
Stream-oriented Robotics Programming:
The Design of roshask

Anthony Cowley and Camillo J. Taylor

Abstract— The decomposition of robotics software into a
collection of loosely coupled processes has become a core design
principle of virtually every large robotics software engineering
effort over the past decade. Recently, the ROS software platform
from Willow Garage has gained significant traction due to its
adoption of sound design principles and significant software
library contributions from Willow Garage itself. This paper
describes a binding from the Haskell programming language
to basic ROS interfaces. The novelty of these bindings is that
they allow for, and encourage, a higher level of abstraction in
writing programs for robots that treat streams of values as first-
class citizens. This approach makes the fusing, transforming,
and filtering of streams fully generic and compositional while
maintaining full compatibility with the existing ROS ecosystem.

I. INTRODUCTION

Component oriented design has driven the robotics com-
munity for many years now. Robotic hardware is assembled
from well-understood components that may be fit together to
create more complex mechatronic systems, while software
has followed a parallel evolutionary path in an effort to
mimic that same modularity. While the design technique of
decomposing a large problem into discrete sub-problems is
sound engineering practice, maintaining the integrity of com-
ponent abstractions requires that the abstractions engineers
are asked to respect are efficient, expressive, and consistent.

The advantage of maintaining abstraction boundaries
around individual components – wherein each component
is a black box with an interface whose simplicity may
belie internal complexity – is that the component designer
addresses a modestly-scoped problem, while the systems in-
tegrator is equipped to work with large units of functionality,
each of which has some identifiable role to play in the
context of the system as a whole. The division of a system
along lines governed by semantically significant separations
of concerns informs both collaborative development and
runtime deployment strategies.

In this paper, we extend the large units of functionality vis-
ible at the system level of ROS programming into the devel-
opment of lower level software components. This approach
presents advantages in terms of brevity and compactness in
program code, but also vastly simplifies the expression of
behaviors dependent on multiple, asynchronous data sources.

We have developed roshask to represent ROS topics
as first-class values that may be passed to functions as
arguments and returned as results. The implementation of

Anthony Cowley and Camillo J. Taylor are with the GRASP Labo-
ratory at the University of Pennsylvania, Philadelphia, PA 19104, USA
{acowley,cjtaylor}@seas.upenn.edu

Sensor1 Compute1

Compute2

Compute3 Motor

Sensor2

Fig. 1. Example arrangement of loosely coupled components that pass
messages to effect reactive behavior. Hardware interface components feed
data to processing components whose outputs are then fed to a third
computational component that produces commands for a motor interface.

ROS nodes is designed in a complementary fashion to
specify the naming and wiring together of individual topics
in a compositional manner. The approach described here
enables ROS programming at a high level of abstraction with
minimal overhead.

For example, to implement the Compute3 node of the
system shown in Figure 1, we might fuse two topics, t1 and
t2 , using a function, f , for interpolating time-stamped ele-
ments of t1 with the single application, interpolate f t1 t2 .
We can then apply a binary function, go, to the resulting
pairs of values (each including an interpolated element of
t1 and an element of t2), and finally publish the result as a
strongly typed ROS topic (here with name "cmd") using the
following line of code that defines a functional ROS node,

publish "cmd" (go 〈$〉 interpolate f t1 t2)

The roshask1 library is compatible with existing clients
of the rostcp communications protocol. It implements the
APIs required of interaction with a ROS master server and
with other ROS client nodes, and includes tools to generate
Haskell type definitions from standard ROS message type
definition files. Integration with the Haskell cabal build
system allows roshask projects to easily draw from the
popular hackage collection of Haskell libraries.

A. ROS

The ROS software platform [1] is based around architec-
tural principles common to many robotic software frame-
works [2]: the abstraction of both hardware and software
interfaces to facilitate code reuse and composition.

The elements of ROS that this paper focuses on are
nodes and topics. A node is an independent process that
may subscribe to any number of input topics, and publish
any number of output topics. A topic is a named channel
via which messages of a particular type are multicast from
publishers to subscribers.

