APPENDIX I

NOTES ${ }^{1}$

Chapter I

The calculus of matrices was first used in 1853 by Hamilton (1, p. 559ff, 480ff) under the name of "Linear and vector functions." Cayley used the term matrix in 1854, but merely for a scheme of coefficients, and not in connection with a calculus. In 1858 (2) he developed the basic notions of the algebra of matrices without recognizing the relation of his work to that of Hamilton; in some cases (e.g., the theory of the characteristic equation) Cayley gave merely a verification, whereas Hamilton had already used methods in three and four dimensions which extend immediately to any number of dimensions. The algebra of matrices was rediscovered by Laguerre (9) in 1867, and by Frobenius (18) in 1878.
1.03 Matric units seem to häve been first used by B. Peirce (17); see also Grassmann (5, §381).
1.10 For the history of the notion of rank and nullity see Muir, Theory of .Determinants, London 1906-1930; the most important paper is by Frobenius (290).

Chapter II

2.01-03 The principle of substitution given in $\S 2.01$ was understood by most of the early writers, but was first clearly stated by Frobenius, who was also the first to use the division transformation freely (20, p. 203).
2.04 The remainder theorem is implicit in Hamilton's proof of the characteristic equation; see also Frobenius (280).
2.05-12 The characteristic equation was proved by general methods for $n=3,4$ by Hamilton (1, p. $567 ; 8$, p. 484 ff ; cf. also 4,6). The first general statement was given by Cayley (2); the first general proof by Frobenius (18). See also the work of Frobenius cited below and $9,10,39,41,56,59$.

Hamilton, Cayley and other writers were aware that a matrix might satisfy an equation of lower degree than n, but the theory of the reduced equation seems to be due entirely to Frobenius (18, 140).

The theory of invariant vectors was foreshadowed by Hamilton, but the general case was first handled by Grassmann (5).
2.10 See Sylvester (42, 44) and Taber (96); see also 252.
2.13 The square root of a matrix was considered by Cayley (3, 12), Frobenius (139) and many others.

Chapter III

3.01 The idea of an elementary transformation seems to be due in the main to Grassmann (5).

[^0]3.02-07 'The theory of pairs of bilinear forms, which is equivalent to that of linear polynomials, was first given in satisfactory form by Weierstrass (see Muth, 175) although the importance of some of the invariants had been previously recognized by Sylvester. The theory in its matrix form is principally due to Frobenius (18,20).

The theory of matrices with integral elements was first investigated by Smith (see Muth, 175) but was first given in satisfactory form by Frobenius (20). The form given in the text is essentially that of Kronecker (92).
3.04 The proof of Theorem 3 is a slight modification of that of Frobenius (20).
3.08 Invariant vectors were discussed by Hamilton $(1,8)$ and other writers on quaternions and vector analysis. The earliest satisfactory account seems to be that of Grassmann (5).

Chapter IV

The developments of this chapter are, in the main, a translation of Kronecker's work (see Muth, 175, p. 93ff). See also de Séguier (259).

Chapter V

5.03 From the point of view of matrix theory, the principal references are Schur (198), Rados (105, 106), Stephanos (185), and Hurwitz (117). See Loewy (284, p. 138) for additional references; also Muir, Theory of Determinants, London 1906-1930.
5.09 Non-commutative determinants were first considered by Cayley (Phil. Mag. 26 (1845), 141-145); see also Joly (195) and Sylvester (43).
5.10-11 See Loewy (284, p. 149); also 176, 178, 185, 198.
5.12 The principal references are Schur (198) and Weyl (440, chap. 5).

Chapter VI
For general references see Loewy (284, pp. 118-137), also Muth (175), Hilton (314, chap. 6, 8) and Muir, Theory of Deerminants, London 1906-1930.
6.01 The method of proving that the roots are real is essentially that of Tait (10, chap. 5); see also $36,60,228,399$.
6.03 See Loewy (284, pp. 130-137), Baker (215) and Frobenius (292). See also 7, 18, 99, 113, 114, 115, 124, 135, 139, 210, 221, 273, 302, 307, 320, 371, 400, 414, 466, 476.
6.04 See Dickson (392).
6.05 See Loewy (284, pp. 128-135).
6.07 For references see Muth (175, p. 125) and Frobenius (139).

Chapter ViI

7.10-02 See Cayley (2), Frobenius (18), Bucheim (59), Taber (98, 112), and Hilton (314, chap. 5); also 83, 86, 98, 137, 184, 197, 209, 223, 242, 250, 264, $301,382$.
7.03 See Frobenius (280).
7.05 See Frobenius (140); also 350.
7.06-07 See Sylvester (42, 44) and Taber (96); see also 252.

Chapter VIII
8.01-03 See Sylvester (36), Bucheim (59, 69); also 134, 371.
8.02,07 See Hamilton (1, p. 545ff; 8, §316), Grassmann (5, §454), Laguerre (9). Many writers define the exponential and trigonometric functions and consider the question of convergence, e.g., $79,80,103,389,449$; also in connection with differential equations, 13,133 , 258.
8.04-05 Roots of 0 and 1 have been considered by a large number of writers; see particularly the suite of papers by Sylvester in 1882-84; also 18, 67, 76, 107, 242, 255, 264, 277, 279, 381, 411, 430, 474, 539.
8.08 See 20, 94, 246, 256, 257, 274, 303, 338, 399.
8.09-11 The absolute value of a matrix was first considered by Peano (75) in a somewhat different form from that given here ; see also $273,348,389,472,473,494$. For infinite products see $133,324,326,389,494$.
8.12 In addition to the references already given above, see $10,16,18,187,418,419$, and also many writers on differential equations.

Chapter IX

The problem of the automorphic transformation in matrices was first considered by Cayley (3,7) who, following a method used by Hermite, gave the solution for symmetric and skew matrices; his solution was put in simpler form by Frobenius (18). Cayley failed to impose necessary conditions in the general case which was first solved by Voss (85, 108, 162, 163). The properties of the principal elements were given by Taber (125, 134; see also 127, $149,156,158,231$). Other references will be found in Loewy (284, pp. 130-137); see also 9, 19, $153,154,161,167,168,169,187,229,371$.

APPENDIX II

BIBLIOGKAPHY

1853

1. Hamilton, W. R.: Lectures on quaternions, p. 480ff. Dublin.

1858
2. Cayley, A.: A memoir on the theory of matrices, (1857). Lond. Phil. Trans. 148, 17-37; Coll. Works 2, 475-496.
3. Cayley, A.: A memoir on the automorphic transformation of a bipartite quadric function, (1857). Lond. Phil. Trans. 148, 39-46; Coll. Works 2, 497-505.

1862

4. Hamilton, W. R.: On the existence of a symbolic and biquadratic equation which is satisfied by the symbol of linear or distributive operation on a quaternion. Phil. Mag. (4) 24, 127-128.
5. Grassmann, H.: Ausdehnungslehre, p. 241ff. Berlin; Werke 1, Teil 2, p. 240.

