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Abstract

This paper describes an approach to recovering surface
models of complex scenes from the quasi-sparse data re-
turned by a feature based stereo system. The method can be
used to merge stereo results obtained from different view-
points into a single coherent surface mesh. The technique
proceeds by exploiting the freespace theorem which pro-
vides a principled mechanism for reasoning about the struc-
ture of the scene based on quasi-sparse correspondences in
multiple image. Effective methods for overcoming the diffi-
culties posed by missing features and outliers are discussed.
Results obtained by applying this approach to actual images
are presented.

1 Introduction

This paper addresses the problem of recovering represen-
tations for the surface structure of 3D scenes such as the
one shown in figure 1 from a set of images. The pro-
posed scheme takes as input the results of applying a fea-
ture based, multi-baseline stereo algorithm to clusters of im-
ages taken from various vantage points around the scene.
Based on this information, the system constructs a mesh
representation of the surface like the one shown in Figure
1b. Importantly, the approach is able to handle scenes that
involve multiple disconnected surfaces which may occlude
each other in interesting ways as opposed to scenes that can
effectively be modeled as 2.5D surfaces.

a. b.

Figure 1: a. Image of a typical scene b. Surface mesh re-
covered by the proposed procedure.

When accurate dense range scans are available, several

excellent techniques are available for merging this informa-
tion into coherent surfaces [12, 15, 2, 7, 16]. Unfortunately,
there are situations in which it can be very difficult to obtain
the dense, accurate depth maps required by these techniques
solely from image data.

Passive image based ranging techniques like stereo pro-
ceed by correlating pixels or features between images. In
any non trivial scene we can expect to encounter regions
which cannot be readily matched between images. This
can occur either because certain portions of the structure
are occluded in one or more of the viewpoints under con-
sideration or because the images contain homogenous re-
gions which admit multiple possible matches. In either
case, dense stereo systems are obliged to deal with these
problems by appealing to a’priori expectations about scene
structure such as smoothness or continuity rather than direct
measurements.

It would seem, then, that there is a certain mismatch
between the character of the data returned by most stereo
systems and the accuracy requirements of the previously
mentioned surface reconstruction techniques. This paper
argues that, given the nature of the stereo matching pro-
cess, it may be more appropriate to view each stereo re-
construction as providing information about the freespace
in the scene rather than measurements of surface structure.
In this framework, the stereo results obtained from various
vantage points can be combined by considering the union
of the freespace volumes they induce. This procedure can
be made to work even when the individual reconstructions
contain interpolation artifacts.

The proposed scheme proceeds from the position that
our multi-baseline stereo system can be expected to find ac-
curate correspondences with high confidence in areas where
there is sufficient intensity variation in the image. These
regions typically correspond to intensity edges or textured
regions in the scene. Although the stereo system may only
obtain depth information for a small fraction of the pixels in
the input images, these results can be used to reason about
the scene freespace in a principled manner and, hence, to
construct an appropriate 3D model.

The model of the stereo process used in this work is
somewhat extreme since it is usually possible to produce
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reasonable disparity values for a fairly large fraction of the
pixel locations. The point of choosing such an impover-
ished model is to demonstrate that it is still possible to de-
rive useful information about the structure of the scene from
a small number of high confidence correspondences. When
more correspondences are available they will only serve to
improve the quality of the reconstructions.

Several techniques have been proposed to construct
3D models from the sparse 3D data returned by feature
based structure from motion algorithms. Faugeras, Lebras-
Mehlman and Boissonnat [4] describe a technique for build-
ing 3D models by triangulating a set of 3D point features
and eliminating surfaces which contradict feature visibility
constraints. Manessis et al [9] proposed a related method
for triangulating sparse feature sets. Morris and Kanade
[11] describe a scheme that searches for reasonable trian-
gulations of a point set by considering the implied motion
of textures in the image. The method described in this pa-
per differs from these algorithms in that it generates a sur-
face description by considering the freespace volumes as-
sociated with the stereo results instead of tesselating the re-
covered 3D points.

Several effective techniques for recovering the structure
of a scene based on the voxel carving algorithm proposed by
Kutulakos and Seitz [8] have been proposed. The method
proposed in this paper differs from these schemes in two
important ways. Firstly it does not make use of the view-
point consistency constraint directly, it makes determina-
tions about the structure of the scene based on the 3D re-
sults returned by the stereo system. Secondly the proposed
approach does not involve discretizing the scene into vox-
els.

