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Abstract

In this paper, we consider the problem of assigning sensors to track targets so as to min-
imize the expected error in the resulting estimation for target locations. Specifically, we are
interested in how disjoint pairs of bearing or range sensors can be best assigned to targets
to minimize the expected error in the estimates. We refer to this as the focus of attention
(FOA) problem. In its general form, FOA is NP-hard and not well approximable. However,
for specific geometries we obtain significant approximation results: a 2-approximation algo-
rithm for stereo cameras on a line, a (1 + �)-approximation algorithm for any constant � when
the cameras are equidistant, and a 1.42-approximation algorithm for equally spaced range sen-
sors on a circle. In addition to constrained geometries, we further investigate the problem for
general sensor placement. By reposing as a maximization problem—where the goal is to max-
imize the number of tracks with bounded error—we are able to leverage results from maxi-
mum set-packing to render the problem approximable. We demonstrate the utility of these
algorithms in simulation for a target tracking task, and for localizing a team of mobile agents
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in a sensor network. These results provide insights into sensor/target assignment strategies, as
well as sensor placement in a distributed network.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Sensor networks are the enablers of a technology which can best be described as
omnipresence. Small, inexpensive, low power sensors distributed throughout an envi-
ronment can provide ubiquitous situational awareness. The technology lends itself
well to surveillance and monitoring tasks—including target tracking—and it is in this
application where our interests lie. Unfortunately, the sensors used for these tasks
are inherently limited, and individually incapable of estimating the target state.
Without additional constraints, a minimum of two bearing sensors (such as cameras)
are required to estimate the position of a target. For range sensors, three are required
to localize a target (although this can be reduced to two using filtering techniques).
Noting that the measurements provided by these sensors are also corrupted by noise,
we realize that the choice of which measurements to combine can greatly influence
the accuracy of our tracking estimates.

Consider a distributed set of such sensors charged with tracking groups of targets
as illustrated in Fig. 1. In this paper, we restrict our investigation to the case where
each sensor is capable of tracking a single target at any given point in time. Such an
assumption is appropriate for active sensors such as pan-tilt-zoom (PTZ) cameras,
Fig. 1. An instance of the focus of attention problem where eight cameras are tracking four targets. Two
cameras are needed to estimate the position of a target and a camera cannot track more than one target.
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which are finding significantly increased usage in the current geopolitical climate [1],
or when the computational requirements of tracking algorithms support only a sin-
gle target assignment. With this in mind, our problem can be viewed as an optimal
allocation of resources for target tracking. How should disjoint pairs of sensors be
assigned to targets so that the sum of errors in target position estimates is minimized?
We refer to this as the focus of attention problem for distributed sensors.
2. Related work

Since the measurements of multiple sensors are combined to estimate target pose,
our work relates strongly to research in sensor fusion. Fusing measurements from
multiple sensors for improving tracking performance has been the subject of signif-
icant research [2]. However, the focus has been on combining measurements from
sensors (radars, laser range-finders, etc.) individually capable of estimating the target
state (position, velocity, etc.). As our sensors require the fusion of pairs of measure-
ments, we desire instead an optimal assignment of disjoint sensor pairs to targets.
This added dimension changes the complexity of the problem entirely and distin-
guishes our work from previous approaches.

Within the robotics community, Durrant-Whyte et al. pioneered work in sensor
fusion and robot localization. This yielded significant improvements to methods used
in mobile robot navigation, localization, and mapping [3,4]. Thrun et al. have also
contributed significant research to these areas [5,6]. However, our work distinguishes
itself from traditional data fusion techniques in that the sensors themselves are ac-
tively managed to improve the quality of the measurements obtained prior to the
data fusion phase, resulting in corresponding improvements in state estimation.

There has been other related research under the heading of sensor networks. Cortés
et al. [7] investigated the issue of sensor coverage. In their model a single sensor is suf-
ficient to cover a point, however, the quality of coverage decreases with distance. This
research focused on the movement of sensor networks while ensuring optimal cover-
age. Our work begins where the sensor coverage problem leaves off and is applicable
whenmultiple sensors are required for monitoring a single region. Jung and Sukhatme
[8] examined a heterogeneous network of static andmobile sensors for target tracking.
Using a region based approach, each robot attempted to maximize the number of
tracked targets per region. In contrast to our work, data fusion issues were not consid-
ered. Lastly, Horling et al. [9] focused on networkmanagement optimization to ensure
target observability and synchronized sensor observations to better estimate target po-
sition. In sharp contrast, our approach optimizes explicit sensor errormetrics to obtain
an optimal or near optimal sensor–target assignment.
3. The focus of attention problem

The following are the standard definitions used for analysis of approximation
algorithms [10] that will be used in the paper:
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Definition 1. A polynomial algorithm, A, is said to be an a-approximation
algorithm, if for every problem instance I, A produces a solution whose cost is
within a factor a of the cost of the optimal solution.

Definition 2. A polynomial-time approximation scheme (PTAS) is a family of algo-
rithms A� : � > 0 such that for each � > 0, A� is a (1 + �)-approximation algorithm
which runs in polynomial time in input size for fixed �.
3.1. Problem definition

The focus of attention problem (FOA) is formally defined as as follows: the input
consists of n targets, 2n sensors and a cost function c (i, j, k) which indicates the cost
of tracking target k using sensors i and j, where i, j 2 {1, . . . , 2n} and k 2 {1, . . . , n}.
In the sequel, this cost represents the expected error associated with a position esti-
mate obtained by fusing the information from sensors i and j. We are required to
output an assignment: a set of n triples such that each target is tracked by two sen-
sors, no sensor is used to track more than one target and the sum of errors associated
with triples is minimized.