1864
6. Hamilton, W. R.: On the existence of a symbolic and biquadratic equation ..., (1862). Proc. Roy. Irish Acad. 8, 190-191.

1866
7. Cayley, A.: A supplementary memoir on the theory of matrices, (1865). Lond. Phil. Trans. 156, 25-35; Coll. Works 5, 438-448.
8. Hamilton, W. R.: Elements of quaternions, §347ff. London. 2nd ed. 1 (1899), 2 (1901); German translation, 2 vols. (Glan), 1881-1901.

1867

9. Laguerre, E. N.: Sur le calcul des systèmes linéaires. Journ. Ec. Polyt. 42, 215-264; Oeuvres 1, 221-267.
10. Tait, P. G.: An elementary treatise on quaternions, chap. V. Oxford. 2nd ed., Cambridge 1873; 3d ed., Cambridge 1890; German translation (Schreff) 1890; French translation (Plarr) 1882-1884.

1869
11. Tait, P. G.: Note on the reality of the roots of the symbolical cubic ..., (1867). Proc. Roy. Soc. Edinb. 6, 92-93; Sci. Papers 1, 74-75.

1872
12. Cayley, A.: On the extraction of the square root of a matrix of the third order. Proc. Roy. Soc. Edinb. 7, 675-682.
13. Tait, P. G.: Note on linear differential equations in quaternions, (1870). Proc. Roy. Soc. Edinb. 7, 311-318; Sci. Papers 1, 153-158.
14. Tait, P. G.: Mathematical notes, (1871). Proc. Roy. Soc. Edinb. 7, 498-499.
15. Tait, P. G.: Note on the strain function. Proc. Roy. Soc. Edinb. 7, 667-668; Sci Papers 1, 194-198.

1873
16. TAIt, P. G.: Introduction to quaternions, chap. X (with P. Kelland). London. 2nd ed. 1882; 3d ed. 1904.

1875
17. Peirce, B.: On the uses and transformations of linear algebra. Proc. Amer. Acad. Boston (2) 10, 395-400; reprinted, Amer. Journ. Math. 4 (1881), 216-221.

1878
18. Frobenius, G.: Uber lineare Substitutionen und bilineare Formen, (1877). Crelle 84, 1-63.

1879
19. Frobenius, G.: Uber die schiefe Invariante einer bilinearen oder quadratischen Form, (1878). Crelle 86, 44-71.
20. Frobenius, G.: Theorie der linearen Formen mit ganzen Koefficienten, (1878). Crelle 86, 146-208.
21. Plarr, G.: On the solution of the equation $V \rho \varphi \rho=0 \cdots$, (1876). Trans. Roy. Soc. Edinb. 28, 45-91.

1880
22. Cayley, A.: On the transformation of coordinates. Proc. Cambr. Phil. Soc. 3, 178-184; Coll. Works 11, 136-142.
23. Cayley, A.: On the matrix $\begin{aligned} & \left(\begin{array}{l}a b\end{array}\right) \\ & c d\rangle\end{aligned}$ and in connection therewith the function $\frac{a x+b}{c x+d}$. Mess. of Math. 9, 104-109; Coll. Works 11, 252-257.
24. Frobenius, G.: Theorie der linearen Formen mit ganzen Koefficienten, (1879). Crelle 88, 96-116.
25. Frobenius. G.: Zur Theorie der Transformation der Thetafunktionen, (1879). Crelle, 89, 40-46.

1881

26. Laisant, C.-A.: Introduction à la méthode des quaternions, chap. 10. Paris.

$$
1882
$$

27. Clifford, W. K.: A fragment on matrices, (1875). Math. Papers, 337-341.
28. Peirce, C. S.: On the relative form of quaternions. Johns Hopkins Circ. 1, 179.
29. Plarr, G.: On a particular case of the symbolic cubic, (1881). Proc. Roy. Soc. Edinb. 11, 342-354.
30. Sylvester, J. J.: Sur les puissances et les racines de substitutions linéaires. Comptes Rendus 94, 55-59; Math. Papers, 3, 562-564.
31. Sylvester, J. J.: Sur les racines des matrices unitaires. Comptes Rendus 94, 396399; Math. Papers 3, 565-567.
32. Sylvester, J. J.: On the properties of a split matrix. Johns Hopkins Circ. 1, 210-211; Math. Papers 3, 645-646.
33. Sylvester, J. J.: A word on nonions. Johns Hopkins Circ. 1, 241-242; Math. Papers 3, 647-650.
34. Peirce, C. S.: On a class of multiple algebras, (1882). Johns Hopkins Univ. Circ. 2, 3-4.
35. Peirce, C. S.: (Correspondence). Johns Hopkins Univ. Circ. 2, 86-88.
36. Sylkester, J. J.: On the equation to the secular inequalities in the planetary theory. Phil. Mag. (5) 16, 267-269.
37. Sylvester, J. J.: On the involution of two matrices of the second order. Brit. Assoc. Report 1883, 430-432; Math. Papers 4, 115-117.
38. Sylvester, J. J.: Sur les quantités formant un groupe de nonions analogues aux quaternions de Hamilton. Comptes Rendus 97, 1336-1340; Math. Papers 4, 118-121.
39. Bucheim, A.: Mathematical notes. Mess. of Math. 13, 62-66.
40. Bucheim, A.: Proof of Professor Sylvester's "Third law of motion." Phil. Mag. (5) 18, 459-460.
41. Forsyth, A. R.: Proof of a theorem by Cayley in regard to matrices. Mess. of Math. 13, 139-142.
42. Sylvester, J. J.: On quaternions, nonions, sedenions etc. Johns Hopkins Circ. 3, 7-9; Math. Papers 4, 122-132.
43. Sylvester, J. J.: On involutants and other allied species of invariants to matrix systems. Johns Hopkins Circ. 3, 9-18, 34-35; Math. Papers 4, 133-145.
44. Sylvester, J. J.: On the three laws of motion in the world of universal algebra. Johns Hopkins Circ. 3, 33-34, 57; Math. Papers 4, 146-151.
45. Splvester, J. J.: Equations in matrices. Johns Hopkins Circ. 3, 122; Math. Papers 4, 152-153.
46. Sylvester, J. J.: Sur les quantités formant un groupe de nonions analogues aux quaternions de Hamilton. Comptes Rendus 98, 273-276, 471-475; Math. Papers 4, 154-159.
47. Sylvester, J. J.: Sur la solution d'une classe très étendue d'équations en quaternions. Comptes Rendus 98, 651-652; Math. Papers 4, 162.
48. Splvester, J. J.: Sur une extension de la loi de Harriot relative aux équations algébriques. Comptes Rendus 98, 1026-1030; Math. Papers 4, 169-172.
49. Sylvester, J. J.: Sur les équations monothétiques. Comptes Rendus 99, 13-15; Math. Papers 4, 173-175.
50. Sylvester, J. J.: Sur l'équation en matrices $p x=x q$. Comptes Rendus 99, 67-71, 115-116; Math. Papers 4, 176-180.
51. Splyester, J. J.: Sur la solution du cas le plus général des équations linéaires en quantités binaires Comptes Rendus 99, 117-118; Math. Papers 4, 181-182.
52. Sylvester, J. J.: Sur les deux méthodes, celle de Hamilton et celle de l'auteur pour résoudre l'équation linéaire en quaternions. Comptes Rendus 99, 473-476, 502505; Math. Papers 4, 183-187.
53. Sylvester, J. J.: Sur la solution explicite de l'équation quadratique de Hamilton en quaternions ou en matrices du second ordre. Comptes Rendus 99, 555-558, 621-631; Math. Papers 4, 188-198.
54. Sylvester, J. J.: Sur la résolution générale de l'équation linéaire en matrices d'un ordre quelconque. Comptes Rendus 99, 409-412; 432-436; Math. Papers 4, 199-205.
55. Sylvester, J. J.: Sur l'equation linéaire trinôme en matrices d'un ordre quelconque. Comptes Rendus 99, 527-529; Math. Papers 4, 206-207.
56. Sylvester, J. J.: Lectures on the principles of universal algebra. Amer. Journ. Math. 6, 270-286; Math. Papers 4, 208-224.
57. Sylvester, J. J.: On the solution of a class of equations in quaternions. Phil. Mag. (5) 17, 392-397; Math. Papers 4, 225-230.
58. Sylvester, J. J.: On Hamilton's quadratic equation and the general unilateral equation in matrices. Phil. Mag. (5) 18, 454-458; Math. Papers 4, 231-235.
59. Bucheim, A.: On the theory of matrices, (1884). Proc. Lond. Math. Soc. 16, 63-82.
60. Bucheim, A.: On a theorem relating to symmetrical determinants, (1884). Mess. of Math. 14, 143-144.
61. Bucheim, A.: A theorem on matrices. Mess. of Math. 14, 167-168.
62. Cayley, A.: On the quaternion equation $q Q-Q q^{\prime}=0$. Mess. of Math. 14, 108-112; Coll. Works 12, 300-304.
63. Cayley, A.: On the matricial equation $q Q-Q q^{\prime}=0$. Mess. of Math. 14, 176-178; Coll. Works 12, 311-313.
64. Muir, T.: New relations between bipartite functions and determinants with a proof of Cayley's theorem in matrices. Proc. Lond. Math. Soc. 16, 276-286.
65. Sylvester, J. J.: On the trinomial unilateral quadratic equation in matrices of the second order. Quart. Journ. Math. 20, 305-312; Math. Papers 4, 272-277.
66. Weyr, E.: O základní větě v theorii matric, (1884). Sitzb. K. Böhm. Ges. d. Wissens. 1884, 148-152.
67. Weyr, E.: Sur la théorie des matrices. Comptes Rendus 100, 787-789.
68. Weyr, E.: Repartition des matrices en espèces et formation de toutes les espèces. Comptes Rendus 100, 966-969.

