CSE331: Introduction to Networks and Security

Lecture 20
Fall 2006
Announcements

• Homework 2 has been assigned:
 – **NEW DUE DATE**
 – It's now due on *Friday, November 3rd*.

• Midterm 2 is Friday, November 10th
 – **NEW DATE**
 – It covers just the material since Midterm 1
Broader View of Defenses

• Prevention -- *make the monoculture hardier*
 – Get the code right in the first place …
 • … or figure out what’s wrong with it and fix it
 – Lots of active research (static & dynamic methods)
 – Security reviews now taken seriously by industry
 • E.g., ~$200M just to review Windows Server 2003
 – But very expensive… and very large Installed Base problem

• Prevention -- *diversify the monoculture*
 – Via exploiting existing heterogeneity
 – Via creating artificial heterogeneity

• Prevention -- *keep vulnerabilities inaccessible*
 – Cisco’s *Network Admission Control*
 • Examine hosts that try to connect, block if vulnerable
 – Microsoft’s *Shield*
 • Shim-layer blocks network traffic that fits known *vulnerability*
 (rather than known *exploit*)
κρυπτο γραφη (Cryptography)

• Greek for “secret writing”

• Confidentiality
 – Obscure a message from eaves-droppers

• Integrity
 – Assure recipient that the message was not altered

• Authentication
 – Verify the identity of the source of a message

• Non-repudiation
 – Convince a 3rd party that what was said is accurate
Terminology

- Cryptographer
 - Invents cryptosystems
- Cryptanalyst
 - Breaks cryptosystems
- Cryptology
 - Study of crypto systems
- Cipher
 - Mechanical way of encrypting text
- Code
 - Semantic translation: “eat breakfast tomorrow” = “attack on Thursday” (or use Navajo!)
Kinds of Cryptographic Analysis

• Goal is to recover the key (& algorithm)
• Ciphertext only attacks
 – No information about content or algorithm
 – Very hard
• Known Plaintext attacks
 – Full or partial plaintext available in addition to ciphertext
• Chosen Plaintext attacks
 – Know which plaintext has been encrypted
• Algorithm & Ciphertext attacks
 – Known algorithm, known ciphertext, recover key
The Caesar Cipher

• Purportedly used by Julius Caesar (c. 75 B.C.)
 – Add 3 mod 26

• Advantages
 – Simple
 – Intended to be performed in the field
 – Most people couldn’t read anyway

• Disadvantages
 – Violates “no security through obscurity”
 – Easy to break (why?)
Monoalphabetic Ciphers

• Also called *substitution* ciphers
• Separate *algorithm* from the *key*
 – Add $N \mod 26$
 – $\text{rot13} = \text{Add 13 mod 26}$

• General monoalphabetic cipher
 – Arbitrary permutation π of the alphabet
 – Key is the permutation

\[
\begin{align*}
a & \rightarrow \pi(a) \\
b & \rightarrow \pi(b) \\
c & \rightarrow \pi(c) \\
d & \rightarrow \pi(d)
\end{align*}
\]
Example Cipher

\[\pi \]
\[\begin{array}{cccccccccc}
 a & b & c & d & e & f & g & h & i & j \\
 k & l & m & n & o & p & q & r & s & t \\
 u & v & w & x & y & z & \hline

e & i & l & i & e & d & h & g & b & f \\

d & a & n & c & e & w & i & b & f & g \\
h & g & h & b & c & n & e & i & d & l \\
\end{array} \]

Plaintext: he lied
Ciphertext: ic hbcn
Cryptanalysis of Monoalphabetic Ciphers

• Brute force attack: try every key
 – N! Possible keys for N-letter alphabet
 – 26! \approx 4 \times 10^{26} possible keys
 – Try 1 key per \mu\text{sec} \ldots 10 \text{ trillion years}

• …but (!) monoalphabetic ciphers are easy to solve

• One-to-one mapping of letters is bad
• Frequency distributions of common letters
Order & Frequency of Single Letters

<table>
<thead>
<tr>
<th>Letter</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>12.31%</td>
</tr>
<tr>
<td>L</td>
<td>4.03%</td>
</tr>
<tr>
<td>B</td>
<td>1.62%</td>
</tr>
<tr>
<td>T</td>
<td>9.59%</td>
</tr>
<tr>
<td>D</td>
<td>3.65%</td>
</tr>
<tr>
<td>G</td>
<td>1.61%</td>
</tr>
<tr>
<td>A</td>
<td>8.05%</td>
</tr>
<tr>
<td>C</td>
<td>3.20%</td>
</tr>
<tr>
<td>V</td>
<td>0.93%</td>
</tr>
<tr>
<td>O</td>
<td>7.94%</td>
</tr>
<tr>
<td>U</td>
<td>3.10%</td>
</tr>
<tr>
<td>K</td>
<td>0.52%</td>
</tr>
<tr>
<td>N</td>
<td>7.19%</td>
</tr>
<tr>
<td>P</td>
<td>2.29%</td>
</tr>
<tr>
<td>Q</td>
<td>0.20%</td>
</tr>
<tr>
<td>I</td>
<td>7.18%</td>
</tr>
<tr>
<td>F</td>
<td>2.28%</td>
</tr>
<tr>
<td>X</td>
<td>0.20%</td>
</tr>
<tr>
<td>S</td>
<td>6.59%</td>
</tr>
<tr>
<td>M</td>
<td>2.25%</td>
</tr>
<tr>
<td>J</td>
<td>0.10%</td>
</tr>
<tr>
<td>R</td>
<td>6.03%</td>
</tr>
<tr>
<td>W</td>
<td>2.03%</td>
</tr>
<tr>
<td>Z</td>
<td>0.09%</td>
</tr>
<tr>
<td>H</td>
<td>5.14%</td>
</tr>
<tr>
<td>Y</td>
<td>1.88%</td>
</tr>
</tbody>
</table>

The diagram visualizes the frequency distribution of the letters, with the x-axis representing the letter index and the y-axis showing the frequency percentage.
Monoalphabetic Cryptanalysis

- Count the occurrences of each letter in the cipher text
- Match against the statistics of English
 - Most frequent letter likely to be “e”
 - 2nd most frequent likely to be “t”
 - etc.

