 - The temporal factor: language changes over time, e.g. for example twitter
- Label space: do we want to multiple choice (single-correct or unspecified), or substring of paragraph, or direct–answer, etc
- Reasoning type (causal reasoning, temporal reasoning, …)

- There is no clear definition of QA system being “domain adaptive”
- Often times “reasoning type” is conflated with “text genre”
How much do system decouple their language understanding from QA?

Neural networks
sophisticated word-matching
~ paraphrasing

TableILP
(Khashabi et al, 2016)

MLNSolver
(Khot et al, 2015)

SemanticILP
(Khashabi et al, 2018)

PMI-solver
(Clark et al, 2016)

TupleInf
(Khot et al, 2017)

language Understanding decoupled from QA

IR-solver (lucene)
(Clark et al, 2016)

More decoupled
For a “good” QA there is no notion of domain or dataset.

- Receive a question and give an answer

Many factors

- Reasoning shouldn’t be defined too narrowly
- Language understanding should be equated with training on datasets.

Hard limit for learn-with-training-only systems

10k training → 100k training → 1m training

We should push

More transferability
Pushing the transferability

- Solvers working in multiple “datasets”

- Learning with a few instances; e.g.
 - A solver is “trained” for a domain
 - Given “a few” instances from another domain, it should adapt itself to the new domain.

- Easy way for incremental supervision; e.g. by
 - Giving “instructions” in the form of knowledge
 - Showing instances of “bad” or “good” reasonings
Variability in reasoning:
- Assume that “pipeline” issues are resolved.
- Can we do something in terms of reasoning?
 - In SemanticILP, reasoning is everything representable as some (undirected?) alignment.
 - Suggestion rather than defining reasoning we can discuss the contribution of linguistic phenomena.
- One can consider two scenarios: (1) completeness in reasoning (2) or not.
 - In (1) the issue is mostly finding the balance between reasoning methods.
 - In (2) the challenge is about “learning new reasoning”.
 - This sounds more challenging than the first aspect we discussed.

Lack of metric:
- Creating explicit measure of domain-similarity could be helpful. Potentially on a dataset.
3. A high-level language to define reasoning

- 3 papers on ILP-based QA and each thousands of lines
 - Can we simplify the process of defining reasoning?
 - Suppose everything is presentable with TextAnnotation views
 - Assumption: the reasoning graph is,
 - connected,
 - no dead-end in paragraph.
- A use defines:
 - What views from question can be aligned to what views of paragraph
 - What views of paragraph can be aligned to what views of answer
 - What views of paragraph can be aligned to each other
 - And how their edge weighted
 - For each view type, define the constraints:
 - E.g. for predicate-argument type you have to use predicate and at least an argument
 - Pre-defined global weights/constraints:
 - Max/min number of constituents can be used in Question, Paragraph, each Ans
 - Max/min number of edges connected to each constituent, in Question, Paragraph, and each Ans

Claim is:
- this is an easy way to define reasoning, and it subsumes many existing definitions (show how simply you can define SemanticILP)
- Create SemanticILP + TupleILP + TableILP
- Or show that you can extend it:
 - E.g. SRL alignments inside table cells.
3.1 Beyond simplified definition

- The language can be further simplified for people who don’t have much understanding about “graphs”, etc.
 - Essentially the users should be able to define interesting patterns and uninteresting patterns, and the system should be able to do infer based upon that.
 - This can also turn into an inductive system.
1. Measuring reasoning capability of QA systems

- What is reasoning?
 - We don’t define it, but we assume that it often involves multiple sentences.

- Suggested solution: create a dataset
 - A paragraph, with a set of multi-choice questions

- Currently:
 - 50 passage processed
 - generated 300 questions
 - Cost ~140$
 - For 30k questions we have to spend 13.8k$

- What interesting analysis can we do on this?
5. What does it take to beat a neural network?