1https://github.com/acowley/roshask

Figure 1 shows an example arrangement in which sensor
data gathered by hardware interface nodes are fed to process-
ing nodes whose outputs are sent to a node that integrates
those values to produce commands for a motor. The boxes in
the diagram represent nodes, while the arrows between boxes
correspond to topics. The mapping from diagrams such as
this to application specifications is one of the main draws of
component oriented design as embodied by ROS.

B. The Limitations of Boxes and Arrows

Unfortunately, the boxes and arrows metaphor tends to
stop at the box-implementation level. At this level, the
encapsulation provided by the diagrammatic arrows is lost to
the underlying series of communication events to be handled
by the node. In terms of implementation, a publisher typically
invokes an output function to push each new datum to all the
subscribers of a particular topic. The subscribers, in turn,
must separately handle the events of receiving each new
datum on each subscribed topic. In the two most common
language bindings for ROS, roscpp (C++) and rospy
(Python), the very act of subscribing to a topic requires
providing a callback function that will be invoked whenever
a new datum becomes available.

A common scenario is shown in the Compute3 node in
Figure 1: two arrows enter, one leaves. The implication is
that the two inputs are both used to generate a single output,
making Compute3 a kind of binary function. Yet separating
the event handlers for the input topics puts an onus on the
node developer to reclaim the abstraction through some fussy
internal plumbing to drive the binary function that produces
the node’s output.

Simply put, fusing asynchronous inputs is a generic prob-
lem with several solutions that should each be implemented
once. If a node’s behavior is that of a binary function, f ,
that is to be called every time either input topic produces a
value, we write, f 〈$〉 everyNew t1 t2 .

Alternatively, if a node’s behavior is that of a binary
function, g , that is to be called every time both input topics
have produced a new value (effectively subsampling the
faster topic), we write, g 〈$〉 bothNew t1 t2 .

The plumbing that feeds the function belongs in the boxes
and arrows metaphor that should persist at every level of
abstraction, and this is only possible if we always have a
way of referring to a topic in its entirety.

C. Haskell

Haskell2 is a functional programming language primarily
characterized by two distinctive qualities: laziness and purity.
As a functional language, Haskell emphasizes the use of
functions as first-class values that may be passed to and
returned from other functions. Haskell’s non-strict, or lazy,
evaluation semantics mean that an expression is not evaluated
unless it is necessary in producing program output. Purity,
indicating that functions are free of side-effects, means that
one may always replace two identical function applications
appearing in a program with the result of the application.

2See the Appendix for a Haskell syntax primer.

Purity helps the programmer reason about a program in an
intuitive, equation-driven manner. Of course, not all actions
a computer program must perform are pure, mathematical
functions. One might consider a “function” like C’s getchar
to have a type void → Char , but each time the function is
invoked with the same argument, it returns a different value!
This getchar action is not a mathematical function, and is
instead defined as a value inhabiting the IO monad in Haskell
where it is given the type IO Char to indicate that it is an
input-output action that may be run to produce a value of
type Char .

Finally, Haskell supports ad hoc polymorphism with its
typeclass mechanism. A typeclass is a specification of an in-
terface that any type may be made a member of by supplying
an implementation of the interface, and is a key mechanism
for applying mathematical reasoning to Haskell programs.
The distinction between IO values and pure functions, non-
strict evaluation, and optimizations due to mathematically
rigorous safety properties provide the foundation for a high-
level treatment of infinite streams of data that maintains
computational efficiency.

II. RELATED WORK

In addition to the robotics frameworks previously cited,
there has been some significant work on developing func-
tional approaches to robotics programming [3], [4], [5].
These works all involve Functional Reactive Programming
(FRP), a technique that seeks to exploit the algebraic compo-
sitionality of time-dependent values and functions on those
values. Many implementations of FRP have suffered from
performance issues, in part due to difficulty reconciling time-
indexed values with finite buffers, and in part due to Haskell’s
laziness causing unevaluated expressions to grow too large
before being evaluated.

