Announcements

• Project 4 is due Dec. 8th at midnight.

• Homework 3 is out:
 – Due. Dec. 8th at the start of class

• There was a bug in solutions for HW 2 problem 1(e)
 – Check out the new solutions on the web
 – If you were docked points for a correct answer, submit your HW to me for a regrade.

• Final Exam:
 – Friday Dec. 15th 12:00--2:00
 – CHEM B13
The “Gold” Standard

• **Authentication**
 – Identify which principals take which actions
 – Talked about this considerably

• **Authorization**
 – Determine what actions are permissible
 – Policy

• **Audit**
 – Recording the security relevant actions
 – Allows for post-mortem when problems occur
Authenticating Humans: Foundations

• Authentication is based on one or more of the following:
 • **Something you know**
 – password
 • **Something you have**
 – driver’s license, Penn Card
 • **Something inherent about you**
 – Biometrics, location

• What’s the most common method of authentication?
Guessing

• The "no such user" mistake
• The "here's who we are" mistake
• Common words, phrases for passwords
• Null passwords, "password", username, backwards, etc.
• Dictionary attacks

• How bad is it?
1979 Survey of 3,289 Passwords

• With no constraints on choice of password, Morris and Thompson got the following results:
 – 15 were a single ASCII letter.
 – 72 were strings of two ASCII letters.
 – 464 were strings of three ASCII letters.
 – 47 were strings of four alphanumerics.
 – 706 were five letters, all upper-case or all lower-case.
 – 605 were six letters, all lower case.
1990s Surveys of 15K Passwords

• Klein (1990) and Spafford (1992)
 – 2.7% guessed in 15 minutes
 – 21% in a week
 – Sounds ok? Not if the passwords last 30 days

• Tricks
 – Letter substitutions, words backwards, common names, patterns, etc.
 – Anything you can think of off the top of your head, a hacker can think of too

• Lazy users!
 – Weakest link is always the way of the attack
Heuristics for Guessing Attacks

• The dictionary with the words spelled backwards
• A list of first names (best obtained from some mailing list). Last names, street names, and city names also work well.
• The above with initial upper-case letters.
• All valid license plate numbers in your state. (About 5 hours work in 1979 for New Jersey.)
• Room numbers, social security numbers, telephone numbers, and the like.
What makes a good password?

- **Password Length**
 - 64 bits of randomness is hard to crack
 - 64 bits is roughly 20 “common” ASCII characters
 - But… People can’t remember random strings
 - Longer not necessarily better: people write the passwords down

- **Pass phrases**
 - English Text has roughly 1.3 random bits/char.
 - Thus about 50 letters of English text
 - Hard to type without making mistakes!

- **In practice**
 - Non-dictionary, mixed case, mixed alphanumeric
 - Not too short (or too long)
Hacks on plaintext password file

• Is the password file readable by the OS?
 – Then if I break the OS
• Can privileged users see the file?
 – … and make copies
• Is the file backed up somewhere
 – … insecure?
• Is the file in plaintext somewhere in memory?
 – Core dump
• Fool the user
 – A program that masquerades as the authentication program
Counter-hacks

• Control-Alt-Del for logging in
 – For windows only

• Slow down
 – Make guessing take too long

• Encrypt the password file
 – “Salt” - to prevent duplicates
 – Use one way hashes or encryptions on the passwords

• Password rules
 – Min length, upper and lower case, no common words
 – Use letters and numbers and symbols
 – Change often
 – Keep a password history
 – Don't write it down!
Add Salt

• “Salt” the passwords by adding random bits.
 – Decreases the likelihood that two identical passwords will appear as identical entries in the password file.
• 12 bit salt results in 4,096 versions of each password.
• /etc/passwd entry:

 user_id | salt_u | Hash(salt_u + passwd_u) | ...

• Actually most modern implementations use so-called shadow password files /etc/shadow that aren’t world readable.
One Time Passwords

• Shared lists.
• Sequentially updated.
• One-time password sequences based on a one-way (hash) function.

• Used in practice: SKey mechanism
Hash-based 1-time Passwords

• Alice identifies herself to verifier Bart using a well-known one-way hash function H.

• One-time setup.
 – Alice chooses a secret w.
 – Fixes a constant t for the number of times the authentication can be done.
 – Alice securely transfers $H^t(w)$ to Bart
 \[
 H(H(H(H(...(H(w))...)))
 \]
 t times
Hash-based 1-time Passwords

• Protocol actions. For session i, claimant A does the following to identify itself:
 – A computes $w' = H^{(t-i)}(w)$ and transmits the value to B.
 – B checks that i is the correct session (i.e. that the previous session was i-1) and checks to see if $H(v) = w'$ where v was the last value provided by A (as part of session i-1).
 – B saves w' and i for use in the next session.
One-time passwords: i^{th} authentication

• Alice does the following to identify herself:
 – A computes $w' = H^{(t-i)}(w)$ and transmits the value to B.
 – B checks that i is the correct session (i.e., that the previous session was $i-1$) and checks to see if $H(w') = v$ where v was the last value provided by A (as part of session $i-1$).
 – B saves w' and i for use in the next session.
Why This 1-time Password Works

• It’s hard to compute x from $H(x)$.
 – Even though attacker gets to see $H^{(t-i)}(x)$, they can’t guess then next message $H^{(t-(i+1))}(x)$.
Authorization

• Authorization is the process of determining whether a principal is permitted to perform a particular action.

• Access control
 – Example: Read/Write/Execute permissions for a file system.
 – Example: Java applets have restricted authorization to perform network & disk I/O.
Policy vs. Mechanism

• Access control policy is a specification
 – Given in terms of a model of the system
 – Subjects: do things (i.e. a process writes to files)
 – Objects: are passive (i.e. the file itself)
 – Actions: what the subjects do (i.e. read a string from a file)
 – Rights: describe authority (i.e. read or write permission)

• Mechanisms are used to implement a policy
 – Example: access control bits in Unix file system & OS checks
 – Mechanism should be general; ideally should not constrain the possible policies.
 – Complete mediation: every access must be checked
Reference Monitors

Subject (Action, Object) Request

Monitor

? Granted

Denied
Example Reference Monitors

- Operating Systems
 - File system
 - Memory (virtual memory, separate address spaces)
- Firewalls
 - Regulate network access
- Java Virtual Machine
 - Regulates Java programs’ resource usage
- Operate at different levels of abstraction
 - Interface (Subjects, Objects, Actions) varies