- Create a linear system and beat existing neural network reading comprehension systems.
Slightly different paradigm for DA QA

- DA questions shouldn’t be limited to spans of a given paragraph
 - Although they should be consistent with it.
- The main issue is evaluation
Decision Making: Interface between *learning* and *reasoning*

- **Reasoning only**
 - Symbolic reasoners accessing knowledge directly
 - General Problem Solver (Simion&Newell, 1956)

- **Learning + Knowledge**
 - End-to-end learning, e.g. BiDaF (Seo et al, 2016)

- **Reasoning + Learning + Knowledge**:
 - *Learning* as soft-accessiability to knowledge for Reasoning; e.g. TableILP (Khashabi et al, 2016)
 - *Learning* as decision-maker, followed by reasoning (Yih and Roth, 2004)
 - Learning to extract Reason-ble structure from input; e.g. semantic parsers (Pradhan et el, 2004)
2. Domains and Domain adaptability

- Define domain:
 - Genre
 - Vocabulary
 - Grammaticality
 - This already covers the “Language” axis (English vs Spanish)
 - The temporal factor: language changes over time, e.g. for example twitter
 - Label space
 - Reasoning type (causal reasoning, temporal reasoning, …)
- To what extent these axes are independent?
- Tasks:
 - NER, Mention, QA
- Analysis:
 - Using these metrics, come up with explicit measure of domain-similarity
 - Can you optimize for domain-similarity?
 - Modify the training data (across different axis) and show that you can match to a certain measure …
 - Take one important result from the past 10 years and show that it is using each axis
 - Then fix the issue in a principles way
 - How do word-vectors play out here? (vocabulary, label-space, etc)
 - After defining/studying “domain”, we have to define “generalization”
Learning vs Reasoning spectrum

Reasoning only

General Problem Solver (Simon & Newell, 1956)

Learning only

?
Motivation: Three Challenges

- **Diverse linguistic constructs** make QA systems brittle
 - Even the best systems are easily fooled by simple textual variations

- **Limited training data** in “interesting” QA domains
 - Paradigm of learning everything end-to-end doesn’t seem viable

- **Limited question understanding** in Aristo solvers
 - knowledge: explored several representations
 - question: still treated as tokens/chunks

Goal: Address these in the context of multiple-choice questions with supporting text, by reasoning over semantic abstractions of text
P: Teams are under pressure after PSG purchased Neymar this season. Chelsea purchased Morata. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: \{Alvaro Morata, Neymar, Romelu Lukaku\}
P: Teams are under pressure after PSG purchased Neymar this season. Chelsea purchased Morata. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: \{Alvaro Morata, Neymar, Romelu Lukaku\}

Simple “lookup” based on proximity to question words, answer type
- Basic word overlap suffices
- Neural methods (e.g., BiDAF) excel at
P: Teams are under pressure after PSG purchased Neymar this season. Morata is the recent acquisition by Chelsea. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: {Alvaro Morata, Neymar, Romelu Lukaku}

Simple rewording can confuse solvers
- E.g., BiDAF outputs “Neymar this season. Morata”
P: Teams are under pressure after PSG purchased Neymar this season. Morata is the recent acquisition by Chelsea. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: {Alvaro Morata, Neymar, Romelu Lukaku}

Linguistic understanding can help!
- Verbs and their nominalization
- Domain agnostic => can use pre-trained NLP modules
P: Teams are under pressure after PSG purchased Neymar this season. Morata, the recent acquisition by Chelsea, will start for the team tomorrow. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: {Alvaro Morata, Neymar, Romelu Lukaku}

Simple rewording can confuse solvers
- E.g., BiDAF outputs “Neymar”
P: Teams are under pressure after PSG purchased Neymar this season. Morata, the recent acquisition by Chelsea, will start for the team tomorrow. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?

A: {Alvaro Morata, Neymar, Romelu Lukaku}

Linguistic understanding can help!
- Verbs, preposition, punctuation
- Domain agnostic => can use pre-trained NLP modules
1. Create a collection of semantic abstractions of text (all of Q, A, P)
 - Use off-the-shelf, pre-trained NLP modules
 - Multiple views for a more complete semantic understanding
 - SRL frames (verbs, prepositions, comma), dependency parse, coreference sets, lexical similarity links, raw text sequence

2. Create a unified representation as a family of graphs
 - PredArg graphs, trees, clusters, sequences
 - Connected via textual similarity links

3. Translate QA into a search for an optimal subgraph
 - Incorporate global and local constraints and preferences
 - Capture what’s a valid reasoning, what’s preferred

4. Formulate as Integer Linear Program (ILP) optimization
 - Solution points to the best supported answer
SemanticILP: Example

P: Teams are under pressure after PSG purchased Neymar this season. Morata, the recent acquisition by Chelsea, will start for the team tomorrow. The Spaniard looked like he was set for a move to Old Trafford for the majority of the summer only for Manchester United to sign Romelu Lukaku instead, paving the way for Morata to finally move to Chelsea for an initial £56m.