A recent application of FRP to robotics, Yampa [6], miti-
gates these issues by restricting the programming interface to
transformations of infinite streams, while the streams them-
selves remain abstract. The focus on stream transformers is
similar to the current presentation, however we endeavour
to keep our stream type transparent so that the developer
has complete freedom in topic construction. Furthermore, by
staying true to ROS design philosophies and implementing
full communication protocol compatibility, we do not ask the
potential user to forsake any existing software in order to try
out a new approach.

The representation and implementation style taken here
is greatly informed by Oleg Kiselyov’s championing of so-
called Iteratees [7]. The driving motivation for this new
approach to input iteration is that resource usage should
be explicit and carefully managed, in contrast to implicit
approaches that rely more heavily on Haskell’s lazy eval-
uation strategy. Existing implementations of Iteratees are
not perfectly suited for the proposed application due to our
emphasis on infinite streams and sequential input, rather than
the finite batched fragments that are the focus of classic
Iteratee implementations.

III. WHOLE-TOPIC PROGRAMMING

The notion of wholemeal programming [8] revolves
around the concept of addressing data structures in their en-
tirety before thinking about the smaller pieces they comprise.
This style of programming aims to produce a declarative
specification of the results of the program, rather than a
set of instructions describing how the result should be
computed: the what as opposed to the how. The benefit is
that correctness may be more clearly demonstrated through
the initial specification, while efficiency may be improved by
a series of meaning-preserving transformations of the clear,
but possibly inefficient, initial specification.

The key element to this style of programming is that
the bulk of the source code should be application-specific.
Details such as data structure traversal strategies and generic
operations should be encapsulated by standard library func-
tions. The resultant program is then small pieces of interest-
ing application code held together with dabs of higher order
glue.

A simple example of the compositionality and clarity
afforded by working with whole topics is that of filtering.
Suppose we have a topic generated by a sensor, and wish to
act whenever the sensor value crosses some threshold. This
reactive behavior may be broken into two conceptual parts:
1) identifying significant sensor readings, and 2) reacting to
those readings. A callback function to be invoked upon each
new sensor value might look something like this,

void handle_sensor(float val) {
if(val > threshold) {

act(val*0.1);
}

}

However, such a design is not fully factored: the threshold-
based classification is intermingled with a specific call to
action. How the output of the act function is directed to the
appropriate output topic is another issue that must be tackled
elsewhere. We can instead make the conceptual topic of “all
values that pass the threshold” explicit.

Rather than consider each element in isolation, we trans-
form our input topic in its entirety. Fleshing out the example,
the input Topic is first acquired by subscribing to the
"sense" topic; it is then filtered against a threshold value
to produce a topic of values that pass the threshold; the act
function is then mapped over the topic of classified inputs to
produce a topic of control commands that is finally published
under the name "cmd".

subscribe "sense">>=
publish "cmd" ◦ fmap act ◦ filter (>threshold)

This short snippet brings together topic subscription, fil-
tering, transforming, and publishing into a functional ROS
node.

A. Operations on Topics
The foundation of fusible functorial mappings and stream-

ing metamorphisms, formally defined in Sections V and VI,

provide a rich foundation on which many generic topic trans-
formations may be constructed. We show a few examples
here to give the reader a taste of the whole-topic development
style. The core roshask library provides a collection of
functions on Topics that may be directly composed to solve
typical topic-oriented problems involving mapping, filtering,
prefixes, and suffixes.

These operations may be extended to functions that pro-
vide a less rigid mapping from inputs to outputs. For
instance,

slidingWindow :: (Monad m,Monoid a)⇒
Int → Topic m a → Topic m a

passes a sliding window of the given integer size along an
input Topic producing an output Topic whose values are
the monoidal composition of all the values covered by the
window.