1886
69. Bucheim, A.: An extension of a theorem of Professor Sylvester's relating to matrices. Phil. Mag. (5) 22, 173-174.
70. Cayley, A.: On the transformation of the double theta functions. Quart. Journ. Math. 21, 142-178; Coll. Works 12, 358-389.
71. Kumamoto, A.: Matrices no theory ni tsuite shirusu. Tokyo Sugaku Butsurigaku Kwai Kizi, 3, 153-161.

1887

72. Bucheim, A.: On double algebra, (1886). Mess. of Math. 16, 62-63.
73. Bucheim, A.: Note on triple algebra, (1886). Mess. of Math. 16, 111-114.
74. Gibss, J. W.: Multiple algebra, (1886). Proc. Amer. Assoc. Adv. Sci. 35, 37-66.
75. Peano, G.: Integrazione per serie delle equazioni differenziali lineari. Atti R. Accad. Torino, 22, 437-446. Translated under title "Intégration par séries des équations différentielles linéaires." Math. Ann. 32 (1888), 450-456.

1888

76. Brunel, G.: Sur les racines des matrices zéroïdales. Comptes Rendus 106, 467-470.
77. Bucheim, A.: On a theorem of Prof. Klein's relating to symmetric matrices, (1887). Mess. of Math. 17, 79.
78. Morrice, G.: Multiplication of nonions, (1887). Mess. of Math. 17, 104-105.
79. Weyr, E.: O binarných matricích, (1887). Sitzb. K. Böhm. Ges. d. Wissens. 1887, 358-400.
80. Weyr, E.: Sur la réalisation des systèmes associatifs de quantités complexes à l'aide des matrices, (1887). Sitzb. K. Böhm. Ges. d. Wissens. 1887, 616-618.

1889

81. Bucheim, A.: Note on matrices in involution, (1887). Mess. of Math. 18, 102-104.
82. Sylvester, J. J.: Sur la réduction biorthogonale d'une forme linéolinéaire à sa forme canonique. Comptes Rendus 108, 651-653; Math. Papers 4, 638-640.
83. Weyr, E.: O theorii forem bilinearych. Praze. Translated under title "Zur Theorie der bilinearen Formen" Monatsh. f. Math. u. Phys. 1 (1890); 163-236.
84. Taber, H.: On the theory of matrices. Amer. Journ. Math. 12, 337-396.
85. Voss, A.: Uber die conjugirte Transformation einer bilinearen Form in sich selbst, (1889). Münch. Ber. 19, 175-211.
86. Voss, A.: Uber die mit einer bilinearen Form vertauschbaren Formen, (1889). Münch. Ber. 19, 283-300.
87. van Wettom, T. B.: De quaternion van Hamilton als matrix van Cayley. Nieuw Archief 17, 206-216.

1891
88. Carvallo, E.: Sur les systèmes linéaires, Monatsh. f. Math. u. Phys. 2, 177-216, 225-266, 311-330.
89. Cayley, A.: Note on the involutant of two binary matrices. Mess. of Math. 20, 136-137; Coll. Works 13, 74-75.
90. Cayley, A.: Note on a theorem in matrices. Proc. Lond. Math. Soc. 22, 458; Coll. Works 13, 114.
91. Chapman, C. H. On the matrix which represents a vector. Amer. Journ. Math. 13, 363-380.
92. Kronecker, L.: Reduction der Systeme mit n^{2} ganzzahligen Elementen. Crelle 107, 135-136.
93. Molenbroek, P.: Theorie der Quaternionen. Leiden.
94. Rados, G.: Zur Theorie der adjungirte Substitutionen. Math. és Term. Értesitö 1891 ; Math. Ann. 48 (1897), 417-424.
95. Study, E.: Recurrierende Reiher und bilineare Formen, (1889). Monatsh. f. Math. u. Phys. 2, 23-54.
96. Taber, H.: On certain identities in the theory of matrices, (1890). Amer. Journ. Math. 13, 159-172.
97. Taber, H.: On the application to matrices of any order of the quaternion symbols S and V, (1890). Proc. Lond. Math. Soc. 22, 67-79.
98. Taber, H.: On the matrical equation $\varphi \Omega=\Omega \varphi$. Proc. Amer. Acad. Boston 26, 64-66.
99. Taber, H.: On certain properties of symmetric, skew symmetric, and orthogonal matrices. Proc. Lond. Math. Soc. 22, 449-469.
100. van Wettum, T. B.: Over den quaternion-matrix. Nieuw Archief 18, 168-186.