- Longer ciphertext makes statistical analysis more likely to work…
Digrams and Trigrams

• Diagrams in frequency order
 TH HE AN IN ER RE ES ON EA TI AT ST EN ND OR

• Trigrams in frequency order
 THE AND THA ENT ION TIO FOR NDE HAS NCE EDT TIS OFFT STH MEN
Desired Statistics

- Problems with monoalphabetic ciphers
 - Frequency of letters in ciphertext reflects frequency of plaintext
- Want a single plaintext letter to map to multiple ciphertext letters
 - “e” → “x”, “c”, “w”
- Ideally, ciphertext frequencies should be flat
Polyalphabetic Substitutions

- Pick k substitution ciphers
 - $\pi_1 \pi_2 \pi_3 \ldots \pi_k$
 - Encrypt the message by rotating through the k substitutions

message
$\pi_1(m) \pi_2(e) \pi_3(s) \pi_4(s) \pi_1(a) \pi_2(g) \pi_3(e)$
q a x o a u v

- Same letter can be mapped to multiple different ciphertexts
 - Helps smooth out the frequency distributions
 - Diffusion
Vigenère Tableau

• Multiple substitutions
 – Can choose “complimentary” ciphers so that the frequency distribution flattens out
 – More generally: more substitutions means flatter distribution

• Vigenère Tableau
 – Invented by Blaise de Vigenère for the court of Henry III of France (c. 1500’s)
 – Collection of 26 permutations
 – Usually thought of as a 26 x 26 grid
 – Key is a word
Vigenère Tableau

<table>
<thead>
<tr>
<th>a b c d e f g . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>a b c d e f g . . .</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>b c d e f g h . . .</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>c d e f g h i . . .</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>d e f g h i j . . .</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>e f g h i j k . . .</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
</tbody>
</table>

Plaintext: a bad deed
Key “bed”: B EDB EDBE
Ciphertext: b fde hgfh
Kasiski Method

• Identify key length of polyalphabetic ciphers
 – If pattern appears k times and key length is n then it will be encoded k/n times by the same key

• 1. Identify repeated patterns of ≥ 3 chars.
• 2. For each pattern
 – Compute the differences between starting points of successive instances
 – Determine the factors of those differences
• 3. Key length is likely to be one of the frequently occurring factors
Cryptanalysis Continued

• Once key length is guessed to be k…
• Split ciphertext into k slices
 – Single letter frequency distribution for each slice should resemble English distribution

• How do we tell whether a particular distribution is a good match for another?
 – Let \(\text{prob}(\alpha) \) be the probability for letter \(\alpha \)
 – In a perfectly flat distribution
 \[\text{prob}(\alpha) = \frac{1}{26} \approx 0.0384 \]
Variance: Measure of “roughness”

Measure distance from “flat” dist.

\[\text{Var} = \sum (\text{prob}(\alpha) - 1/26)^2 \]
\[\alpha = a \]

\[= \ldots \]
\[\alpha = z \]
\[= (\sum \text{prob}(\alpha)^2) - 1/26 \]
\[\alpha = a \]
Estimate Variance From Frequency

- \(\text{prob}(\alpha)^2 \) is probability that any two characters drawn from the text will be \(\alpha \)
- Suppose there are \(n \) ciphertext letters total
- Suppose \(\text{freq}(\alpha) \) is the frequency of \(\alpha \)
- What is likelihood of picking \(\alpha \) twice at random?
 - \(\text{freq}(\alpha) \) ways of picking the first \(\alpha \)
 - \((\text{freq}(\alpha) - 1) \) ways of picking the second \(\alpha \)
 - But this counts twice because \((\alpha, \beta) = (\beta, \alpha) \)
 - So \(\frac{\text{freq}(\alpha) \times (\text{freq}(\alpha) - 1)}{2} \)
Index of Coincidence

• But there are \(\frac{n \times (n-1)}{2} \) pairs of letters

• …so \(\text{prob}(\alpha) \) is roughly \(\frac{\text{freq}(\alpha) \times (\text{freq}(\alpha) - 1)}{n \times (n-1)} \)

• Index of coincidence: approximates variance from frequencies

\[
\text{IC} = \sum_{\alpha = a}^{Z} \frac{\text{freq}(\alpha) \times (\text{freq}(\alpha) - 1)}{n \times (n-1)}
\]
What’s it good for?

- If the distribution is flat, then $IC \approx 0.0384$
- If the distribution is like English, then $IC \approx 0.068$

- Can verify key length:

<table>
<thead>
<tr>
<th>keylen</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>many</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>0.068</td>
<td>0.052</td>
<td>0.047</td>
<td>0.044</td>
<td>0.044</td>
<td>... 0.038</td>
</tr>
</tbody>
</table>
Summary: Cracking Polyalphabetics

• Use Kasiski method to guess likely key lengths
• Compute the Index of Coincidence to verify key length k
• k-Slices should have similar IC to English

• Note: digram information harder to use for polyalphabetic ciphers...
 – May want to consider “split digrams”
 – Example: if tion is a common sequence k=2 then “t?o” and “i?n” are likely “split digrams”