FOA is closely related to the following problem [11]:

Definition 3 (3D-Assignment). Given three sets X, Y, and W and a cost function
c : X · Y · W fi N, find an assignment A (i.e., a subset of X · Y · W such that every
element of X [ Y [W belongs to exactly one element of A) such thatP
ði;j;kÞ 2 Acði; j; kÞ is minimized.

3D-Assignment (3DA) is NP-hard [12] and inapproximable [13]. It is easy to see
that any instance of 3DA can be reduced to an instance of FOA just by setting
cFOA(i, j, k) = c3DA(i, j, k) whenever c3DA(i, j, k) is defined and infinite otherwise.
Moreover, since this reduction is approximation preserving, FOA with arbitrary
costs is not approximable as well.

However, usually the error is not arbitrary but a function of the camera/target
geometry. In the next two sections, we consider two error metrics for specific sensor
configurations: cameras on the line and range sensors on the circle.

3.2. Cameras on a line

In this section, we consider collinear cameras located on line l tracking targets on
the plane. The error associated with cameras i and j tracking target k is Zk/lij, where
Zk is the vertical distance of the target k to the line l and lij is the baseline, the dis-
tance between the two cameras (see Fig. 2). This metric can be used to gauge the er-
ror in the stereo reconstruction1 and gives a good approximation when the targets
1 In fact, a better approximation is Z2
k=lij. However, when all the cameras are collinear, the depth of

a target is the same for all cameras and therefore for simplicity we assume that the depths are squared,
and the error is Zk/lij. A brief discussion on the derivation of this error measure can be found in
Appendix A.1.



Fig. 2. The focus of attention problem on the line.
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are not too close to the cameras. Note that this error metric fails if the targets are
very close to the line l, therefore in this section we assume that there exists a mini-
mum clearance d such that Zi > d, for all targets.2

Suppose that the cameras are sorted from left to right and let ci be the coordinate
of the ith camera. The following lemma enables us to separate matching cameras
from matching targets to pairs.

Lemma 4. Let Zi be the depths of targets, Z1 6 Z2 6 . . . 6 Zn and li be the baselines

in an optimal assignment sorted such that l1 6 l2 6 . . . 6 ln. There exists an optimal

matching such that the target at depth Zi is assigned to the pair with baseline li.

Proof. Suppose not. Then, in the optimal solution there exists two assignments
(Zi, lj) and (Zk, li) such that Zi > Zk and lj < li. Consider a new assignment obtained
by modifying the optimal assignment by switching the targets of the two assign-
ments. Since we have,

Zi

lj
þ Zk

li
>
Zi

li
þ Zk

lj
ðZi � ZkÞ

lj
>
ðZi � ZkÞ

li

this new assignment produces less error than the optimal solution—a
contradiction! h

Lemma 4 implies that once we choose pairs of cameras, the targets can be as-
signed to these pairs in a sorted fashion where further targets are assigned to pairs
with larger baselines.
2 Recently, Goossens and Spieksma [14] obtained the following results: the focus of attention problem
for cameras on the line remains NP-hard and this results holds even if the cameras are equidistant.
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3.2.1. Performance of known heuristics

It is easy to see that a greedy assignment that assigns the furthest target the max-
imum available baseline can be arbitrarily far from optimal value: consider the set-
ting in Fig. 3 with four cameras where the two cameras in the middle are very close
to each other. In this configuration, the greedy algorithm can produce an assign-
ment that is arbitrarily more costly than the optimal assignment: (t1, c1, c3),
(t2, c2, c4).

Perhaps not so obvious is the performance of the following algorithm: find a
matching between the cameras that maximizes the sum of the baselines and assign
these pairs to targets. This algorithm, which we call Match-Assign, gives a 3/2
approximation for the 3D-Assignment problem when the cost of a triple is the perim-
eter of the triangle formed by the points in the triple [12].

The Match-Assign Algorithm can also be arbitrarily bad: suppose there is one tar-
get at Z ¼ Z and n � 1 targets at Z = �. Each camera ci is located at x = i/(2n � 1),
i = [1, . . . , 2n].

First consider the matching (c1, c2n) and (c4i�2, c4i), (c4i�1, c4i+1) for i = 1, 2, . . . ,
(2n � 2)/4. The cost of this matching is 1 + 2(n � 1)/(2n � 1) � 2 and the total error
is Zþ ðn� 1Þ 2�

2n�1.
Next, consider the matching that matches ci with ci+4. The cost of this matching is

also 4n/(2n � 1) � 2 but the total error is ð2n� 1ÞZ
4
þ ðn� 1Þ ð2n�1Þ�

4
.

Therefore, two matchings with equal sum of baselines may lead to errors such that
one can be made arbitrarily larger than the other and the Match-Assign algorithm
cannot be used to obtain a good approximation.