1892
101. van Elfrinkhof, L.: De oplossing van lineaire vector-verglijkingen in bijzondere gevallen. Nieuw Archief 19, 132-142.
102. van Elfrinkhof, L.: Opmerkingen naar aanleiding der verhandelingen over quater-nion-matrices van den heer Th. B. van Wettum. Nieuw Archief 19, 143-150.
103. Metzler, W. H.: On the roots of matrices. Amer. Journ. Math. 14, 326-377.
104. Molien, T.: Uber Systeme höherer complexer Zahlen, (1891). Diss. Dorpat; Math. Ann. 41, 83-156.
105. Rados, G.: Zur Theorie der orthogonalen Substitutionen, (1891). Math. és Term. Értesitö 10, 16-18; Math. Natur. Ber. aus Ungarn 10 (1893), 95-97.
106. Rados, G.: Die Theorie der adjungirten Substitutionen, (1891). Math. és Term. Értesitö 10, 34-42; Math. Natur. Ber. aus Ungarn 10 (1893), 98-107.
107. Rost, G.: Untersuchungen über die allgemeinste lineare Substitution, deren Potenzen eine endliche Gruppe bilden. Diss. Würzburg; Leipzig.
108. Voss, A.: Uber die cogredienten Transformationen einer bilinearen Form in sich selbst, (1890). Münch. Abh. 17, 235-356.

1893
109. Élie, B.: La fonction vectorielle et ses applications à la physique. Mém. Soc. des Sci. Phys. et Natur. Bordeaux (4) 3, 1-137.
110. McAulay, A.: Utility of quaternions in physics. London.
111. Metzler, W. H.: On certain properties of symmetric, skew symmetric, and orthogonal matrices, (1892). Amer. Journ. Math. 15, 274-282.
112. Taber, H.: On a theorem of Sylvester's relating to non-degenerate matrices. Proc. Amer. Acad. Boston 27, 46-55.
113. Taber, H.: Note on the representation of orthogonal matrices, (1892). Proc. Amer. Acad. Boston 27, 163-164.
114. Taber, H.: On real orthogonal substitution. Proc. Amer. Acad. Boston 28, 212-217.
115. Taber, H.: On the linear transformations between two quadrics. Proc. Lond. Math. Soc. 24, 290-306.

1894

116. Franklin, F.: Note on induced linear substitutions. Amer. Journ. Math. 16, 205-206.
117. Hurwitz, A.: Zur Invariantentheorie. Math. Ann. 45, 381-404.
118. Metzler, W. H.: Matrices which represent vectors. Boston Tech. Quart. 6 (1893), 348-351.
119. Metzler, W. H.: Compound determinants, (1893). Amer. Journ. Math. 16, 131-150.
120. Metzler, W. H.: Homogeneous strains. Annals of Math. 8, 148-156.
121. Peano, G.: Sur les systèmes linéaires. Monatsh. f. Math. u. Phys. 5, 136.
122. Sforza, G.: Sulle forme bilineari simili. Giorn. Mat. 32, 293-316; 33 (1895), 80-105; 34 (1896), 252-278.
123. Taber, H.: On orthogonal substitutions that can be expressed as a function of a single alternate (or skew symmetric) linear substitution, (1893). Amer. Journ. Math. 16, 123-130.
124. Taber, H.: On orthogonal substitutions. Bull. New York Math. Soc. 3, 251-259.
125. Taber, H.: On the automorphic linear transformation of a bilinear form. Proc. Amer. Acad. Boston 29, 178-179.
126. Taber, H.: On the group of automorphic linear transformations of a bilinear form. Proc. Amer, Acad. Boston 29, 371-381.
127. van Wettum, T. B.: Researches on matrices and quaternions. Leyden.
128. Brill, J.: On the application of the theory of matrices to the discussion of linear differential equations with constant coefficients, (1894). Proc. Cambr. Phil. Soc. (3) 8, 201-210.
129. van Elfrinkhof, L.: Der vergelijking $V \rho \varphi \rho=0$. Nieuw Archief (2) 1, 76-87.
130. van Elfrinkhof, L.: Draaiings-matrices en quaternions. Nieuw Archief (2) 1, 88-100.
131. Hensel, K.: Über die Elementartheiler componirter Systeme, (1894). Crelle 114. 109-115.
132. Joly, C. J.: The theory of linear vector functions, (1894). Trans. Roy. Irish Acad. 30, pt. 16, 597-647.
133. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, p. 91 ff . Leipzig.
134. Taber, H.: On the automorphic linear transformation of an alternate bilinear form. Math. Ann. 46, 561-583.
135. Taber, H.: On those orthogonal substitutions that can be generated by the repetition of an infinitesimal orthogonal substitution. Proc. Lond. Math. Soc. 26, 364-376.
136. van Wettum, T. B.: Over het quotient van twee ruimte-vectoren, en over een quaternion. Nieuw Archief (2) 1, 68-75.
137. Brill, J.: Note on matrices, (1895). Proc. Lond. Math. Soc. 27, 35-38.
138. Frobenius, G.: Zur Theorie der Scharen bilinearer Formen, (1881). Zürich Naturf. Ges. 41, T. 2, 20-23.
139. Frobenius, G.: Über die cogredienten Transformation der bilinearen Formen. Berlin Sitzb. 1896, 7-16.
140. Frobenius, G.: Uber vertauschbare Matrizen. Berlin Sitzb. 1896, 601-614.
141. Joly, C. J.: Scalar invariants of two linear vector functions, (1895). Trans. Roy. Irish Acad. 30 pt. 18, 709-728.
142. Joly, C. J.: Quaternion invariants of linear vector functions and quaternion determinants. Proc. Roy. Irish Acad. (3) 4 pt 1, 1-15.
143. Landsberg, G.: Uber Fundamentalsysteme und bilineare Formen, (1895). Crelle 116, 331-349.
144. Laurent, H.: Exposé d'une théorie nouvelle des substitutions linéaires. Nouv. Ann. (3) 15, 345-365.
145. Pincherle, S.: Le operazioni distributive e le omografie. Rend. R. Ist. Lomi. (2) 29, 397-405.
146. Rados, G.: Adjungirte quadratische Formen. Math. és Term. Értesitö 14, 26-32; Math. Natur. Ber. aus Ungarn 14 (1898), 85-91.
147. Rados, G.: Zur Theorie der adjungirten bilinearen Formen. Math. és Term. Értesitö 14, 165-175; Math. Natur. Ber. aus Ungarn 14 (1898), 116-127.
148. Taber, H:: On orthogonal substitution, (1893). Math. Papers, Intern. Congr. Chicago, 395-400.
149. Taber, H.: Note on the automorphic linear transformation of a bilinear form, (1895). Proc. Amer. Acad. Boston 31, 181-192.