A more efficient version, called slidingWindowG , is de-
fined for all algebraic groups. Suppose we have a topic carry-
ing floating point values, and we want to consider the moving
average over 10 consecutive values by relying on Float
being an additive group (captured by the AdditiveGroup
typeclass).

avg :: Monad m ⇒ Topic m Float → Topic m Float
avg = fmap (∗0.1) ◦ slidingWindowG 10

This function first transforms the original topic into a topic
carrying sums of 10 consecutive values by subtracting an old
element from the running sum for each new element added,
then normalizes those sums with a multiplication.

B. Topic Synchronization

The fusion of multiple asynchronous topics is a motivating
capability for roshask. The core library provides several
functions on two topics that return a new topic consisting of:

• An interleaving of two topics formed by injecting items
from either topic into the Either data type.

• Pairs of values that are produced every time either input
topic produces a value. The pair consists of the newly
produced value from one topic, and the most recently
produced value from the other topic.

• Pairs of values that are produced every time a new value
is available from both input topics. If one topic produces
values faster than the other, some of its values will be
dropped.

• Values from both topics transparently merged. If the two
input topics produce values of the same type, they may
be merged into a single topic.

A more complex merging of two topics was referred to
in the introduction: timing-based interpolation. Many ROS
message types include a header field containing a time stamp.
Using these time stamps, we may interpolate one topic so that
we have an approximate partner for each value from a faster-
moving topic. Consider a sensor outputting scans at 20Hz
that are to be paired with a position estimate that is updated at
5Hz. If we have a function, interp, that linearly interpolates
two robot poses, we can “pose stamp” each sensor scan.

interpolate interp poses scans

The type of the resulting topic depends on the input topics;
an application to a topic of PoseStamped messages and a
topic of LaserScan messages (from the geometry_msgs
and sensor_msgs ROS stacks) has the type,

Topic IO (PoseStamped ,LaserScan)

This topic comprises pairs that include an interpolated
PoseStamped for each LaserScan . The key consideration
is that interpolate is constrained to operate on types that
are instances of the HasHeader typeclass that roshask
defines for ROS message types that have a header field.
This gives interpolate enough information to identify pairs
of consecutive elements from the first topic that temporally
bracket elements from the second topic, apply a user-supplied
linear interpolation function of type a → a → Double → a
to the bracketing pair, and produce a result pair.

IV. ROS NODES

With so much functionality pushed into topics, the respon-
sibility of a node is limited to initialization and the naming
of input and output topics. A useful ROS tutorial project
involves creating a publisher (Talker) node that sends text
messages at 1Hz to a subscriber (Listener) node that prints
those messages. In roshask, the Talker side of this system
is broken into two pieces: the Topic of string messages, and
the Node that names and regulates the output topic.

The messages generated by this Node consist of a greeting
and the current time packaged up in a ROS String message
type. The module defining this message is imported qualified
with an “S.” prefix to avoid name collisions, allowing us to
define the output topic as,

sayHello :: Topic IO S .String
sayHello = repeatM (fmap mkMsg getTime)

where mkMsg = S .String ◦ ("Hi "++) ◦ show

This Topic is an infinite stream of ROS String mes-
sages, each produced by querying the system for the current
time with the getTime action, formatting the time as a
Haskell String using the show function, prepending the
string "Hi ", and packaging the Haskell String up into
a ROS String message using the S .String data constructor.
This definition is a minimal statement of the data carried by
the output topic.

The second piece of the Talker is the Node definition,
which here has two responsibilities: name the output topic,
and limit its production rate to 1Hz.

tn :: Node ()
tn = advertise "chatter" (topicRate 1 sayHello)

Note that the advertise expression produces a value of
type Node (). The Node type used by roshask is a stack
of monad transformers outside the scope of this paper. In
brief, a Node is a monad that has read-only configuration
data (e.g. from arguments like topic remappings passed to
a ROS executable) and dynamic state tracking publication

and subscription information on top of the usual IO monad
that allows the programmer to perform any initialization
necessary to get a node started.