3.2.2. A 2-approximation algorithm

In this section we present a 2-approximation algorithm for the previous assign-
ment problem. The algorithm simply assigns camera i to camera n + i and these pairs
are then assigned to the targets according to Lemma 4. The algorithm is summarized
in Table 1. Let li be the baselines generated by our algorithm. Let OPT be any opti-
mal solution and l�j be the baselines in OPT. The following lemmas show that we can
find a one-to-one correspondence between li and l�j such that li are longer than half of
their corresponding pairs in the optimal solution.

Lemma 5. For all i, there exists an index j such that li P l�j .
Fig. 3. A greedy assignment assigns c1 and c4 to target t1 and gets stuck with the pair (c2, c3). The optimal
assignment in this case is to assign t1 to (c1, c3) and t2 to (c2, c4).



Table 1
A 2-approximation algorithm for assigning cameras on a line to targets

CamerasOnALine (c1, . . . , c2n: camera positions, z1, . . . , zn: target depths)
for i = 1 to n

pi ‹ (ci, cn+i)
{p0i}‹ Sort {pi} so that p0i is the ith largest baseline
{z0i}‹ Sort {zi} so that z0i is the ith largest depth
for i = 1 to n

assign p0i to z0i
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Proof. Let k be the the pair such that |(ck, cn+k)| = li.
Let A = {ck, ck+1, . . . , cn+k}. Since |A| = n + 1, in the optimal matching there

must be two cameras in A that match with each other and the baseline of that match
is at most li. h

Lemma 6. Let S = {l1, . . . , ln} and OPT ¼ fl�1; . . . ; l�ng. For any A � S, |A| = k, there

exists a subset B � OPT, |B| = k and a bijection rk:A fi B such that li P rk (li)/2 for

all li 2 A.

Proof. The lemma is proven by induction on |B| = k.

Basis. Existence of r1 for k = 1 is a corollary of Lemma 5.

Inductive Step. Let ci and cj be the leftmost and rightmost cameras used by the edges
in A. Without loss of generality, assume that |cicn+i|P |cjcn+j|. Let Y be the subset of
pairs in OPT that matches cameras in the set C = {ci, ci+1, . . . , cj}.

We first observe that |Y| P k. This is because |C| P n + k and hence at most n � k

cameras in C could be matched by OPT to cameras outside C.
The longest edge in B is easily seen to be at most 2|cicn+i|. We now recursively

compute rk�1 for A0 = An{(ci, cn+i)}. Let B
0 be the range of rk�1. Since |Y| P k,

Y must have at least one pair, say l*, not in B0. We match this pair to (ci, cn+i):

rkðlÞ ¼
rk�1ðlÞ if l 2 A0: ð1Þ
l� if l ¼ ðci; cnþiÞ: � ð2Þ

�

Therefore by Lemma 6 there exists a mapping r from S to the optimal matching such
that li P r (li)/2, "li 2 S which gives us the desired approximation guarantee. This
analysis is tight, there are instances where our algorithm can be twice as costly as
the optimal cost.

The tight example consists of n/4 cameras at x = 0, n/4 cameras at x = 1 � �, n/4
cameras at x = 1 + �, and n/4 cameras at x = 2. There is one target at Z ¼ Z and
n � 1 targets at Z = � (see Fig. 4).

The optimal cost in this case is Z
2
þ ðn� 2Þ �

1þ�þ �
2�
. This is achieved by matching c1

to c2n and cn
4þ1 to c3n

4
and imitating our algorithm otherwise.

Our cost in this case is is Z
1þ�þ ðn� 1Þ �

1þ� which becomes twice the optimal value
as Z grows to infinity.



Fig. 4. The matchings produced by our algorithm (shown in dotted lines) can be twice as bad as the
optimal matching (shown in solid lines) by moving the furthest target to infinity.
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We summarize the main result of this section in the following theorem.

Theorem 7. There exists an O(n log n)-time algorithm that simultaneously gives a

2-approximation to minimizing the sum of errors metric as well as minimizing the

maximum error metric when the cameras are aligned and the cost of assigning cameras i

and j to target k is Zk/lij, where lij is the distance between the cameras and Zk is the

distance of target k to the line that passes through the cameras.
3.2.3. Simulation results

In this section, we present simulation results that contrast the performance of the
2-approximation algorithm empirically with a static and a dynamic/greedy ap-
proach. The simulation models the target tracking task as outlined in Section
3.2.2. Specifically, we consider 10 cameras charged with tracking five targets per-
forming a random walk as shown in Fig. 5A. The sensors measure bearings to tar-
gets. We assume that the sensor locations are known without error, and each sensor
is constrained to tracking a single target at any given time. Measurements from pairs
of sensors are then merged (via triangulation) to obtain an estimate of the position of
the target. We modeled this scenario for two different algorithms.

Algorithm 1 initially assigned each target to the best available pair and kept this
assignment fixed throughout the simulation. Algorithm 2 employed a greedy reas-
signment strategy whereas Algorithm 3 employed the 2-approximation algorithm
presented in Section 3.2.2. In this approach, sensor pairs communicated target posi-
tion estimates (requiring O (n) communications), and sensor pair-target assignments
were dynamically updated as necessary.

We simulated the performance of these three algorithms for 10,000 iterations.
The error in bearing was simulated by drawing samples from zero mean Gaussian
with r = 1�. The histograms of average error for the methods are shown in Figs.
5B–D. The mean-squared error (l = 2.69), and the variance of the error
(r2 = 2.73), produced by the 2-approximation algorithm is significantly lower than
both the greedy (l = 4.48, r2 = 21.02) and the static (l = 15.30, r2 = 35.93)
approaches.