1897
150. Baker, H. F.: Abelian functions, App. II. Cambridge.
151. Brill, J. : Supplementary note on matrices, (1896). Proc. Lond. Math. Soc. 28, 368-370.
152. Laurent, H.: Applications de la théorie des substitutions linéaires à l'étude des groupes. Nouv. Ann. (3) 16, 149-168.
153. Loewy, A.: Bemerkung zur Theorie der konjugirten Transformation einer bilinearen Form in sich selibst, (1896). Münch. Ber. 26, 25-30.
154. Loewy, A.: Zur Theorie der linearen Substitutionen. Math. Ann. 48, 97-110.
155. Shaw, J. B.: The linear vector operator of quaternions, (1895). Amer. Journ. Math. 19, 267-282.
156. Taber, H.: On the transformations between two symmetric or alternate bilinear forms. Math. Review 1, 120-126.
157. Taber, H.: On the group of real linear transformations whose invariant is a real quadratic form, (1896). Math. Review 1, 154-168; Proc. Amer. Acad. Boston 32, 77-83.
158. Taber, H.: Notes on the theory of bilinear forms. Bull. Amer. Math. Soc. 3, 156-164.
159. Tait, P. G.: On the linear and vector function, (1896). Proc. Roy. Soc. Edinb. 21, 160-164; Sci. Papers 2, 406-409.
160. Tait, P. G.: On the linear and vector function. Proc. Roy. Soc. Edinb. 21, 310-312; Sci. Papers 2, 410-412.
161. Tait, P. G.: Note on the solution of equations in linear and vector functions. Proc. Roy. Soc. Edinb. 21, 497-505; Sci. Papers 2, 413-420.
162. Voss, A.: U'ber die Anzahl der cogredienten und adjungirten Transformationen einer bilinearen Form in sich selbst, (1896). Münch. Ber. 26, 211-272.
163. Voss, A.: Symmetrische und alternirende Lösungen der Gleichung $\dot{S} X=X S^{\prime}$, (1896). Münch. Ber. 26, 273-281.
164. Bachmann, P.: Zahlentheorie, vol. 4, p. 275 ff. Leipzig.
165. Joly, C. J.: The associative algebra applicable to hyperspace, (1897). Proc. Roy. Irish Acad. (3) 5, 73-123.
166. Ladrent, H.: Exposé d'une théorie nouvelle des substitutions. Journ. de Math. (5) 4, 75-119.
167. Loewy, A.: Uber die bilineare Formen mit conjugirt imaginären Variablen, (1897). Nova Acta Leop-Carol. Acad. 71, 379-446.
168. Loewy, A.: Uber bilineare Formen mit conjugirt imaginären Variablen. Math. Ann. 50, 557-576.
169. MUIR, T.: A reinvestigation of the problem of the automorphic linear transformation of a bipartite quadric. Amer. Jour. Math. 20, 215-228.
170. Rados, G.: Zur Theorie der adjungirten quadratischen Formen, (1897). Verh. Intern. Math. Congr. Zürich 1, 163-165.
171. Ravut, L.: Remarques sur une matrice. Nouv. Ann. (3) 17, 118-120.
172. Stephanos, C.: Sur un mode de composition des déterminants et des formes bilinéaires. Giorn. Mat. 36, 376-379.
173. Whiteread, A. N.: Universal algebra, vol. 1, pp. 248-269, 318-346. Cambridge.

1899
174. Baker, H. F.: (Note on a paper of Prof. Burnside's). Proc. Lond. Math. Soc. 30, 195-198.
175. Muth, P.: Theorie und Anwendung der Elementartheiler. Leipzig.
176. Rados, G.: Gruppen inducierter Substitutionen, (1898). Math. es Term. Ertesitö 17, 44-65; Math. Natur. Ber. aus Ungarn 17 (1901), 227-247.
177. Shaw, J. B.: Some generalisations in multiple algebra and matrices. Bull. Amer. Math. Soc. 5, 381-382.
178. Stephanos, C.: Sur une extension du calcul des substitutions linéaires. Comptes Rendus 128, 593-596.
179. Study, E.: Theorie der gemeinen und höheren complexen Grössen. Encycl. der Math. Wiss. I 1, 413 ff.

1900
180. Amaldi, U.: Sulle sostituzioni lineari commutabili. Rend. R. Ist. Lomb. (2) 33, 731-744.
181. Bendixson, J.: Sur les racines d'une équation fondamentale. Ofv. K. Svenska Vet.Akad. Förh. Stockholm 57, 1099-1103.
182. Loewy, A.: Uber Scharen reeller quadratischer und Hermitescher Formen. Crelle 122, 53-72.
183. Loewy, A.: Uber die Transformation einer Hermiteschen Form von nicht verschwindender Determinante in sich. Gött. Nachr. 1900, 298-302.
184. Schlesinger, L.: Uber vertauschbare lineare Substitutionen. Crelle 121, 177-187.
185. Stephanos, C.: Sur une extension du calcul des substitutions linéaires. Journ. de Math. (5) 6, 73-128.
186. Tait, P. G.: On the linear and vector function, (1899). Proc. Roy. Soc. Edinb. 22, 547-549; Sci. Papers 2, 424-426.

1901
187. Bromwich, T. J. I'A.: Canonical reduction of linear substitutions and bilinear forms with a dynamical application, (1900). Proc. Lond. Math. Soc. 32, 79-118, 321-352.
188. Bromwict, T. J. I'A.: Note on Weierstrass's reduction of a family of bilinear forms, (1900). Proc. Lond. Math. Soc. 32, 158-163.
189. Bromwich, T. J. I'A.: On a canonical reduction of bilinear forms with special consideration of congruent reductions, (1900). Proc. Lond. Math. Soc. 32, 321-352.
190. Bromwich, T. J. I'A.: Theorems on matrices and bilinear forms, (1900). Proc. Cambr. Phil. Soc. 11, 75-89.
191. Bromwich, T. J. I'A.: Ignoration of coordinates as a problem in linear substitutions. Proc. Cambr. Phil. Soc. 11, 163-167.
192. Bucheim, A.: Review: "Theorie und Anwendung der Elementartheiler" by Dr. P. Muth. Bull. Amer. Math. Soc. 7, 308-316.
193. Carlini, L.: Sul prodotto di due matrici rettangolari coniugate, (1900). Period. di Mat. (2) 3, 193-198.
194. Gibbs, J. W., and E. B. Wilson: Vector analysis, chap. 5. New York.
195. Joly, C. J.: Hamilton's "Elements of quaternions," 2nd ed., appendix. London.
196. Loewx, A.: Uber die Verallgemeinerung eines Weierstrassschen Satzes. Crelle 123, 258-262.
197. Plemelj, J.: Ein Satz über vertauschbare Matricen und seine Anwendung in der Theorie linearer Differentialgleichungen. Monatsh. f. Math. u. Phys. 12, 82-96.
198. Schur, I.: Uber eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen. Diss. Berlin.

