Announcements

• HW3 due today.

• Project 1 due: This Friday, Oct. 8, 2004

• Midterm: Oct. 11, 2004
 – In class 50 minute exam
 – Covers networking portion of course
 (i.e. everything so far)
Today: NATs and Firewalls

• Problem: Protecting or isolating one part of the network from other parts

• Need to filter or otherwise limit network traffic
 – How to configure this information?

• Questions:
 – What information do you use to filter?
 – Where do you do the filtering?
Kinds of Firewalls

• Personal firewalls
 – Run at the end hosts
 – e.g. Norton, Windows, etc.
 – Benefit: has more application/user specific information

• Network Address Translators
 – Rewrites packet address information

• Filter Based
 – Operates by filtering based on packet headers

• Proxy based
 – Operates at the level of the application
 – e.g. HTTP web proxy
Network Address Translation

- Idea: Break the invariant that IP addresses are globally unique
NAT Behavior

- NAT maintains a table of the form:
 `<client IP> <client port> <NAT ID>`

- Outgoing packets (on non-NAT port):
 - Look for client IP address, client port in the mapping table
 - If found, replace client port with previously allocated NAT ID (same size as PORT #)
 - If not found, allocate a new unique NAT ID and replace source port with NAT ID
 - Replace source address with NAT address
NAT Behavior

• Incoming Packets (on NAT port)
 – Look up destination port number as NAT ID in port mapping table
 – If found, replace destination address and port with client entries from the mapping table
 – If not found, the packet is not for us and should be rejected

• Table entries expire after 2-3 minutes to allow them to be garbage collected
Benefits of NAT

• Only allows connections to the outside that are established from *inside*.
 – Hosts from outside can only contact internal hosts that appear in the mapping table, and they’re only added when they establish the connection
 – Some NATs support firewall-like configurability

• Can simplify network administration
 – Divide network into smaller chunks
 – Consolidate configuration data

• Traffic logging
Drawbacks of NAT

• Rewriting IP addresses isn’t so easy:
 – Must also look for IP addresses in other locations and rewrite them (may have to be protocol-aware)
 – Potentially changes sequence number information
 – Must validate/recalculate checksums

• Hinder throughput

• May not work with all protocols
 – Clients may have to be aware that NAT translation is going on

• Slow the adoption of IPv6?
• Limited filtering of packets
Firewalls

- Filters protect against “bad” packets.
- Protect services offered internally from outside access.
- Provide outside services to hosts located inside.
Filtering Firewalls

• Filtering can take advantage of the following information from network and transport layer headers:
 – Source
 – Destination
 – Source Port
 – Destination Port
 – Flags (e.g. ACK)

• Some firewalls keep state about open TCP connections
 – Allows conditional filtering rules of the form “if internal machine has established the TCP connection, permit inbound reply packets”
Three-Way Handshake

Active participant (client)

Passive participant (server)

- SYN, SequenceNum = x
- SYN + ACK, SequenceNum = y,
 Acknowledgment = x + 1
- ACK, Acknowledgment = y + 1
Ports

- Ports are used to distinguish applications and services on a machine.
- Low numbered ports are often reserved for server listening.
- High numbered ports are often assigned for client requests.

- Port 7 (UDP,TCP): echo server
- Port 13 (UDP,TCP): daytime
- Port 20 (TCP): FTP data
- Port 21 (TCP): FTP control
- Port 23 (TCP): telnet
- Port 25 (TCP): SMTP
- Port 79 (TCP): finger
- Port 80 (TCP): HTTP
- Port 123 (UDP): NTP
- Port 2049 (UDP): NFS
- Ports 6000 to 6xxx (TCP): X11
Filter Example

<table>
<thead>
<tr>
<th>Action</th>
<th>ourhost</th>
<th>port</th>
<th>theirhost</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>BAD</td>
<td>*</td>
<td>untrusted host</td>
</tr>
<tr>
<td>allow</td>
<td>GW</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>allow our SMTP port</td>
</tr>
</tbody>
</table>

Apply rules from top to bottom with assumed default entry:

<table>
<thead>
<tr>
<th>Action</th>
<th>ourhost</th>
<th>port</th>
<th>theirhost</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>default</td>
</tr>
</tbody>
</table>

Bad entry intended to allow connections to SMTP from inside:

<table>
<thead>
<tr>
<th>Action</th>
<th>ourhost</th>
<th>port</th>
<th>theirhost</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>25</td>
<td>connect to their SMTP</td>
</tr>
</tbody>
</table>

This allows all connections from port 25, but an outside machine can run anything on its port 25!
Filter Example Continued

Permit *outgoing* calls to port 25.