Fig. 5. Case (A): A tracking scenario with targets performing a random walk. Cases (B–D): Comparison
of three algorithms. Histograms of the mean-squared error (MSE) for tracking without reassignment. (A),
with greedy reassignment (B), and reassignment according to the 2-approximation algorithm (C).

(B) No reassignment.
(A) Simulator.

(C) Greedy reassignment. (D) 2-Approximation algorithm.
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3.2.4. A PTAS for equidistant cameras

Our next result is a PTAS for equidistant cameras on the line. Specifically, we will
show that given any � > 0, there is an algorithm to compute a (1 + O (�))-approxi-
mate solution in nOð1=�

4Þ time (polynomial for any fixed positive �). Without any loss
of generality assume that the distance between two consecutive cameras is 1, hence
the length of the line segment is 2n � 1.

Note that we can view any solution as a matching between the cameras such that
the weight on a matching edge (ci, cj) is equal to

Zk
jcicjj if and only if cameras ci and cj

are assigned to the target k in the solution. We start with an overview of our PTAS.
There are three main ingredients of our scheme:

• In any optimal matching, a camera in the left half (first n cameras) must be paired
with a camera in the right half (last n cameras).
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• Fix any optimal matching OPT. We distinguish between two types of camera pair-
ings (edges) in OPT. We call an edge e short if its length is at most �n, and call it
long otherwise. We show that all but a small fraction of the error in OPT is inci-
dent on the long edges.

• Finally, we show how to find a matching that allows us to approximate the length
of each long edge in OPT to within a factor of (1 � �) and each short edge to
within a factor of 1/2. Since much of the error is concentrated on long edges, this
suffices to get an overall (1 + O (�))-approximation.

In what follows, we formally develop this ideas.

Lemma 8. In an optimal matching the leftmost n cameras match with the rightmost n

cameras.

Proof. Assume ci is matched to cj, i, j 6 n in an optimal solution, OPT. This implies
that among the rightmost n cameras at least two of them match with each other, say
ck and cl. But then, this matching can be improved by pairing ci with ck and cj with cl
which contradicts the optimality of OPT (see Table 2). h

Let p = �2n and q = 1/�2. Partition the n points on the left into equal sized blocks
L1, . . . , Lq so that each block has p consecutive cameras. Similarly, we partition the
points on the right into equal sized blocks R1, . . . ,Rq. Consider a camera pairing
(x, y) in OPT. We call it of type (i, j) if x is in Li and y is in Rj (see Fig. 6).
Table 2
A (1 + �)-approximation algorithm for assigning equidistant cameras on a line to targets

EquidistCamsOnALine (c1, . . . , c2n: camera positions, z1, . . . , zn: target depths, and �: error parameter)
p‹ �2n; q‹ 1/�2

Partition leftmost cameras into L1, . . . , Lq (Fig. 6)
Partition rightmost cameras into R1, . . . , Rq

M set of all matchings of {Li} and {Ri}
for each matching M in M

{pi}‹ Camera pairing produced by ComputeCameraPairs(M)
{p0i}‹ Sort {pi} so that p0i is the ith largest baseline
{z0i}‹ Sort {zi} so that z0i is the ith largest depth
Error (M)‹ error produced by assigning p0i to z0i

return the best assignment

Subroutine ComputeCameraPairs (M: A partition matching)

S‹ ;
unmark all cameras
for i = 1 to q

for j = 1 to q

m‹ weight of matching edge type (i, j)
for i = 1 to m

c1 ‹ leftmost unmarked camera in Li

c2 ‹ leftmost unmarked camera in Rj

S‹ S [ {(c1, c2)}
mark c1 and c2

return S



Fig. 6. Partitioning the line segment: an edge that connects a camera in block Li to a camera in block Rj is
called an edge of type (i, j).
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Recall that an edge is called short if its length is no more than �n.

Lemma 9. The number of short edges is at most �n.
Proof. The lemma follows from the fact that the short edges may involve at most 1/�
left blocks connected to the 1/� right blocks. h

There are at most q2 (i.e., constant, for a given �) different types of matching edges
in OPT. We can assume from here on that we know the number of edges of each type
in OPT. This is easily done by enumerating over all possible Oðnq2Þ vectors of match-
ing edge types. Note that we are not enumerating over all possible matchings of cam-
eras (the number all such matchings is n factorial). Instead, the enumeration is over
all possible types of edges. This gives us a q · q matrix T where the entry T(i, j) is
equal to the number of edges of type (i, j).

Given the matrix T, we use the following scheme to match the cameras. Initially,
all cameras are unmarked. Starting with the block L1, we do the following for each
block Li. Suppose T (i, 1) = x1, . . . , T (i, q) = xq. We first pair the x1 leftmost cam-
eras in Li to x1 leftmost unmarked cameras in R1. We mark all paired cameras. Then
we pair x2 leftmost unmarked cameras in Li to x2 leftmost unmarked cameras in R2

and so on. See Fig. 7.
Next, we show that the matching scheme described above produces camera pairs

that are not much shorter than the camera pairs in OPT.

Lemma 10. Given the matrix T that specifies number of edges of each type in OPT, the

matching scheme above decreases the length of each short edge by a factor 1/2 at most,

and each long edge by a factor of (1 � �) at most.