1902
199. Adtonne, L.: Sur les groupes linéaires, réels, et orthogonaux. Bull. Soc. Math. France 30, 121-134.
200. Adtonne, L.: Sur l'Hermitien, (1901). Rend. Circ. Mat. Palermo 16, 104-128.
201. Bendixson, J.: Sur les racines d'une équation fondamentale. Acta Math. 25, 359-365.
202. Burnside, W.: On the characteristic equations of certain linear substitutions. Quart. Journ. Math. 33, 80-84.
203. Carlini, L.: Sopra due tipi di relazioni ... , (1901). Period. di Mat. (2) 4, 175-179.
204. Dickson, L. E.: A matrix defined by the quaternion group. Amer. Math. Monthly 9, 243-248.
205. Hensel, K., and G. Landsberg: Theorie der algebraischen Funktionen einer Variabeln, p. 174 ff. Leipzig.
206. Hirsch, A.: Sur les racines d'une équation fondamentale. Acta Math. 25, 367-370.
207. Niccolletti, O.: Sulle matrici associate ad una matrice data. Atti R. Accad. Torino 37, 655-659.
208. Schur, I.: Uber einen. Satz aus der Theorie der vertauschbaren Matrizen. Berlin Sitzb. 1902, 120-125.
209. Volterra, V.: Sui fondamenti della teoria delle equazioni differenziali lineari. Mem. Soc. Ital. Sci. (3) 12, 3-68.

1903
210. Autonne, L.: Sur la décomposition d'une substitution linéaire, reelle et orthogonale, en un produit d'inversions. Comptes Rendus 136, 1185-1186.
211. Autonne, L.: Sur la canonisation des formes bilinéaires. Nouv. Ann. (4) 3, 57-64.-
212. Adtonne, L.: Sur l'hypohermitien. Bull. Soc. Math. France 31, 140-155.
213. Autonne, L.: Sur quelques propriétés des matrices hypohermitiennes. Bull. Soc. Math. France 31, 268-271.
214. Autonne, L.: Sur la décomposition d'une substitution linéaire, réelle et orthogonale, en un produit d'inversions. Ann. Univ. Lyon I, fasc. 12.
215. Baker, H. F.: On some cases of matrices with linear invariant factors, (1902). Proc. Lond. Math. Soc. 35, 379-384.
216. Baker, H. F.: On the invariant factors of a determinant. Proc. Cambr. Phil. Soc. 12, 65-77.
217. Frobenios, G.: Theorie der hypercomplexen Grössen. Berlin Sitzb. 1903, 504-537, 634-645.
218. Hudson, R. W. H. T.: Matrix notation in the theory of screws, (1902). Mess. of Math. 32, 51-57.
219. Joly, C. J.: The multilinear quaternion function, (1902). Proc. Roy. Irish Acad. 24, 47-52.
220. Joly, C. J.: Quaternions and projective geometry. Trans. Roy. Soc. Lond. 201, 223-327.
221. Rados, G.: Notes sur les substitutions orthogonales. Math. Natur. Ber. aus Ungarn 18, 231-235.
222. Rados, G.: Zur Theorie der algebraischen Resolventen. Math. Natur. Ber. aus Ungarn 18, 236-249.
223. Shaw, J. B.: Theory of linear associative algebra, (1902). Trans. Amer. Math. Soc. 4, 251-287.
224. Wedderburn, J. H. M.: On the applications of quaternions in the theory of differential equations. Trans. Roy. Soc. Edinb. 40, 709-721.
225. Wellstein, J.: Úber die Frobeniusschen Kovarienten einer Bilinearform, (1901). Arch. der Math. u. Phys. (3) 5, 229-241.

1904

226. Baker, H. F.: Note on Sylvester's theorems on determinants. Collected Math. Papers of J. J. Sylvester, 1, 647-650.
227. Burnside, W.: On linear substitutions of determinant unity with integral coefficients. Mess. of Math. 33, 133-137.
228. Hensel, K.: Theorie der Körper von Matrizen. Crelle 127, 116-166.
229. Laurent, H.: Sur les transformations qui transforment une forme du second degré donnée en une autre également donnée. Nouv. Ann. (4) 4, 29-38.
230. de Seguier, J. A.: Éléments de la théorie des groupes abstraits, p. 159 ff . Paris.
231. Taber, H.: On the real automorphic linear transformation of a real bilinear form, (1903). Proc. Amer. Acad. Boston 39, 307-320.
232. Wedderburn, J. H. M.: Note on the linear matrix equation. Proc. Edinb. Math. Soc. 22, 49-53

1905

233. Bromwich, T. J. I'A.: On the roots of the characteristic equation of a linear súbstitution, (1904). Brit. Assoc. Report 1904, 440-441.
234. Cunningham, E.: On the normal series satisfying linear differential equations, (1904). Phil. Trans. Roy. Soc. Lond. 205, 1-35.
235. Joly, C. J.: A manual of quaternions, chap. 8. London.
236. Muti, P.: Uber reelle Äquivalenz von Scharen reeller quadratischer Formen. Crelle 128, 302-321.
237. Schlesinger, L.: Beiträge zur Theorie der Systeme linearer homogener Differentialgleichungen. Crelle 128, 263-297.
238. Schur, I.: Zur Theorie der vertauschbaren Matrizen. Crelle 130, 66-76.

1906
239. Autonne, L.: Sur les polynomes à coefficients et à variable hypercomplexes. Bull. Soc. Math. France 34, 205-212.
240. Bromwich, T. J. I'A.: On the roots of the characteristic equation of a linear substitution, (1904). Acta Math. 30, 297-304.
241. Gibes, J. W.: Elements of vector analysis, chap. 3, (1884). Sci. Papers 2, 53 ff .
242. Kreis, H.: Contribution à la théorie des systémes linéaires. Thése, Zurich.
243. Petr, K.: Několik poznámek o determinantech. Casopis pro Pest. Math. u. Fys. 35, 311-321.
244. Petr, K.: Néhány megjegyzés a determinánsok elmeletéhez. Math. es Phys. Lapok 15, 353-365; translated under title 'Einige Bemerkungen über die Determinanten.' Math. Natur. Ber. aus Ungarn 25 (1908), 95-105.
245. Wedderburn, J. H. M.: On a theorem in hypercomplex numbers. Proc. Roy. Soc. Edinh. 26, 48-50.