An interesting and effective technique for recovering
surface models from multiple images was proposed by
Faugeras and Keriven [5]. This work reformulates the
stereo reconstruction process as a surface evolution prob-
lem and solves it using variational principles. In contrast,
the approach taken in this paper directly recovers scene oc-
cupancy from the available disparity measurements.

Another important class of techniques for recovering sur-
face models from image data draw inspiration from the
work of Baumgart [1]. These methods work by consider-
ing the intersection of the volumes obtained by extruding
the object silhouette into the working volume. Variants of
this scheme have been proposed by Sullivan and Ponce [17],
Wong and Cipolla [18] and Matusik et al [10]. The method
proposed in this paper is in some sense a dual to these tech-
niques in that it considers the union of the freespace vol-
umes associated with each image as opposed to the inter-
section of the volumes associated with each silhouette. It is
also important to note that the technique does not involve
the use of distinguished contours like silhouettes which can
be difficult to obtain.
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Figure 2: If the space triangle �PQR was occluded by an-
other surface in the scene then the corresponding triangle
in the image, �pqr, would contain points corresponding
to the boundary of the occluding surface which would pre-
clude the triangle �pqr from the Delaunay triangulation of
the image.

2 Reasoning About Scene Structure

Figure 8 shows the typical input provided to the surface
reconstruction algorithm by the feature based stereo algo-
rithm. In this case the results were obtained from a set
of five images taken from slightly different vantage points.
Note that the stereo system only returns depth information
in regions of the image corresponding to intensity disconti-
nuities. Since this particular scene contains numerous ho-
mogenous regions, the fraction of pixels with depth values
is very small. The disparities at other locations in the im-
age can be estimated by linearly interpolating the disparity
values of the recovered features based on a Delaunay tri-
angulation of their projections in the image. Typically, the
vast majority of the triangles produced by this scheme will
correspond to actual surface regions in the scene. However,
at occlusion boundaries the scheme will naively produce tri-
angles that connect foreground surfaces to background sur-
faces. While it is true that these interpolated disparity maps
may not yield accurate information about the surfaces in the
scene they do yield reliable information about the freespace
in the scene. The following theorem states this observation
more concisely:
Freespace Theorem : Suppose that three recovered space
points P , Q, and R project to the pixel locations p, q, and r
respectively in a given input image, and suppose further that
�pqr is one of the Delaunay triangles formed in that image.
Then the tetrahedron formed by the camera center and the
space triangle �PQR must consist entirely of free space,
i.e. no surface in the scene intersects this tetrahedron.
Proof: Assume, to the contrary, that there is a surface
within this tetrahedron. Then the surface cannot occlude
any of the points P, Q, or R (or else the occluded point
would not be visible in the image). Therefore the bound-
ary of this surface must lie at least partially inside the tetra-
hedron. Points from the boundary would then show up as
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edges inside the image triangle �pqr (see Figure 2). This
contradicts our assumption that p, q, and r are part of a sin-
gle Delaunay triangle, since the interiors of Delaunay trian-
gles cannot contain other vertices1. Hence, the tetrahedron
must consist entirely of free space. ♣ 2

Note that this argument rests on two assumptions. Firstly
it assumes that we have a procedure that accurately recon-
structs the depths of all of the salient edges visible from a
given vantage point. If the reconstruction system only re-
turned the depths of isolated corner features in the image,
this property would not hold. Secondly the argument pre-
sumes that the surface in question can be adequately repre-
sented by a polygonal mesh where the vertices correspond
to intensity discontinuities on the surface. Note that this
does not preclude the reconstruction of curved surfaces so
long as there are sufficient surface markings to provide ver-
tices for an approximating mesh. It would, however, pose a
problem in the case of curved objects with no surface mark-
ings. Consider, for example, the problem of applying a fea-
ture based stereo algorithm to images of a featureless cylin-
der. In this case, the only structural features that could be
recovered would correspond to points along the occluding
edges of the cylinder. Triangulations that simply connected
these points together in the images would provide inappro-
priate approximations of the object. In the sequel we will
describe how both of these assumptions can be relaxed to
account for problems that may occur in practice.