Proof. First observe that lengths of any two edges pairing a camera in some blockLi to
another block Rj differ from each other by at most an additive �2n term. This immedi-
ately gives us the error bound for long edges as well as for short edges whose length
exceeds �2n. All that remains to consider are edges that match vertices in Lq to R1.
Observe that in our greedy matching scheme, we pair cameras in Lq only after all cam-
eras inL1, . . . ,Lq�1 have beenpaired. Thus,we pair cameras inLq to the rightmost pos-
sible cameras in R1, doing at least as well as the pairing in OPT for this group. h
Fig. 7. Assigning two edges of type (i, j) from Li to Rj. Note that the first two cameras in Rj are already
marked—i.e., have already been assigned to a camera in Lk for some k < i.
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Lemma 11. Let c1, c2, c3, and c4 be four cameras ordered from left to right, x = |c1c2|,
y = |c2c3|, and z = |c3c4| with z > x. In addition, let t1 and t2 be two targets at distances

z1 and z2, respectively (Fig. 8). If (c1, c4, t2) and (c2, c3, t1) are triples in an optimal

assignment then:

Z1

y
6 Z2

ðxþ yÞ
ðxþ y þ zÞðy þ zÞ

Proof. Consider the assignment obtained by crossing the pairs: (c1, c3, t1) and (c2, c4,
t2) (see Fig. 8). Due to optimality we have

Z1

y
þ Z2

xþ y þ z
6

Z1

xþ y
þ Z2

y þ z

and the lemma follows by simple algebraic manipulation. h

Finally, we show that all but a small fraction of the error weight in an optimal
matching is incident on the long edges.

Lemma 12. Let the weight (error) on an edge e for an assignment be Zi
jej where Zi is the

depth of the target assigned to this edge and |e| is the distance between the cameras

connected by e. In any optimal assignment, the total weight on the short edges is at most

an 64� fraction of the overall weight.

Proof. Let M and N be the leftmost and rightmost 3n/4 cameras, respectively. In an
optimal matching, due to Lemma 8, the edges in M match with rightmost n edges
and at least n/2 of them are in N. Let B ¼ fb1; . . . ; bn

2
g be the set of any n/2 ‘‘big’’

edges that match cameras from M to cameras in N and S = {s1, . . . , sk} be the set
of ‘‘small’’ edges. By Lemma 9, k 6 �n.

Partition B into n
2k P

1
2�
groups Bi of size k arbitrarily.

We pick any group Bj and match the edges bi 2 Bj to edges in S arbitrarily. Let Zs
i

and Zb
i be the depths of targets assigned to si and bi, respectively. By Lemma 11 with

x + y 6 n + �n, x + y + z P n/2 and y + z P n/4 we get:
Fig. 8. Figure for Lemma 11
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Zs
i

si
6 Zb

i

ðnþ �nÞ
n
2

n
4

¼ Zb
i

8ð1þ �Þ
n

6
16Zb

i

n
.

Let w (S) be the total error in set S. Since a baseline can be of length at most 2n � 1,
by summing up over the elements in S, we get w (S) 6 32w (Bj).

Therefore we conclude

wðBÞP wðBiÞ
2�

P
wðSÞ
64�

since the total weight is greater than w (B), the lemma follows. h

Theorem 13. There exists a PTAS for assigning equidistant cameras on a line.

Proof. Thematching described ensures that short edges inOPT are reduced by atmost
a factor of 2 and long edges are within a factor of (1 + �). Using Lemma 12 above, by
combining these matchings, we get an overall 1 + O (�)-approximation. h
3.3. Range sensors on a circle

In this section, we consider range sensors located on a circle C at equidistant inter-
vals, tracking targets that are located inside C. The error associated with a pair of
range sensors (c1, c2) and a target t is approximated by 1/sinh, where h = \c1tc2
(Fig. 9). This is the Geometric Dilution of Precision (GDOP) for sensors that mea-
sure distances from the targets. A brief discussion on the derivation of this error
measure can be found in Appendix A.2.

In practice three range sensors are required for explicit target localization. How-
ever, target tracking need not be an adversarial task. Consider a team of mobile ro-
bots negotiating a sensor network. Pairs of sensor measurements could be paired
with heading information to enable localization. In this application, identifying opti-
mal pairs would prove useful for providing optimal position estimates while mini-
mizing network transmissions.

For simplicity, assume there are 4n sensors and 2n targets. Let S be the set of pairs
generated by matching sensor i with sensor i + n which is 90� away clockwise from i.
Assign the targets arbitrarily to pairs.

For two sensors c1 and c2, let x be a point inside C such that \c1xc2 = 3p/4 (see
Fig. 10). Let Arc1(c1, c2) be the arc defined by c1, c2, and x and Arc2(c1, c2) be the
arc axially symmetric with respect to the the chord c1c2. Note that Arc2 lies on C.

Let Aij be the region inside Arc1 (ci, cj) and Arc2(ci, cj). Since any target outside
the region Aij is viewed by an angle less than 3p/4 and greater than p/4 degrees from
(ci, cj), we call the region Aij a defective region for the pair (ci, cj). This angle is en-
ough to guarantee a 1.42-approximation since 1= sinð3p

4
Þ < 1.42 and the least error

possible in this metric is 1. A target is good, if it is assigned to sensors c1 and c2
and located outside the defective region of (c1, c2). We summarize the properties
of defective regions in the following propositions, which can be proven using basic
geometric formulas.