<table>
<thead>
<tr>
<th>Action</th>
<th>src</th>
<th>port</th>
<th>dest</th>
<th>port</th>
<th>flags</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>123.45.6.*</td>
<td>*</td>
<td>*</td>
<td>25</td>
<td>*</td>
<td>their SMTP</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>ACK</td>
<td>their replies</td>
</tr>
</tbody>
</table>

This filter doesn’t protect against IP address spoofing. The bad hosts can “pretend” to be one of the hosts with addresses 123.45.6.*.
When to Filter?

Router

Inside

Outside
On Input or Output

• Filtering on output can be more efficient since it can be combined with table lookup of the route.
• However, some information is lost at the output stage
 – e.g. the physical input port on which the packet arrived.
 – Can be useful information to prevent address spoofing.
• Filtering on input can protect the router itself.
Recommend: Filter ASAP

<table>
<thead>
<tr>
<th>Action</th>
<th>src</th>
<th>port</th>
<th>dest</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>BAD</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>we don’t trust them</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>*</td>
<td>GW</td>
<td>25</td>
<td>connect to our SMTP</td>
</tr>
<tr>
<td>allow</td>
<td>GW</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>our reply packets</td>
</tr>
</tbody>
</table>

Is preferred over:

<table>
<thead>
<tr>
<th>Action</th>
<th>src</th>
<th>port</th>
<th>dest</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>BAD</td>
<td>*</td>
<td>subtle difference</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>*</td>
<td>GW</td>
<td>25</td>
<td>connect to our SMTP</td>
</tr>
<tr>
<td>allow</td>
<td>GW</td>
<td>25</td>
<td>*</td>
<td>*</td>
<td>our reply packets</td>
</tr>
</tbody>
</table>
Example of a Pitfall

• Filter output to allow incoming and outgoing mail, but prohibit all else.

<table>
<thead>
<tr>
<th>Action</th>
<th>dest</th>
<th>port</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow</td>
<td>*</td>
<td>25</td>
<td>incoming mail</td>
</tr>
<tr>
<td>allow</td>
<td>*</td>
<td>>= 1024</td>
<td>outgoing responses</td>
</tr>
<tr>
<td>block</td>
<td>*</td>
<td>*</td>
<td>nothing else</td>
</tr>
</tbody>
</table>

• Apply this output filter set to both interfaces of the router. Does it work?

• Unintended consequence: allows all communication on high numbered ports!
Principles for Firewall Configuration

• Least Privileges:
 – Turn off everything that is unnecessary (e.g. Web Servers should disable SMTP port 25)

• Failsafe Defaults:
 – By default should reject
 – (Note that this could cause usability problems…)

• Egress Filtering:
 – Filter outgoing packets too!
 – You know the valid IP addresses for machines internal to the network, so drop those that aren’t valid.
 – This can help prevent DoS attacks in the Internet.
Example “real” firewall config script

FreeBSD Firewall configuration.
Single-machine custom firewall setup. Protects somewhat
against the outside world.
#

Set this to your ip address.
ip="192.100.666.1"
setup_loopback

Allow anything outbound from this address.
${fwcmd} add allow all from ${ip} to any out

Deny anything outbound from other addresses.
${fwcmd} add deny log all from any to any out

Allow inbound ftp, ssh, email, tcp-dns, http, https, imap, imaps,
pop3, pop3s.
${fwcmd} add allow tcp from any to ${ip} 21 setup
${fwcmd} add allow tcp from any to ${ip} 22 setup
${fwcmd} add allow tcp from any to ${ip} 25 setup
${fwcmd} add allow tcp from any to ${ip} 53 setup
${fwcmd} add allow tcp from any to ${ip} 80 setup
${fwcmd} add allow tcp from any to ${ip} 443 setup

...
Proxy-based Firewalls

- Proxy acts like *both* a client and a server.
- Able to filter using application-level info
 - For example, permit some URLs to be visible outside and prevent others from being visible.
- Proxies can provide other services too
 - Caching, load balancing, etc.
 - FTP and Telnet proxies are common too
Benefits of Firewalls

- Increased security for internal hosts.
- Reduced amount of effort required to counter break ins.
- Possible added convenience of operation within firewall (with some risk).
- Reduced legal and other costs associated with hacker activities.
Drawbacks of Firewalls

• Costs:
 – Hardware purchase and maintenance
 – Software development or purchase, and update costs
 – Administrative setup and training, and ongoing administrative costs and trouble-shooting
 – Lost business or inconvenience from broken gateway
 – Loss of some services that an open connection would supply.

• False sense of security
 – Firewalls don’t protect against viruses…