The practical consequence of the freespace theorem is
that we can think of each interpolated disparity map as
defining a star shaped region of freespace and we can rea-
son about the 3-D structure of the scene by reasoning about
the union of these freespace volumes as shown in Figure 3.

Given the coordinates of a point in space, P , we can eas-
ily test whether that point is in the union of the freespace
volumes by projecting the point into each of the original
images and determining whether the depth of the point P
with respect to the image center is less than the depth of the
corresponding entry in the interpolated depth map for that
image. This operation can be performed in constant time by
dividing each image into rectangular regions and caching
references to the triangles that intersect those regions.

This freespace procedure can be represented by an indi-
cator function Φ(P ) : R3 → [0, 1] which returns 0 when-
ever the point P lies within the freespace volume and 1
otherwise. This function can be thought of as an implicit
representation of the total freespace volume.

Given this freespace indicator function Φ(P ) : R3 →
[0, 1], it is relatively straightforward to construct an explicit

1In fact, the defining property of Delaunay triangulations is that the
interior of the circumcircle of every triangle does not contain any other
vertices; however, we do not require such a strong property for our argu-
ment.

2This argument has appeared in a previous publication it is repeated
here for ease of reference [6].

P

Figure 3: The first row of figures depicts the freespace vol-
umes associated with the triangulations of each of the 3 in-
put images. The union of these volumes provides a more ac-
curate approximation of the 3D structure of the scene than
any of the original depth maps. It is a simple matter to con-
struct a function Φ(P ) which indicates whether a particular
point P lies within the union of the freespace volumes.

representation for the freespace boundary in the form of a
triangular mesh by invoking an isosurface algorithm such
as Marching Cubes [14]. The boundary of the freespace
volume can be thought of as a fair approximation for the
surface geometry in the sense that it will correspond to a
surface which is consistent with all of the available informa-
tion. Notice, however, that the actual surface may contain
regions that are not visible from any of the camera positions.
The freespace union method will still produce reasonable
results in these situations.

2.1 Handling Missing Features

The procedure described in the previous subsection will
work perfectly so long as the feature based stereo algorithm
can be relied upon to produce depth values for all of the
salient edges in the scene. Unfortunately, there are cases
in practice where the feature based stereo may fail in this
regard. Problems can arise in situations where a feature is
occluded in one or more of the images in the stereo cluster
or when a salient feature does not have sufficient contrast to
produce a reliable correspondence.

Figure 4 shows a situation in which the stereo results ob-
tained from stereo cluster 1 do not reflect the presence of the
point P. This means that the freespace volume constructed
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Figure 4: (a) This figure shows a situation where the feature
labeled P is not recovered by stereo cluster 1. (b) Without
feature point P, the freespace volume obtained by triangulat-
ing the remaining points will eliminate a significant portion
of the surface (c) Since the point P was among the points re-
constructed by stereo cluster 2 one could consider combin-
ing the two stereo results by simply adding all of the feature
points that appear inside the freespace volume to the mix
and recomputing the triangulation for stereo cluster 1. Un-
fortunately this policy is too liberal and the resulting surface
can still have problems as shown here. (d) These problems
can be overcome by adding the points to the triangulation
incrementally based on their height above the current trian-
gulated surface.

for that cluster will eliminate a significant portion of the
structure. This is clearly undesirable.

In practice, it is usually the case that multiple stereo clus-
ters are used to reconstruct a given scene and these are typ-
ically arranged with a signifcant region of overlap. This
means that features that may be missing from one stereo
reconstruction are often recovered by a neighboring stereo
system. In the example shown in Figure 4 we assume that
the point P was recovered by stereo cluster 2. Since the
reconstruction system is aware of this point, P, it can de-
termine that its initial estimate for the freespace volume as-
sociated with cluster 1 is flawed since it includes a known
feature point, P. This observation that the freespace volume
cannot contain any of the recovered feature points is refered
to as the minimum disparity constraint since it effectively
constrains the freespace volumes associated with each van-
tage point.

The most straightforward approach to fixing the
freespace volume associated with stereo cluster 1 so that
it satisfies this constraint would be to add all the feature
points that violated the constraint to the mix and recompute
the triangulation associated with stereo cluster 1. Figure 4c
shows the results of such a process. The resulting freespace

volume contains all of the known feature points but it still
includes regions of the object that should not have been in-
cluded.