In order to give the node a name, "talker", to register
with the ROS master server, and start things running, we
provide one more definition to provide the executable an
entry point.

main :: IO ()
main = runNode "talker" tn

The Listener side of the system is symmetric, and also
imports the module defining the ROS String message type
qualified with an “S.” prefix. As we wish to simply take an
action for every input message – print it out to the screen –
a function from String messages to IO actions is called for,

showMsg :: S .String → IO ()
showMsg = putStrLn ◦ ("Msg: "++) ◦ S . data

This function projects the data field of the String message
record type, prepends it with the string "Msg: ", and prints
the resultant Haskell String to standard output.

Finally, we define and run the Listener node,

main = runNode "listener" $
runHandler showMsg =<< subscribe "chatter"

This defines a Node that subscribes to a named topic,
producing a value of type, Node (Topic IO S .String).
The Topic is piped straight into runHandler showMsg that
applies the showMsg function to each input message and
runs the resulting IO action. The constructed Node is, as
usual, run with the runNode function (the $ operator is
simply a stand-in for function application whose low binding
precedence permits the elision of parentheses).

A. Composition of Nodes

The Talker and Listener nodes are compiled into stan-
dalone executables that register with the ROS master server,
then exchange messages until one or both are shut down.
Since node definitions are compositional, monadic values,
it is a simple matter to glue multiple node specifications
together in order to run the composite node in a single
process. When a subscribe action is taken in the Node
monad, a check is performed to see if a publisher of the
selected topic has previously been registered in this Node .
If so, the publisher’s output Topic is fed directly to the
subscriber with no intermediation by the usual rostcp
communication protocol.

This ability to flatten Node structure does not require
any changes to Node or Topic definitions. The same Node
may be run as a standalone process with runNode , or
imported into another Haskell module and combined with
other Node values to produce a composite Node that will
exploit serialization-free Topic-based data interchange.

Table I shows a performance comparison of a worst-
case scenario for message copying overhead: a high-
resolution video producer feeds uncompressed video frames
(1024x1024 resolution at 60Hz) to a simple analysis node.

Total CPU (%) Total RAM (MB)

Separate Processes 8.3 23.7

Single Process 4 9.6

TABLE I
VIDEO PRODUCER AND CONSUMER (CPU: INTEL CORE I5)

Serialization through the TCP stack has a dramatic effect on
performance and resource usage that is virtually eliminated
by arranging for the two nodes to run in the same process.
The statistics shown in the table are drawn from operating
system-level performance monitors, but we can gain more
insight into exactly what the executables are doing.

The Glasgow Haskell Compiler (GHC) runtime system
(RTS) tracks several metrics on the runtime behavior of the
executables, and reports that the single-process variant uses
a maximum of just over 2MB of RAM for application data3.
This lines up with the expectation that the program requires
at least two video frames: one the producer is writing into,
and one the analyzer is processing. This efficient use of mem-
ory is purely thanks to the compiler; the ROS nodes make no
accommodations for memory management. The RTS further
reports that the garbage collector used 8.5% of the total CPU
time of the program. This overhead is in exchange for totally
asynchronous production and consumption fitting into a near
optimal amount of memory.

In comparison, running the video producer in a separate
process uses a bit over 2MB of RAM for application data,
while the standalone consumer process uses a bit over 3MB
of RAM. The extra memory usage is due to serialization
and communication coordination on each end effectively
introducing an extra copy of each video frame in each
process. The duplicated overhead of asynchrony is removed
when the two nodes are run in the same process.

The two ROS nodes in this example are defined in separate
modules that may be compiled and linked as standalone
executables in addition to the composite executable. The
entire source code of the module defining and running the
composite node is,

module Main (main) where
import Ros.Node
import VidProducer (producer)
import VidConsumer (consumer)

main = runNode "NodeCompose" $
producer >> consumer

The VidProducer and VidConsumer modules define
Nodes that publish and subscribe to a particular Topic.
By importing them into one module, and composing them
with the >> operator on Monads, we eliminate serialization
overhead without impacting the modularity of the design. No

3This is what GHC calls “maximum residency”, in contrast to the total
amount of RAM allocated from the operating system for use by the garbage
collector. This number represents how much data the collector sees when it
runs, and reflects how much live data the program is working with.

change to node definitions or topic usage is required to use
nodes in standalone processes or as part of a larger, single-
process node that eliminates serialization overhead.