Q: Who did Chelsea purchase this season?
A: {Alvaro Morata, Neymar, Romelu Lukaku}

Knowledge: ... Morata, the recent acquisition by Chelsea, will start for the team tomorrow...
Results #1: Aristo Questions

- **Input:** Science question Q with 4 answer options A
- **Text:** paragraph P obtained by concatenating top k Lucene-retrieved sentences for various answer options

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BiDAF</th>
<th>BiDAF tuned</th>
<th>IR</th>
<th>TupleInf [ACL-2017]</th>
<th>SemanticILP (linear comb. of components)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regents 4th</td>
<td>56.3</td>
<td>53.1</td>
<td>59.3</td>
<td>61.4</td>
<td>67.6</td>
</tr>
<tr>
<td>Public 4th</td>
<td>50.7</td>
<td>57.4</td>
<td>54.9</td>
<td>56.1</td>
<td>59.7</td>
</tr>
<tr>
<td>Regents 8th</td>
<td>53.5</td>
<td>62.8</td>
<td>64.2</td>
<td>61.3</td>
<td>66.0</td>
</tr>
<tr>
<td>Public 8th</td>
<td>47.7</td>
<td>51.9</td>
<td>52.8</td>
<td>51.6</td>
<td>54.8</td>
</tr>
</tbody>
</table>

(exam scores, shown as a percentage)
Results #2: ProcessBank [EMNLP-2014]

- Input: **Biology question** Q with 2 answer options A, paragraph P

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BiDAF</th>
<th>BiDAF tuned</th>
<th>IR</th>
<th>SyntProx Baseline*</th>
<th>ProRead* (structural supervision)</th>
<th>SemanticILP (linear comb. of components)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Bank**</td>
<td>58.7</td>
<td>61.3</td>
<td>63.8</td>
<td>61.9</td>
<td>68.1</td>
<td>68.6</td>
</tr>
</tbody>
</table>

SemanticILP does not rely on domain-specific process structure annotation
- Close to the specialized, state-of-the-art ProRead system
- Substantially better than syntax-based and neural baselines

* Berant et al. [EMNLP-2014]
** ~70% of the original dataset; true/false and temporal questions currently out of scope
SemanticILP: Summary

- First QA system to combine multiple semantic abstractions for a more complete understanding of text

- **State-of-the-art results** on two datasets with different characteristics

- **Extensible architecture**
 - Expand semantics via new NLP modules (e.g., QA-SRL, temporal)
 - Expand to different kinds of reasoning (e.g., causal sequences)

- **A promising knowledge representation formalism**
 - Unit of knowledge => paragraph P
 - Semantics => graph representation of abstractions of P
Key Challenges and Solutions

A. Textual knowledge is expressed in a variety of linguistic forms
 ▪ No single knowledge representation (e.g., Open IE tuples) suffices

=> Broader coverage via multiple kinds of NLP modules

B. NLP systems for these are noisy
 ▪ SRL, coref, shallow parsers, chunkers, …

=> Robustness via multiple modules of the same kind

C. Combining information from multiple NLP modules is non-trivial

=> Global consistency via global ILP optimization
2. Domains and Domain adaptability

- Define domain:
 - Genre
 - Vocabulary
 - Grammaticality
 - This already covers the “Language” axis (English vs Spanish)
 - The temporal factor: language changes over time, e.g. for example twitter
 - Label space
 - Reasoning type (causal reasoning, temporal reasoning, …)

- To what extent these axes are independent?

- Tasks:
 - NER, Mention, QA

- Analysis:
 - Using these metrics, come up with explicit measure of domain-similarity
 - Can you optimize for domain-similarity?
 - Modify the training data (across different axis) and show that you can match to a certain measure …
 - Take one important result from the past 10 years and show that it is using each axis
 - Then fix the issue in a principles way
 - How do word-vectors play out here? (vocabulary, label-space, etc)
 - After defining/studying “domain”, we have to define “generalization”
Friday (Nov, 10)

Short term
- System’s paper (Dec 8th, CPAIOR)
 - Gist: simple definitions SemanticILP
- Canidate generation (Jan 10th, NAACL short)
 - Goal: being able to answer [subset of] aristo 4th grade questions without candidate answers

Long term
- Can we create a combination with learning-only systems?
- Some reasonings are missing:
 - Learning by examples (~induction)
 - Conditional (what if)
 - Yes/No questions
 - Don’t know questions
 - Temporal events
 - Quantitative and / or Algebra
 - Analogy
What they missed . . .

- Reasoning is often studied in a very narrow sense.

Reasoning has many (infinite?) forms.

