Announcements

• HW1 is due Today
• HW2 on the web site – due next Weds. (Sept. 22)
• Baohua’s office hours: Tuesday 3:30-4:30 Levine 611

• Project 1 will be handed out next Weds.
 – Form groups of two or three
 – Mail group members to Baohua Wu.
 baohua@seas.upenn.edu
 – If you can’t find a partner, mail Baohua.

 – Groups should be formed before project is handed out
Recap

• Network architectures
 – Protocol Stack
 – OSI standard “7 layer” stack

• Physical encodings
 – NRZ: Non-return to zero (high = 1, low = 0)
 – NRZI: Non-return to zero inverted (transition if 1)
 – Manchester: XOR clock and NRZ
 – 4B/5B: Encode 4 bits using 5, send via NRZI
Today

- Framing at the data-link layer
 - Point-to-point protocols
- Error Correction/Detection
Framing

- Need a way to send blocks of data.
 - How does the network adapter detect when the sequence begins and ends?

- *Frames* are link layer unit of data transmission
 - Byte oriented vs. Bit oriented
 - Point-to-point (e.g. PPP) vs. Multiple access (Ethernet)
Byte-oriented Protocols

• View each frame as a sequence of bytes

• BISYNC
 – Binary Synchronous Communication protocol
 – Developed by IBM in late 1960’s

• DDCMP
 – Digital Data Communication Message Protocol
 – Used in Digital Equipment Corporation’s DECNET

• Primary question: which bytes are in the frame?
Sentinel Approach

- SYN – synchronization
- SOH – start of header
- STX – start of text
- ETX – end of text
- CRC – cyclic redundancy check

BISYNC frame format

8 8 8 8 8 8 16
SYN SYN SOH HEADER STX BODY ETX CRC

Sentinels
Character Stuffing

• What happens if ETX code occurs in BODY?

• Use an “escape character”
• DLE – Data-link-escape

• Used just as \ in C- or Java-style strings
 – “quotes in \”quotes\””
 – “slash is \\”
(PPP) Point-to-Point Protocol

- Used for dial-up connections (modem)
- Flag – sentinel 01111110
- Protocol – demux identifies high-level protocol such as IP or LCP
- Payload size is negotiated
 - 1500 bytes default
 - Link Control Protocol (LCP)

PPP frame format

<table>
<thead>
<tr>
<th>Flag</th>
<th>Addr</th>
<th>Ctrl</th>
<th>Protocol</th>
<th>Payload</th>
<th>Checksum</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

CSE331 Fall 2004
Byte-counting Approach

- Instead of sentinels, include byte count in frame.

- What happens if count is corrupted?
Bit-oriented Protocols

- Frames are just sequences of bits
- Could be ASCII
- Could be pixels from an image

- HDLC (High-level Data Link Control)
 - Begin and ending = 01111110
 - Uses *bit stuffing*: prefix five 1’s with a 0

<table>
<thead>
<tr>
<th>8</th>
<th>16</th>
<th>16</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>Header</td>
<td>Body</td>
<td>CRC</td>
</tr>
</tbody>
</table>

HDLC frame format
Problem: Error Detection & Correction

- Bit errors may be introduced into frames
 - Electrical interference
 - Thermal noise
- Could flip one bit or a few bits independently
- Could zero-out or flip a sequence of bits (burst error)

- How do you detect an error?
- What do you do once you find one?
Error Detection

• General principal: Introduce redundancy

• Trivial example: send two copies
 – High overheads: 2n bits to send n
 – Won’t detect errors that corrupt same bits in both copies

• How can we do better?
 – Minimize overhead
 – Detect many errors
 – General subject: error detecting codes
Simple Error Detection Schemes

• Parity
 – 7 bits of data
 – 8th bit is sum of first seven bits mod 2
 – Overhead: 8n bits to send 7n
 – Detects: any odd number of bit errors

• Internet Checksum algorithm
 – Add up the words of the message, transmit sum
 – 16 bit ones-complement addition
 – Overhead: 16 bits to send n
 – Does not detect all two bit errors
Cyclic Redundancy Check

• Reading:

• Used in link-level protocols
 – CRC-32 used by Ethernet, 802.5, PKzip, …
 – CRC-CCITT used by HDLC
 – CRC-8, CRC-10, CRC-32 used by ATM

• Better than parity or checksum
 – (e.g. 32 bits to send 12000)

• Simple to implement
Cyclic Redundancy Check (CRC)

• Consider (n+1)-bit message as a n-degree polynomial
 – Polynomial arithmetic modulo 2
 – Bit values of message are coefficients
 – Message = 10011010
 – Polynomial
 \[M(z) = 1 \times z^7 + 0 \times z^6 + 0 \times z^5 + 1 \times z^4 + 1 \times z^3 + 0 \times z^2 + 1 \times z^1 + 0 \]
 \[= z^7 + z^4 + z^3 + z^1 \]
Cyclic Redundancy Check

• Sender and receiver agree on a divisor polynomial \(C(z) \) of degree \(k \)
 – Example \(k = 3 \)
 – \(C(z) = z^3 + z^2 + 1 \)
 – Coefficients are 1101

• Error correction bits are remainder of \((M(z) \times z^k) \) divided by \(C(z) \)

• This yields a \(n+k \) bit transmission polynomial \(P(z) \) that is exactly divisible by \(C(z) \)
Example CRC Calculation

Original message: $M(z)$

Divisor Polynomial: $C(z)$

Multiplication by z^3

Remainder
Example CRC calculation

Transmitted message: 10011010 101

Original message: $M(z)$

Remainder

- Recipient checks that $C(z)$ evenly divides the received message.
CRC Error Detection

• Must choose a good divisor $C(z)$
 – There are many standard choices: CRC-8, CRC-10, CRC-12, CRC-16, CRC-32
 – CRC-32: 0x04C11DB7
• All 1-bit errors as long as z^k and z^0 coefficients are 1
• All 2-bit errors as long as $C(z)$ has three terms
• Any odd number of errors if $(z+1)$ divides $C(z)$
• Any burst errors of length $\leq k$
CRC Implementations

• Easy to implement in hardware
 – Base 2 subtraction is XOR
 – Simple k-bit shift register with XOR gates inserted before 1’s in C(z) polynomial
 – Message is shifted in, registers fill with remainder

• Example C(z) = 1101
Error Correction Codes

• Redundant information can be used to correct some errors
• Typically requires more redundancy

• Tradeoffs:
 – Error detection requires retransmission
 – Error correction sends more bits all the time

• Forward Error Correction is useful:
 – When errors are likely (e.g. wireless network)
 – When latency is too high for retransmission (e.g. satellite link)