V. FIRST-CLASS TOPICS

In order to provide libraries of topic-level combinators, we
require a useful representation for ROS topics. This represen-
tation must be parametric over the underlying message type,
must not lead to surprising memory leaks or performance
degradation, and must present enough structure that it may
be concisely manipulated by familiar algebraic power tools.

The type we want is not an inductive list, for it is always
infinite, nor is it simply a coinductive stream4 of pure values.
The values produced by a topic might be gathered from
some hardware device or received over a network connection;
each discrete step taken by a topic may be an impure
computation that must be reflected by some context. Putting
these elements together, we say that a topic is a step function
in some computational context that yields a pair of a value
and the rest of the topic.

The type we use for ROS topics is (we abbreviate Topic
as T here for space considerations),

newtype T m a = T {unT :: m (a,T m a)}

This defines a binary type constructor, T , with a single
unary data constructor, also written, T , that takes a single
argument of type, m (a,T m a). This argument is a pair of
a value of type a and a topic of type, T m a (i.e. the rest
of the topic), all wrapped by some other type constructor
represented by m . We give a name, unT , to the function
that strips off a T data constructor to get access to the
m (a,T m a) payload.

A. Topics are Functors

The central feature we wish to verify about a T m
structure (polymorphic in the message type) is that it is
a functor. A functor is an algebraic structure, sometimes
referred to as a structure-preserving map, that provides a
mechanism of lifting functions into the functor structure. In
Haskell, this mapping behavior is captured by the Functor
typeclass that identifies a single function,

class Functor t where
map :: (a → b)→ t a → t b

[Note: In Haskell, the function map shown above is called
fmap. We write map in this section as there is no ambiguity
with Haskell’s map function (which is fmap specialized to
lists), and we again seek to keep notation compact.]

The type of this function is not enough to establish a cor-
respondence between Haskell’s Functor and a mathematical
functor, so one must also check that the so-called functor
laws are satisfied for a candidate structure.

4Recall that a stream data type has a single constructor that pairs an
element of the stream with the rest of the stream.

map id ≡ id (1)
map f ◦map g ≡ map (f ◦ g) (2)

The second equation is the more interesting: it tells us
that if we wish to apply two functions to the elements
of a functorial structure, we do not need to traverse the
structure more than once. Instead, we can simply compose
the functions and apply that composition in a single traversal
of the structure. A compiler may perform this optimization
for us, allowing us to maintain modular definitions while
still gaining the benefit of this traversal fusion. It should
be noted that this optimization is absolutely critical for our
Topic types whose inhabiting values are infinite.

In order to prove that our structure satisfies this law, we
will require that the first type parameter of T , what we have
called m , is a functor itself. With that, here is the definition
of map for T m ,

instance Functor m ⇒ Functor (T m) where
map f (T t) = T (map (f ⊗map f) t)

We can clarify this definition by annotating each usage
of the map function with the type it is used at, with the
proviso that we write mapT to indicate what should properly
be written map(T m).

mapT f (T t) = T (mapm (f ⊗mapT f) t)

The ⊗ function we are using is actually the ∗∗∗ function
from the Haskell standard library’s Arrow type class. For
expository purposes, we consider an approximation of that
library function specialized to the type of ordinary functions.

(⊗) :: (a → b)→ (c → d)→ (a, c)→ (b, d)
f ⊗ g = λ(x , y)→ (f x , g y)

B. Proving Functoriality

We reason about our types and functions using equational
reasoning [9], wherein a chain of equalities relates two
expressions with the justification for each equality written
in braces between each step. Haskell lends itself to this
approach thanks to laziness and referential transparency [10]
that permit one to substitute equals for equals without wor-
rying about hidden side effects or unwarranted evaluation.