Fig. 9. Geometric Dilution of Precision: each sensor c1 and c2 measures its distance to target with some
precision. The error in position estimation is shown for two target locations t1 and t2. The error reduces as
the angle h = \c1tic2 gets closer to p/2.

Fig. 10. Sensors on circle: Left, the defective region for sensors c1 and c2 is the shaded area defined by arcs
Arc1(c1, c2) and Arc2(c1, c2). Right, the defective regions are disjoint.
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Proposition 14. Any target outside the defective region of sensors c1 and c2 is viewed

by an angle less than 3p/4 and greater than p/4 from c1 and c2.

Proposition 15. Let c1, c2, c3, and c4 be four sensors p/2 degrees apart. Defective

regions of (c1, c2), (c2, c3), (c3, c4), and (c4, c1) are disjoint (Fig. 10 right).



Fig. 11. Three possible cases for the location of target t2.
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Having assigned the targets to sensors p/2 degrees apart we proceed as follows: we
scan the pairs assigned to each target ti. Suppose the current pair is (c1, c2).

Now suppose that t1 assigned to (c1, c2) is defective (i.e., in the defective region
A12 of c1 and c2). Consider the pair (c3, c4), such that c3 (resp. c4) is the antipodal
of c1 (resp. c3) and the target t2 assigned to (c3, c4). Fig. 11 illustrates the three pos-
sibilities based on the location of t2.

• if t2 2 A34, we swap targets: the new assignment is (c1, c2, t2) and (c3, c4, t1).
• if t2 is good and outside A12 again we swap targets: the new assignment is (c1, c2,
t2) and (c3, c4, t1).

• if t2 is good and inside A12, we swap pairs: the new assignment is (c1, c4, t1) and
(c2, c3, t2).

The reason we picked the angle as 3p/4 is to make the defective regions disjoint: as
the right illustration in Fig. 10 shows, by construction the defective regions only
intersect at the sensors. This makes each assignment have an error of 1.42 at most.
In addition, once an assignment is modified we never return to it. Therefore this
algorithm gives a 1.42-approximation for 1/sinh error metric.

The main result of this section is summarized in the following theorem:

Theorem 16. There exists an O(n)-time algorithm that simultaneously gives a 1.42-
approximation to minimizing the sum of errors metric as well as minimizing the

maximum error metric when the 4n sensors are equally spaced on a circle and the cost of

assigning sensors i and j to target k is 1/sin\ikj.
3.3.1. Simulation results

In this section, we demonstrate the utility of the algorithm for range sensors on
circle for a cooperative localization task.

Target tracking need not be adversarial. In this simulation, n robots are operating
within a sensor network defined by 2n range sensors on a circle. The robots rely on
pairs of sensor measurements to estimate position. The resulting pair of position esti-
mates are then merged with odometry information to eliminate pose ambiguity. Both
the sensor and odometry measurements are corrupted with random Gaussian noise.
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Again, three algorithms were modeled. Each initiated with a globally optimal
assignment of sensor pairs to targets. In the first, this assignment was maintained
throughout the simulation. The second employed a greedy reassignment strategy
at each time step. Finally, Algorithm 3 followed the 1.42-approximation presented
in Section 3.3. In this case, the sensor pairs assigned to every two targets were chosen
from the initial four sensors assigned to the targets. Localization then proceeded
with each robot transmitting a position estimate to its assigned sensor pair. The sen-
sor pair in turn transmitted range measurements to the target. These measurements,
the knowledge of sensor positions and odometry measurements allowed each robot
to estimate its position at each time step. The procedure then iterated.

Localization performance for the three algorithms is reflected in Fig. 12. In this
example, eight robots were tracked by 16 sensors over 10,000 time steps. The robots
Fig. 12. Case (A): A tracking scenario showing robot and sensor positions. Cases (B–D): Comparison of
three algorithms. Histograms of the mean-squared error (MSE) for tracking without reassignment (A),
with greedy reassignment (B), and reassignment according to the 1.42-approximation algorithm (C). The
latter reduces both MSE and error variance over the alternative approaches.

(B) No reassignment.

(D) 1.42-Approximation.(C) Greedy reassignment.

(A) Simulator.
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localized while following pseudo-random trajectories through the network. Results
indicate significant improvements in localization performance can be achieved by
intelligently assigning targets to sensors.

Both our 1.42 approximation (MSE = 68.4, r2 = 29.3) as well as greedy reas-
signment (MSE = 70.9, r2 = 66.8) outperformed static assignment (MSE = 87.5,
r2 = 49.7). It is interesting to note that while greedy reassignment and our
1.42 approximation have nearly identical performance with respect to mean
square error, the performance guarantee of our approach results in a signifi-
cantly lower variance. It also scales far better computationally (O (n) vs.
O (n3)) and requires far fewer reassignments (2206 vs. 61,241 out of 80,000 pos-
sible assignments).

3.4. Discussion: universal placement

Note that the analysis above shows that the equidistant placement for 1/sinh met-
ric is universal: when the cameras are placed equidistantly, no matter where the tar-
gets are located, our algorithm guarantees a 1.42-approximation to the optimal
matchings generated by any placement of sensors on circle.

Similarly, a universal placement for cameras on a line segment [x, y] for the Z/b
metric would be to put half of the cameras on x and the other half on y, which guar-
antees an optimal assignment for this metric.