This problem can be solved by modifying the update pro-
cedure to add features to the triangulation in order based on
their height above the current estimate for the freespace sur-
face. On each iteration the update procedure would project
each of the recovered scene points into the viewpoint of
cluster 1 and determine its height above or below the cur-
rent triangulated disparity surface associated with that view-
point. The point with the greatest height above the disparity
surface would be used to update the Delaunay triangulation
incrementally. The process would continue until all of the
feature points were safely contained within the triangulated
surface associated with the cluster. Using this procedure
the system would update its original flawed estimate for the
freespace surface by adding point P and retriangulating. At
this point it would determine that there were no further ille-
gal points and terminate.

This procedure for updating the triangulation to include
all of the recovered points can be implemented efficiently by
modifying a standard incremental Delaunay triangulation
algorithm such as the one described in [3]. Typically, only
a small fraction of the points need to be added to to fix the
triangulation. Furthermore, the process of finding the point
with the greatest height above the triangulation can be opti-
mized very effectively by caching references to the Delau-
nay triangles that enclose the projected feature points. The
worst case computational complexity of this update proce-
dure would be n2 log n where n denotes the total number
of feature points, this corresponds to the case where all n
features need to be added to the triangulation.

This update procedure also provides an avenue for deal-
ing with featureless curved surfaces such as the one consid-
ered in section 2. Figure 5 shows the case where multiple
stereo clusters are viewing a featureless cylinder, each of
the stereo clusters locates two feature points corresponding
to the occluding contour visible from that vantage point. By
applying the minimum disparity constraint decribed previ-
ously, the reconstruction system would recover the polygo-
nal estimate for the curved surface shown in Figure 5b. This
estimate contains all of the recovered feature points. Clearly
the fidelity of such an approximation would depend upon
the numer of stereo clusters used to reconstruct the scene
and their distribution in space. Nonetheless, even in this
worst case scenario it is possible to recover some informa-
tion about the scene structure from the sparse data provided
by a feature based stereo system.

2.2 Recovering Surfaces

Once the minimum disparity constraint has been applied to
update the freespace volumes associated with each of the
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Figure 5: In this worst case scenario we consider a set of
stereo clusters viewing a featureless cylinder. a. Each of the
stereo clusters reconstructs a pair of feature points corre-
sponding to points on the occluding contour of the cylinder.
b. The approximation constructed based on these features
by applying the minimum disparity constraint.

stereo clusters, the only remaining task is to recover an ex-
plicit, triangulated representation for the boundary of the
freespace defined by the implicit function Φ(P ). Actu-
ally, the reconstruction procedure recovers the boundary of
a slightly different indicator function, Φ ′(P ) which evalu-
ates to 1 iff P is inside the freespace defined by Φ(P ) or
outside the convex hull of the points. This modification re-
flects the fact that the reconstructed surface should not ex-
tend beyond the convex hull of the recovered feature points.
It is a very simple matter to determine whether a point, P,
lies within the convex hull of our point set. One need only
evaluate a set of linear equations which correspond to the
facets of the convex hull.

The boundary of this function, Φ ′(P ) can be obtained
by invoking a modified version of the well known march-
ing cubes algorithm 3. Recall that the marching cubes pro-
cedure finds isosurfaces by sampling the given function at
a set of grid points in the specified volume (see Figure
6). When the algorithm detects a transition in the function
value between two neighboring grid points it inserts a ver-
tex along that edge in the grid. In this situation it is possible
to refine the location of the transition along the segment be-
tween the two grid points by applying standard bisection
search [13] to the freespace indicator function Φ ′(P ). This
makes it possible to use a fairly large sampling distance be-
tween the grid points while still accurately determining the
location of surface vertices.

One issue to be mindful of is that isolated outliers can
have a significant impact on the recovered surface since in
certain situations. Problems with outliers can typically be
overcome by insisting that the recovered features have a
requisite amount of support in a local neighborhood of the
image.

3The same arguments can also be applied to modify the marching tetra-
hedra algorithm

GRID LOCATIONS

TRANSITIONS
LOCALIZED 
USING BISECTION
SEARCH

Figure 6: The marching cubes algorithm proceeds by sam-
pling grid points in the specified volume in search of tran-
sitions in the given implicit function. Once a transition has
been detected it can be further localized by applying stan-
dard bisection search techniques.

a. b.