Since a topic carries an infinite amount of data, the proof
must be by coinduction. The topics on either side of the equa-
tion are observed, or destructed, in the only possible way to
extract a single pair value from each whose first projections
are equal. The second projections of the pairs, representing
the rest of each respective topic, correspond exactly to the
bisimilarity being demonstrated. The corecursive equality is
said to be guarded by the pair constructor which provides the
structure for a single-step observation of each topic that may
be repeated to witness an arbitrary-length finite equality.

Theorem ((T m) is a functor):

mapT f ◦mapT g ≡ mapT (f ◦ g)

(a)

(b)

Fig. 2. (a) Mapping a function with type a → b over a topic with type
T m a resulting in a topic with type T m b. Topics are visualized as
ordered streams of values starting whenever a program begins observing
them and continuing forever. (b) A metamorphism over a topic with type
T m a resulting in a topic with type T m b. In this case, four elements
of type a are consumed to produce each element of type b.

Proof:

(mapT f ◦mapT g) (T t)

≡ { definition of function composition }
mapT f (mapT g (T t))

≡ { definition of mapT }
mapT f (T (mapm (g ⊗mapT g) t))

≡ { definition of mapT }
T (mapm (f ⊗mapT f) (mapm (g ⊗mapT g) t))

≡ { definition of function composition }
T ((mapm (f ⊗mapT f) ◦mapm (g ⊗mapT g)) t)

≡ { functor law for m }
T (mapm ((f ⊗mapT f) ◦ (g ⊗mapT g)) t)

≡ { functor law for the product bifunctor }
T (mapm ((f ◦ g)⊗ (mapT f ◦mapT g)) t)

≡ { coinduction hypothesis }
T (mapm ((f ◦ g)⊗ (mapT (f ◦ g))) t)
≡ { definition of mapT }
mapT (f ◦ g) (T t)

VI. TOPIC METAMORPHISMS

The functorial structure of topics allows us to map func-
tions over the values carried by the topics, but this implies
that every input message leads to exactly one output message.
Figure 2(a) visualizes the effect of mapping a function over
a topic; each element in the result topic corresponds to a
specific element from the input topic.

In order to gain flexibility in how input messages may be
used to produce output messages, we must generalize the
ways in which a topic may be consumed. The consumption,
or tearing down, of data structures is universally captured by
the concept of a fold . The reverse direction, data production,
is implemented by unfold functions that thread a seed value
through a recursive construction procedure.

The usual arrangement of these functions in Haskell
programming is the composition of a fold with an unfold,

fold ◦ unfold . A naı̈ve reading of this composition suggests
that the unfold produces some large structure, which is then
torn down by the fold. Clever compilers can, however, defor-
est such a computation and eliminate the intermediate data
structure. Gibbons [11] identifies the reverse composition,
unfold ◦ fold , as transforming one data structure into another
by tearing down the first to produce a seed that is used to
germinate the second. This composition also lends itself to
an optimization in that its output may, under a streaming
condition [11], be incrementally consumed, thus obviating
the need for the initial fold to fully traverse the input structure
before useful output is produced.

The precise way we apply this so-called metamorphism 5

to topics is with a higher order function, metamorph , that
takes a function whose output is an optional output value
along with a continuation function for handling subsequent
inputs. The continuation function may be used to thread state
through the deconstruction of one topic, while the optional
output values are used to construct a new topic. An example
of such a transformation is shown in Figure 2(b), demonstrat-
ing the contraction mapping behavior metamorphisms offer
over standard functorial mapping.

Gibbons’s streaming condition is a statement about causal-
ity: we may release a component of the output of the unfold
when we know that its value does not depend on subsequent
inputs. This ties in to the very real issue of resource manage-
ment when trying to address infinite structures such as topics.
Even though a topic is infinite, we may safely compute with
it as long as we only ever consider a finite portion of it.

