CSE331: Introduction to Networks and Security

Lecture 28
Fall 2006
Announcements

• Project 3 is due Monday, November 20th

• Plan for today:
 – Digital Signatures
Multiple Use of Keys

- Risky to use keys for multiple purposes.
- Using an RSA key for both authentication and signatures may allow a chosen-text attack.
- B attacker/verifier, $n_B = H(M)$ for some message M.

\[
\text{B, pretending to be A}
\]
General Principles

• Don’t do anything more than necessary until confidence is built.
 – Initiator should prove identity before the responder does any “expensive” action (like encryption)
• Embed the intended recipient of the message in the message itself
• Principal that generates a nonce is the one that verifies it
• Before encrypting an untrusted message, add “salt” (i.e. a nonce) to prevent chosen plaintext attacks
• Use asymmetric message formats (either in “shape” or by using asymmetric keys) to make it harder for roles to be switched
Physical Signatures

• Consider a paper check used to transfer money from one person to another
 • Signature confirms authenticity
 – Only legitimate signer can produce signature
 • In case of alleged forgery
 – 3rd party can verify authenticity
• Checks are cancelled
 – So they can’t be reused
• Checks are not alterable
 – Or alterations are easily detected
Digital Signatures: Requirements I

• A mark that only one principal can make, but others can easily recognize

• Unforgeable
 – If P signs a message M with signature $S_P\{M\}$ it is impossible for any other principal to produce the pair $(M, S_P\{M\})$.

• Authentic
 – If R receives the pair $(M, S_P\{M\})$ purportedly from P, R can check that the signature really is from P.
Digital Signatures: Requirements II

- Not alterable
 - After being transmitted, \((M, S_P\{M\})\) cannot be changed by P, R, or an interceptor.

- Not reusable
 - A duplicate message will be detected by the recipient.

- Nonrepudiation:
 - P should not be able to claim they didn't sign something when in fact they did.
 - (Related to unforgeability: If P can show that someone else could have forged P's signature, they can repudiate ("refuse to acknowledge") the validity of the signature.)
Digital Signatures with Shared Keys

Tom is a trusted 3rd party (or arbiter).

Authenticity: Tom verifies Alice’s message, Bart trusts Tom.

No Forgery: Bart can keep msg, $K_{AT}\{\text{msg}\}$, which only Alice (or Tom, but he’s trusted not to) could produce.

CSE331 Fall 2004
Preventing Reuse and Alteration

• To prevent reuse of the signature
 – Incorporate a *timestamp* (or sequence number)

• Alteration
 – If a block cipher is used, recipient could splice-together new messages from individual blocks.

• To prevent alteration
 – Timestamp must be part of each block
 – Or… use *cipher block chaining*
Digital Signatures with Public Keys

• Assumes the algorithm is *commutative*:
 – $D(E(M, K), k) = E(D(M, k), K)$
• Let K_A be Alice’s public key
• Let k_A be her private key
• To sign msg, Alice sends $D(msg, k_A)$
• Bart can verify the message with Alice’s public key

• Works! RSA: $(m^e)^d = m^{ed} = (m^d)^e$
Digital Signatures with Public Keys

- No trusted 3rd party.
- Simpler algorithm.
- More expensive
- No confidentiality
Variations on Public Key Signatures

• Timestamps again (to prevent replay)
 – Signed certificate valid for only some time.

• Add an extra layer of encryption to guarantee confidentiality
 – Alice sends K_Bk_Amsg to Bart

• Combined with hashes:
 – Send $(msg, k_A\{MD5(msg)\})$
Unilateral Authentication: Signatures

- $S_A\{M\}$ is A’s signature on message M.
- Unilateral authentication with nonces:

\[n_A, B, S_A\{n_A, n_B, B\} \]

The n_A prevents chosen plaintext attacks.
Arbitrated Protocols

• Tom is an *arbiter*
 – Disinterested in the outcome (doesn’t play favorites)
 – Trusted by the participants (Trusted 3rd party)
 – Protocol can’t continue without T’s participation
Arbitrated Protocols (Continued)

• Real-world examples:
 – Lawyers, Bankers, Notary Public

• Issues:
 – Finding a trusted 3rd party
 – Additional resources needed for the arbitrator
 – Delay (introduced by arbitration)
 – Arbitrator might become a bottleneck
 – Single point of vulnerability: attack the arbitrator!
Adjudicated Protocols

- Alice and Bard record an *audit log*
- Only in exceptional circumstances do they contact a trusted 3rd party. (3rd party is not always needed.)
- Tom as the *adjudicator* can inspect the evidence and determine whether the protocol was carried out fairly.
Self-Enforcing Protocols

- No trusted 3rd party involved.
- Participants can determine whether other parties cheat.
- Protocol is constructed so that there are no possible disputes of the outcome.

Alice

Bart

You’re cheating, Alice!
Examples We’ve Seen

• Arbitrated Protocol
 – Shared key digital signature algorithm
 – Trusted 3rd party provided authenticity

• Adjudicated Protocol
 – Public key digital signature algorithm
 – Bart can keep Alice’s digitally signed message
 • Trusted 3rd party provided non-repudiation