Figure 7: Two of the 30 images acquired of this scene

The marching cubes procedure also provides a certain
amount of robustness to isolated outliers since these types
of features usually induce thin spikes in the freespace vol-
ume. These thin volumes typically do not contain many
grid points and, hence, will not induce many surface ver-
tices. This amounts to a form of “structural aliasing” which
works to our advantage in this case.

3 Experimental Results

In order to test the effectiveness of the proposed recon-
struction procedure, a series of image data sets was ob-
tained. Each data set consisted of 30 images divided into
6 stereo clusters. The stereo clusters were positioned at
evenly spaced intervals all around the target scene. The cal-
ibration grid visible in the images shown in Figure 7 was
used to determine the intrinsic and extrinsic parameters as-
sociated with each of the images in the data set.

Each stereo cluster consisted of 5 images taken in
roughly the pattern of a cross as shown in Figure 9. The
images were taken with a Foveon SD9 Digital SLR cam-
era outfitted with a 50mm lens. For each stereo cluster two
trinocular stereo procedures were performed. The first pro-
cedure used the three images corresponding to the horizon-
tal axis of the cross while the second used the three images
corresponding to the vertical axis of the cross. The cen-
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Figure 8: This figure shows typical results obtained from
our feature based stereo algorithm on this scene. a. The
center image of one of the stereo clusters b. Features recov-
ered in that stereo cluster
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Figure 9: Figure showing the arrangement of viewpoints
used in this experiment. The images are divided into 6
stereo clusters each of which consists of five views taken
in a cross configuration.

Figure 10: Novel view of the set of feature points recovered
by the stereo clusters.

a. b.

Figure 11: Various novel views of the 3D mesh obtained
with the reconstruction algorithm.

a. b.

Figure 12: Various novel views of the 3D mesh rendered
using a view dependent texture mapping technique

ter image was used twice and served as the base frame of
reference for the stereo cluster. This scheme was able to
reconstruct edges in the scene at all orientations.

The trinocular stereo algorithm employed in this work
rectifies the three images to a common orientation, extracts
edge tokens in all of the images, and matches these tokens
across the views. Image windows on either side of the ex-
tracted edge features are examined in order to verify pro-
posed correspondences. Significantly, this approach is able
to deal with occlusion boundaries in the scene which are
often mishandled by correlation based stereo methods.

Figure 8 shows an example of the feature points recov-
ered from a stereo cluster projected into the viewpoint of
the central image of that cluster. Figure 10 shows all of
the recovered feature points viewed from a novel vantage
points. Feature points were typically recovered with mil-
limeter precision.

The results of applying the surface reconstruction pro-
cedure are shown in Figure 11. They demonstrate that the
method is able to recover reasonable approximations for the
surface struture of a fairly complex 3 dimensional scene. In
this case, some of the volume between the blocks was not
visible from any of the vantage points used in the recon-
struction. As a result the surface reconstruction procedure
produced some “extra” surface elements corresponding to
this volume. This problem could be fixed by adding stereo
results from additional vantage points.

4 Conclusions

This paper presents a novel scheme for reconstructing the
3D structure of a scene based on the information returned
by a feature based stereo algorithm. The approach exploits
the fact that even though feature based stereo methods may
only return disparity values for a small fraction of the pixels
in the input images, the features that they do return tend to
correspond to salient structural features in the environment.
This allows us to reason about the structure of the scene in
a principled manner.

The entire reconstruction procedure is summarized be-
low:
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1. Acquire imagery

2. Run feature based stereo on each cluster

3. Construct a triangulated disparity map for each stereo
cluster taking into account the minimum disparity con-
straint

4. Recover an estimate for the surface structure by ap-
plying marching cubes to the union of the freespace
volumes and the complement of the convex hull of the
feature points.

This work deliberately considers a fairly extreme form of
the reconstruction problem, the case where the stereo sys-
tem can only provide information about the depth of edge
features in the input images. The intent has been to show
that it is still possible to determine quite a lot about the
structure of the scene in this case. In many cases, it is rea-
sonable to expect that a stereo system would be able to pro-
vide much more information about the structure of the scene
and these additional correspondences will only serve to im-
prove the quality of the reconstruction.

It is also interesting to note that for some applications
like obstacle avoidance and ray tracing the implicit repre-
sentation for scene freespace, Φ(P ), is very useful since it
provides us with a direct method for answering questions
about the occupancy structure of the scene.
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