- One can think of it as an n dimensional space.
- Examples typically span multiple reasoning aspects.

```plaintext
quantitative reasoning
paraphrasing
temporal
deductive
inductive
causal (cause to effect)
causal (effect to cause)
abductive
analogy
exemplar (learn. by ex.s)
conditional
non-monotonic
... 
coref
```
AI Goal:
Towards natural language understanding.

How to measure the progress?

Tasks:
• Question Answering and Reading Comprehension
• Textual Entailment

1. Question Answering As Reasoning on Semantic Abstractions, Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Dan Roth, Submitted.
2. Learning What is Essential in Questions, Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Dan Roth, CoNLL, 2017
3. Relational Learning and Feature Extraction by Querying over Heterogeneous Information Networks, Parisa Kordjamshidi, Sameer Singh, D.K, StarAI, 2017
AI Goal:
Enabling machines to solve any problems, as good as human
“Yo ...what's up?”

“Yo ...not much! Sup yourself?!”
General Problem Solver

(Simon & Newell, 1956)

Goal: Program for proving theorems!

Necessity: Representation with symbols!

Hypothesis (physical symbol system hypothesis): *"A physical symbol system has the necessary and sufficient means for general intelligent action."*

Reasoning: Problem solving as Search!
Still no unified model ...

But there are certain things that we know **for sure**.

A “good” solution has to have:
- A Knowledge Representation (KR)
- Knowledge
- “Easy” way of accessing the knowledge
- A decision making mechanism

“Darcy and Jill are not brother, but have same parents. What are they?”

x = Darcy
y = Jill
\(\sim \)brothers(x,y)
parent-of(z,x)
parent-of(z,y)

sisters(x,y)

“Sisters”
Mary owns a canary named Paul. Does Paul have any ancestors who were alive in the year 1750? (A) Definitely yes. (B) Definitely no. (C) There is no way to know.
ASK ME ANYTHING

“If you got a billion dollars to spend on a huge research project, what would you like to do?”

“I'd use the billion dollars to build a NASA-size program focusing on natural language processing (NLP), in all of its glory (semantics, pragmatics, etc).”

Michael Jordan
Professor of Computer Science
UC Berkeley
“Vague” line between non-reasoning QA and reasoning QA

- Non-reasoning:
 - The required information is explicit in the context
 - The model often needs to handle lexical / syntactic variations

- Reasoning:
 - The required information may *not* be explicit in the context
 - Need to combine multiple facts to derive the answer

- There is no clear line between the two!
What we want...

Reasoning capability

NLU capability

End-to-end
Three aspects of “reasoning system”

• **Natural language understanding**
 - How to retrieve relevant knowledge (formulas)?
 - Natural language has diverse surface forms (lexically, syntactically)

• **Reasoning**
 - Deriving new knowledge from the retrieved knowledge

• **End-to-end training**
 - Minimizing human efforts
 - Using only unstructured data
Cheeseburger stabbing

I can’t decide if
- someone stabbed someone else over a cheeseburger
- someone stabbed someone else with a cheeseburger
- someone stabbed a cheeseburger
- a cheeseburger stabbed someone
- a cheeseburger stabbed another cheeseburger
Minerals are formed by which process? (A) magma cooling (B) fault lines moving (C) metamorphosis (D) sedimentation
Which of the following animal features most helps the animal move around in its habitat? (A) A bird's sharp beak (B) A cow's tail (C) A sea turtle's flippers (D) A black bear's fur

Challenge:
Recognizing chainable tuples

Possibly use:
(sea turtle, live in, water) => (water, is, its habitat)
Structure Chaining

Thick white fur is an animal adaptation **most needed** for the **climate** in which biome? (A) deserts (B) taiga (C) deciduous forest (D) **tundra**

Type constrained rules:

(X, helps in, Y), (Z, has, Y) => (X, helps in, Z)

(X, provides camouflage in, Y), (Z, covered in, Y) =>

(X, provides camouflage in, Z)

Challenges:

Relations from chains
Down feathers are used by many sleeping bag manufacturers because down feathers are (A) fire resistant. (B) comfortable padding. (C) good insulators. (D) water resistant.
“It would someday be possible for a sufficiently advanced computer to think and to have some form of consciousness”

-- Computing Machinery and Intelligence, Mind 1950.
How do we measure progress? What tasks should drive the field?

Turing Test
Standardized Tests as drivers for AI?

-- [Levesque 2010, Clark 2014]
Standardized Tests
Why Standardized Tests

- Easily accessible
- Easily measurable
- Do not cover all aspects of intelligence at once