1907
246. Wirth, J.: Uber die Elementarteiler einer linearen homogenen Substitution. Diss. Freiburg.
247. Bôcher, M.: Introduction to higher algebra, chap. 8-13, 20-22. New York.
248. Brile, J.: On the expression of the so-called biquaternions and triquaternions with the aid of quaternary matrices, (1906). Proc. Lond. Math. Soc. (2) 4, 124-130.
249. Perron, O.: Zur Theorie der Matrices, (1906). Math. Ann. 64, 248-263.
250. de Séguier, J.-A.: Sur la théorie des matrices. Comptes Rendus 145, 1259-1260.
251. Shaw, J. B.: Synopsis of linear associative algebras. Washington, D. C.
252. Wedderburn, J. H. M.: On hypercomplex numbers. Proc. Lond. Math. Soc. (2) 6, 77-118

1908

253. Cartan, E. and E. Study.: Nombres complexes. Encycl. des Sci. Math. I 1, fasc. 3, 413 ff .
254. Frobenius, G.: t'ber Matrizen aus positiven Elementen. Berlin Sitzb. 1908, 471-476.
255. Kreis, H.: Auflösung der Gleichung $X^{n}=A$. Zürich Naturf. Ges. 53, 366-376.
256. Nicoletti, O.: Sulla riduzione a forma canonica di una sostituzione lineare omogenea e di un fascio di forme bilineari. Ann. di Mat. (3) 14, 265-326.
257. Ranum, A.: Concerning linear substitutions of finite period with rational coefficients, (1907). Trans. Amer. Math. Soc. 9, 183-202.
258. Schlesinger, L.: Vorlesungen über lineare Differentialgleichungen. Leipzig.
259. de Seguier, J.: Sur la théorie des matrices. Bull. Soc. Math. France 36, 20-40.
260. de Séguier, J.: Sur les formes bilinéaires. Comptes Rendus 146, 1247-1248.
261. Wilson, E. B.: On the theory of double products and strains in hyperspace, (1907). Connecticut Acad. Trans. 14, 1-57.

1909
262. Autonne, L.: Sur les groupes de matrices linéaires non invertibles. Ann. Univ. Lyon I fasc. 25.
263. Ball, R.: Linear vector functions, (1908). Brit. Assoc. Report 1908, 611-612.
264. Cecioni, F.: Sulle equazioni fra matrici $A X=X B, X^{m}=A$. R. Accad. dei Lincei Rend. (5) 18, 566-571.
265. Cecioni, F.: Sulla caratteristica del prodotto di due matrici. Period. di Mat. (3) 6, 253-265.
266. Dickson, L. E.: On commutative linear groups, (1907). Quart. Journ. Math. 40, 167-196.
267. Frobenius, G.: Matrizen aus positiven Elementen. II. Berlin Sitzb. 1909, 514-518.
268. Gamberinı, G.: Una speciale classe di matrici quadrate permutabili, (1908). Giorn. di Mat. 47, 137-155.
269. Gamberini, G.: Alcuni risultati intorno al prodotto di due matrici quadrate d'ordine n. Rome.
270. Gamberini, G.: Sulle relazioni fra alcune forme del prodotto di due matrici quadrate d'ordine n. Rome.
271. Jackson, D.: Resolution into involutory substitutions of the transformations of a non-singular bilinear form into itself. Trans. Amer. Math. Soc. 10, 479-484.
272. Karst, L.: Lineare Funktionen und Gleichungen. Prog. (127) Realprogymn. Lichtenberg bei Berlin.
273. Schur, I.: Uber die characteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen. Math. Ann. 66, 488-510.
274. de Stguier, J. A.: Sur les formes bilinéaires et quadratiques. Journ. de Math. (6) 5, 1-63.
275. Wellstein, J.: Die Dekomposition der Matrizen. Gött. Nachr. 1909, 77-99.
276. Wellstein, J.: Kriterien für die Potenzen einer Determinante. Math. Ann. 67, 490-497.
277. Widder, W.: Untersuchungen über die allgemeinste lineare Substitution mit vorgegebener $p^{\text {ter }}$ Potenz, (1908). Diss. Würzburg; Leipzig.
278. Autonne, L.: Sur les matrices linéaires échangeables à une matrice donnée. Jour. Ec. Poly. (2) 14, 83-131.
279. Cecioni, F.: Sopra alcune operazioni algebriche sulle matrici, (1909). Ann. R. Scuola Norm. Sup. Pisa 11.
280. Frobenius, G.: Uber die mit einer Matrix vertauschbaren Matrizen. Berlin Sitzb. 1910, 3-15.
281. Hawkes, H. E.: The reduction of families of bilinear forms, (1908). Amer. Journ. Math. 32, 101-114.
282. Hutchinson, J. I.: On linear transformations which leave an Hermitian form invariant, (1909). Amer. Journ. Math. 32, 195-206.
283. Kreis, H.: Einige Anwendungen der Matricestheorie. Progr.Gymn. Winterthur.
284. Loew y, A.: Pascal's "Repertorium der höheren Analysis," Leipzig, 2 ed., chap. 2, 79-153.

1911
285. Burgess, H. T.: The simultaneous reduction of a quadratic and a bilinear form by the same transformation on both x 's and y 's, (1910; abstract). Bull. Amer. Math. Soc. 17, 65-66.
286. Burgess, H. T.: The application of matrices to cubic forms. (Abstract.) Bull. Amer. Math. Soc. 17, 299.
287. Châtelet, A.: Sur certains ensembles de tableaux et leur application à la théorie des nombres. Ann. Ec. Norm. (3) 28, 105-202.
288. David, L.: (On matrices of algebraic iteration; in Magyar.) Math. és Term. Értesitö 29, 444-449.
289. Elie, B.: Relations entre les paramètres Cayléens de trois substitutions orthogonales dont l'une est égale au produit des deux autres. Bull. des Sci. Math. (2) 35, 162-180.
290. Frobenius, G.: Uber den Rang einer Matrix. Berlin Sitzb. 1911, 20-29, 128-129.
291. Frobenius, G.: Uber den von L. Bieberbach gefundenen Bewpis eines Satzes von C. Jordan. Berlin Sitzb. 1911, 241-248.
292. Frobenius, G.: Utwer unitäre Matrizen. Berlin Sitzb. 1911, 373-378.
293. Rabinovic, J.: (Linear vector functions; in Russian.) Odessa.
294. Ranum, A.: The general term of a recurring series. Bull. Amer. Math. Soc. 17, 457461.

1912
295. Amaldi, U.: Sulle sostituzioni lineari commutabili. Rend. R. Ist. Lomb. (2) 45, 433-445.
296. Autonne, L.: Sur une propriété des matrices linéaires. Nouv. Ann. (4) 12, 118-127.
297. Drach, J., and W. F. Meyer: Théorie des formes et des invariants. Encycl. des Sci. Math. I 2, fasc. 4, 440 ff .
298. Frobenius, G.: Uber Matrizen aus nicht negativen Elementen. Berlin. Sitzb. 1912, 456-477.
299. Hilton, H.: On properties of certain linear homogeneous substitutions, (1911) Proc. Lond. Math. Soc. (2) 10, 273-283.
300. Hilton, H.: On cyclant substitutions, (1911). Mess. of Math. 41, 49-51.
301. Hilton, H.: Substitutions permutable with a canonical substitution, (1911). Mess. of Math. 41, 110-118.
302. Hilton, H.: On symmetric and orthogonal substitutions. Mess. of Math. 41, 146-154.
303. Lattès, S.: Sur la réduction des substitutions linéaires. Comptes Rendus 155, 1482-1484.