3.5. Arbitrary sensor assignment

The inapproximability of FOA for general sensor assignment lead us to repose it
as its ‘‘dual’’ maximization problem. To do this, we define the notion of a valid track.
An assignment (ci, cj, tk) is considered a valid track if Err (ci, cj, tk) 6 d0, where d0
represents an acceptable error threshold predefined by the user. The problem then
becomes: given a set of sensors C with ci 2 C, a set of targets T with t 2 T, and an
error threshold d0, construct a set of disjoint assignments A, where (ci, cj, tk) 2 A

iff Err (ci, cj, tk) 6 d0, such that |A| is maximized.
In addition to arbitrary error metrics, this formulation allows us to deal with

occlusions in the scene: if target tj is not visible from camera ci, we delete all triples
that contain both ci and tj from the set of valid tracks.

When the error metric is arbitrary, this problem is equivalent to Maximum 3-Set

Packing,3 which is known to be NP-hard [11]. It is also known that a simple greedy
heuristic (Table 3) which adds any set to the solution as long as it does not conflict is
within a factor of 3 of the optimal solution. A 2-locally optimal solution is defined as
a maximal solution that cannot be improved further by removing any item from the
current solution, and attempting to insert two non-conflicting items (Table 4). It has
been shown that any 2-locally optimal solution provides a 5/3 approximation [15,16].
If N = O (n3) is the number of valid tracks, the greedy algorithm can be implemented
3 Given a 3-set system (S, C)—a set S and a collection C of size 3 subsets of S, find a maximum
cardinality collection of disjoint sets in C.



Table 4
A 2-local algorithm for selecting valid assignments

2-LocalAssign (A = {(ci, cj, ck)}: valid assignments)

S‹ GreedyAssign (A)
improved‹ true
while improved
improved‹ false
for all assignments a 2 S

for all assignments b, c 2 AnS
if Sn{a} [ {b, c} is a valid solution

S‹ (Sn{a}) [ {b, c}
improved‹ true

return S

A solution is called a valid solution if no two of assignments in the solution contain the same target or
camera.

Table 3
Greedy algorithm for selecting valid assignments

GreedyAssign (A = {(ci, cj, tk)}: valid assignments)

S‹ ;
for all assignments a 2 A

if a does not conflict with any assignment in S

S‹ S [ {a}
return S
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in O (N) time, whereas finding a 2-locally optimal solution takes O (N2) time. The de-
tails of the latter implementation can be found in [15].

One might suspect that a 2-locally optimal solution would yield an approximation
factor better than 5/3 for restricted error metrics. However, this is not the case, even
for equidistant cameras on the line: consider the example in Fig. 13 with cameras on
a line, Z/b as our error metric and an error threshold d0 = 1. There are five targets,
t1, . . . , t5 and z1 = 9, z2 = 7, z3 = 5, z4 = 3, and z5 = 1. Ten cameras c1 to c10 are lo-
Fig. 13. Left: an instance of FOA. Right: the conflict graph for the optimal solution and a 2-local solution:
the nodes on the left (resp. right) represent the optimal (resp. 2-local) solution. There is an edge between
two nodes if the assignments conflict. In this case, a 2-local solution gives a 5/3 approximation, showing
that the analysis is indeed tight.
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cated at x = 1, . . . ,10. Optimum packing is five targets with (t1, 1, 10), (t2, 2, 9),
(t3, 3, 8), (t4, 4, 7), and (t5, 5, 6), represented by the nodes of the conflict graph shown
on the left in Fig. 13. Suppose our solution is (t4, 3, 6), (t5, 8, 9), and (t3, 5, 10). Note
that it is not possible to remove a triple from this solution and insert two, therefore it
is 2-locally optimal. But this implies a 5/3 approximation, which shows that the anal-
ysis is tight. It is possible to generalize this example to 5k targets, just by replicating k
instances of the same example and putting them on the top of each other. Thus, the
5/3 lower bound is tight even for equi-spaced cameras on a line.

In the next section, we investigate the utility of the greedy and 2-local algorithms
through simulations.

3.5.1. Simulation results

In this last simulation, we examined the arbitrary sensor placement problem as
outlined in Section 3.5. For this example, 20 cameras were distributed roughly uni-
formly on the plane and charged with tracking 10 targets. Here, the objective was to
maximize the number of valid tracks, in contrast to the error minimization objective
of previous simulations. Targets followed random trajectories, and were tracked in
simulation using particle filters. The respective particle sets were employed to gener-
ate a numerical error metric for the targets as discussed in [17].

Two algorithms were investigated for this maximization approach. The first em-
ployed a greedy assignment strategy, and the second a 2-locally optimal approach
as discussed in Section 3.5. The latter took the greedy solution as input, and as a
consequence could only improve on its performance. Reassignment was made for
both algorithms at each time step. Several trials were conducted corresponding to
sparse and dense solution sets. Data from a representative trial can be found in
Fig. 14.