VII. CONCLUSION

Working with whole topics encourages a top-down ap-
proach to component design. By thinking about properties
that should hold of all the outputs of a node, or of how
all outputs are related to inputs, one is able to more easily
identify the essence of a node. At every stage, we wish to
support design plans that begin, “If I had a topic carrying
this kind of value....” That approach to design is precisely
the right attitude as it is true and faithful to the tenets of
modular, stream-oriented programming. The roshask tools
allow the ROS programmer to practice holistic design while
retaining high performance and access to the rich libraries
of device interfaces and controllers developers have written
to ROS interfaces.

ACKNOWLEDGMENTS

The authors thank Gershom Bazerman for his key contri-
butions at the genesis of this project.

APPENDIX: NOTATION PRIMER

Core Haskell notational conventions are shown in Table II.
Caution is warranted as there is some reuse of names and
syntax between the type and value levels, but the context in
which the syntax is found is always unambiguous.

5folds and unfolds are sometimes referred to as catamorphisms and
anamorphisms, while the composition fold ◦ unfold is referred to as a
hylomorphism [12]. It is that naming scheme that provoked the coining
of the name metamorphism.

Notation Interpretation

x , y, z variables representing values

a, b, c type variables

S ,T type constructors and data constructors

x :: t x has type t

C x ⇒ x type x is an instance of type class C

a → b The type of a function from a to b

λx → f A function that binds argument x in its body, f

f x The application of function f to x

f ◦ g The composition of functions f and g . (f ◦ g) x ≡
f (g x)

(x , y) A pair, or product, of values x and y

(a, b) The type of pairs whose first component is of type
a and whose second component is of type b

TABLE II
NOTATION REFERENCE

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Y. Ng, “Ros: an open-source robot oper-
ating system,” in Proceedings of the Open-Source Software workshop
at the International Conference on Robotics and Automation (ICRA),
2009.

[2] A. Harris and J. Conrad, “Survey of popular robotics simulators,
frameworks, and toolkits,” in Southeastcon, 2011 Proceedings of IEEE,
march 2011, pp. 243 –249.

[3] G. D. Hager and J. Peterson, “Frob: A transformational approach to
the design of robot software,” in In Robotics Research: The Ninth
International Symposium. Springer Verlag, 1999, pp. 257–264.

[4] J. Peterson, P. Hudak, and C. Elliott, “Lambda in Motion: Controlling
Robots with Haskell,” Lecture Notes in Computer Science, vol. 1551,
pp. 91–105, 1999.

[5] J. Peterson and G. Hager, “Monadic Robotics,” in Domain-Specific
Languages, 1999, pp. 95–108.

[6] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, robots,
and functional reactive programming,” in Summer School on Advanced
Functional Programming 2002, Oxford University, ser. Lecture Notes
in Computer Science, vol. 2638. Springer-Verlag, 2003, pp. 159–187.

[7] O. Kiselyov, “Incremental multi-level input processing with left-fold
enumerator,” in Developer Tracks on Functional Programming
(DEFUN). ACM SIGPLAN, 2008. [Online]. Available: http:
//okmij.org/ftp/Haskell/Iteratee/DEFUN08-talk-notes.pdf

[8] R. Bird, “Functional pearl: A program to solve sudoku,” Journal
of Functional Programming, vol. 16, pp. 671–679, November 2006.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1180085.
1180089

[9] R. Bird and O. de Moor, Algebra of programming. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1997.

[10] J. Hughes, “Why functional programming matters,” The Computer
Journal, vol. 32, pp. 98–107, 1984.

[11] J. Gibbons, “Metamorphisms: Streaming representation-changers,”
Science of Computer Programming, vol. 65, pp. 108–139, 2007.
[Online]. Available: http://www.comlab.ox.ac.uk/oucl/work/jeremy.
gibbons/publications/metamorphisms-scp.pdf

[12] E. Meijer, M. Fokkinga, and R. Paterson, “Functional programming
with bananas, lenses, envelopes and barbed wire,” in Proceedings
of the 5th ACM conference on Functional programming languages
and computer architecture. New York, NY, USA: Springer-
Verlag New York, Inc., 1991, pp. 124–144. [Online]. Available:
http://portal.acm.org/citation.cfm?id=127960.128035