In each trial, the 2-local solution improved over greedy by 5–15%. As expected,
the larger improvements corresponded to dense solution sets—i.e., when there were
more opportunities for finding local improvements. These results are by no means
encompassing and provide only insights into expected performance which is a func-
tion of too many variables to address here. However, they imply that unless the guar-
antee of improved performance is critical, the greater computational complexity of
Fig. 14. Left: simulator snapshot for 2-local assignment trial. Center, right: the number of valid tracks
recovered for greedy and 2-local search strategies. In this example, 2-local improved over greedy by on
average 15%.
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2-local may not be warranted by the expected performance improvement over greedy
for real-time applications.
4. Conclusions and discussion

In this paper, we have introduced the focus of attention problem and studied the
algorithmic aspects of managing the attention of a group of distributed sensors. We
observed that for a general cost metric, the problem is NP-hard and not well approx-
imable. However, for constrained geometric cases we were able to exploit relations
between the sensor geometry and corresponding error metrics. From this, we ob-
tained: a 2-approximation for stereo cameras constrained to the same baseline, a
PTAS solution for the same geometry when the cameras are spaced equidistantly,
and a 1.42-approximation for 4n-range sensors equi-spaced on the circle. For arbi-
trary sensor placement, we reposed the problem in a maximization vein. Using re-
sults from maximum set-packing, we obtained a 5/3-approximate solution. This
was implemented in simulation, and its performance contrasted against a greedy
approach.

Adjusting the focus of attention of the sensors reduces the overall tracking error
significantly. This is true when applied to both direct and filtered estimation prob-
lems, as demonstrated in Sections 3.2.3 and 3.3.1, respectively. The 2-approximation
for stereo cameras and the 1.42-approximation for range sensors have several desir-
able attributes. Their matchings have twofold approximation guarantees; the sums
of errors are bounded, as are the individual target errors. Additionally, they are read-
ily implemented, and are inexpensive both computationally (O (nlog n) and O (n),
respectively) and in terms of network communications (O (n)). In simulation, both
showed significant improvements in performance over greedy/static assignment
strategies. The constraints to geometry are restrictive but still useful, and we are cur-
rently working to extend these to additional configurations.

Empirical results for arbitrary sensor placement simulations indicate on average a
5–15% improvement for the 5/3-approximate solution over a greedy approach.
However, the former is more expensive computationally (quadratic vs. linear in
the number of valid tracks). As a consequence, a greedy strategy may be preferred
for real-time applications.

While we feel these results provide a solid theoretical footing for the FOA prob-
lem, there is still significant room for future work. Using our error metrics, sensor
configurations are limited to restricted geometries. This is addressed to a point by
our 5/3 approximate solution for arbitrary sensor placement. However, it relies upon
an alternate objective function (maximizing low error tracks rather than minimizing
the total error). Strategies for minimizing the tracking error under general sensor
placement is the topic of ongoing work.

In the general FOA formulation, we have not addressed the subject of occlusions.
We have assumed that the individual targets are neither occluded by one another,
nor by clutter in the environment. Such an assumption is unrealistic. However, the
estimates from each sensor/target triple need not be used as direct estimates for
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target positions. Rather, they can serve as inputs to traditional Bayesian filters (i.e.,
Kalman or particle) which yield estimates of the target pose. The latter has shown
robustness for tracking features in a cluttered image [18]. For the arbitrary sensor
placement problem, general visibility constraints (range, occlusions, etc.) can also
be accommodated by merely eliminating the corresponding triples from the feasible
set of assignments.

Finally, we have only considered the case where each sensor is constrained to
track a single target during each time step. Such an approach is relevant for pan-
tilt-zoom cameras, or when the computational requirements of the tracking algo-
rithm support only a single target assignment. We have not addressed the case where
multiple targets are visible within a single camera�s field of view. We hope to answer
such questions in our future research.
Appendix A. A note on error measures

In this section, we present a brief discussion on the error functions used in the pa-
per. Our presentation is based on [19].

Suppose we have a function y = f (x) that is used for estimating the position of the
targets, y, given the observable x. Here, both x and y can be vectors. If the error is
unbiased, a small error � in the measurement x propagates to our estimation as
y0 = f (x + �) � f (x) + J�, where J is the Jacobian of f. Throughout the paper we
use the determinant of the covariance of the transformed variable y as an analytical
error function:

Covy ¼ J � Covx � JT . ðA:1Þ
A.1. Stereo cameras

Given a point X = [x y z] in 3D, let (u1, v1) and (u2, v2) be the coordinates (in pix-
els) of the projection of X onto the image plane of two cameras. If the two images are
rectified, we have v1 = v2. It is commonly assumed that the observation in v is error-
free. Hence, the depth of the world point, z, can be estimated by

z ¼ bf
ju1 � u2j

; ðA:2Þ

where f is the focal length of the cameras, b is the baseline and the quantity
d = |u1 � u2| is called the disparity. By defining d = d/f and taking the derivatives
with respect to d, we obtain the standard deviation of the depth as:

rz ¼
Z2

b
rd. ðA:3Þ

Hence, the propagation of error in disparity measurements to the depth estimation is
proportional to the quantity z2/b.
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A.2. Range sensors

Let ~r1 ¼ ½x1; y1� and ~r2 ¼ ½x2; y2� be the coordinates of two sensors that measure
their distances, r1 and r2, to the target located at ~r ¼ ½x; y�. Hence, we have the
measurements:

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy � yiÞ

2
q

; i ¼ 1; 2: ðA:4Þ

By taking derivatives with respect to x and y, the determinant of the jacobian can be
shown to be:

jJ j�1 ¼ j~r1jj~r2j
~r1 � ~r2

¼ 1

sinðhÞ ; ðA:5Þ

where h is the angle between the two vectors~r � ~r1 and~r � ~r2.
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