1913
304. Autonne, L.: Sur les matrices hypohermitiennes et les unitaires. Comptes Rendus 156, 858-860.
305. Birkhoff, G. D.: A theorem on matrices of analytic functions. Math. Ann. 74, 122133.
306. Cullis, C. E.: Matrices and determinoids, vol. 1. Cambridge.
307. Hilton, H.: Some properties of symmetric and orthogonal substitutions, (1912). Proc. Lond. Math. Soc. (2) 12, 94-99.
308. Loewy, A.: Uber lineare homogene Differentialsysteme und ihre Sequenten. Sitzb. Heidl. Akad. 1913, A17.
309. Wedderburn, J. H. M.: Note on the rank of a symmetrical matrix. Annals of Math. (2) $15,29$.

1914

310. Bliss, G. A.: A note on symmetric matrices. Annals of Math. (2) 15, 43-44.
311. Cipolla, M.: Le sostituzioni ortogonali non-cayleyane, (1913). Atti Accad. Gioenia, Catania (5) 7, mem. 2, 1-18.
312. Dickson, L. E.: Linear algebras, chap. 1. Cambridge.
313. Hilton, H.: Properties of certain homogeneous linear substitutions. Annals of Math. (2) 15, 195-201.
314. Hilton, H.: Homogeneous linear substitutions. Oxford.
315. Metzler, W. H.: On the rank of a matrix, (1913). Annals of Math. (2) 15, 161-165.
316. Stein, J.: Beiträge zur Matrizenrechnung mit Anwendung auf die Relativitätstheorie. Tübingen.
317. Wedderburn, J. H. M.: On continued fractions in non-commutative quantities. Annals of Math. (2) 15, 101-105.
318. Wedderburn, J. H. M.: Note on the rank of a symmetrical matrix. II. Annals of Math. (2) 16, 86-88.

1915
319. Amato, V.: Sulla forma canonica delle sostituzioni ortogonali periodiche. Atti Accad. Gioenia, Catania (5) 8, mem. 15, 1-8.
320. Autonne, L.: Sur les matrices hypohermitiennes et sur les matrices unitaires. Ann. Univ. Lyon I fasc. 38.
321. Boehm, K.: Uber einen Determinantensatz, in welchem das Multiplikationstheorem als besonderer Fall enthalten ist. Crelle 145, 250-253.
322. Krawczuk, M.: (On groups of permutable matrices; in Russian.) Soc. Math. Kharkoff (2) 14, 163-176.
323. Lattès, S.: Sur les multiplicités linéaires invariantes par une substitution linéaire donnee. Comptes Rendus 160, 671-674.
324. Perron, O.: Uber konvergente Matrixprodukte. Sitzb. Heidl.Akad. 6, A4, 1-27.
325. Wedderborn, J. H. M.: On matrices whose coefficients are functions of a single variable. Trans. Amer. Math. Soc. 16, 328-332.

1916

326. Birkhoff, G. D.: Infinite products of analytic matrices. Trans. Amer. Math. Soc. 17, 386-404.
327. Burgess, H. T.: A practical method of determining elementary divisors. Annals of Math. 18, 4-6.
328. Burgess, H. T.: On the matrix equation $B X=C$. Amer. Math. Monthly 23, 152-155.
329. Cullis, C. E.: Primitive matrices and the primitive degrees of a matrix. Bull. Calcutta Math. Soc. 6, 35-54.
330. Lattès, S.: Sur une forme canonique des substitutions linéaires. Ann. Toulouse (3) 6, 1-84.
331. Levi, B.: Introduzione alla analisi matematica. Paris.
332. Scorza, G.: Intorno alla teoria generale delle matrici di Riemann e ad alcune sue applicazioni. Rend. Circ. Mat. Palermo 41, 263-379.
333. Taber, H.: Conditions for the complete reducibility of groups of linear substitutions Amer. Journ. Math. 38, 337-372.
334. Whittaker, E. T.: On the theory of continued fractions. Proc. Roy. Soc. Edinb. 36, 243-255.
335. WIDDER, W.: Uber orthogonale, involutorische und orthogonal-involutorische Substitutionen. Progr. K. Alten Gymn. Würzburg.

1917
336. Culuis, C. E.: Primitive matrices and the primitive degrees of a matrix. Pt. II. Bull. Calcutta Math. Soc. 8, 1-32.
337. Kowalewsei, G.: Natürliche Normalform linearer Transformationen. Leipz. Ber. 69, 325-335.
338. Loewy, A.: Die Begleitmatrix eines linearen homogenen Differentialausdruckes. Gött. Nachr. 1917, 255-263.
339. SzAsz, O.: U'ber eine Verallgemeinerung des Hadamardschen Determinantensatzes. Monatsh. f. Math. u. Phys. 28, 253-257.

1918
340. Burgess, H. T.: Solution of the matrix equation $X^{-1} A X=N$. Annals of Math. 19, 30-36.
341. Cullis, C. E.: Matrices and determinoids, vol. 2. Cambridge.
342. Loewy, A.: Uber Matrizen- und Differentialkomplexe, (1915-17). Math. Ann. 78, 1-51, 343-358, 359-368.
343. Loewy, A.: Uber einen Fundamentalsatz für Matrizen oder lineare homogene Differentialsysteme. Sitzb. Heidl. Akad. 1918, A5, 1-36.
344. Moore, C. L. E., and H. B. Phllips: The dyadics which occur in a point-space of three dimensions. Proc. Amer. Acad. Boston 53, 387-438.
345. Muir, T.: Note' on the construction of an orthogonant. Proc. Roy. Soc. Edinb. 38, 146-153.
346. Scorza, G،: Sopra alcune notevoli matrici riemanniane. Atti R. Accad. Sci. Torino 53, 598-607.
347. Study, E.: Zur Theorie der finearen Gleichungen. Acta Math. 42, 1-61.
348. Toeplitz, O.: Das algebraische Analogen zu einen Satz von Fejer. Math. Zeits. 2, 187-197.

1919
349. Bennett, A. A.: Products of skew symmetric matrices. Bull. Amer. Math. Soc. 25, 455-458.
350. Phillips, H. B.: Functions of matrices. Amer. Journ. Math. 41, 266-278.
351. Speiser, A.: Zahlentheoretische Sätze aus der Gruppentheorie. Math. Zeit. 5; 1-6. 1920
352. Bose, A. C.: Review: Cullis's Matrices and Determinoids. Bull. Calcutta Math. Soc. 10, 243-256; 11, 51-82.
353. Coolidge, J. L.: The geometry of Hermitian forms, (1918). Trans. Amer. Math. Soc. 21, 44-51.
354. Gноsн, N.: Potent divisors of the characteristic matrix of a minimum simple square anti-slope. Bull. Calcutta Math. Soc. 11, 1-6.
355. Leveugle, R.: Précis de calcul géométrique, chap. 9. Paris.
356. Loewy, A.: Begleitmatrizen und lineare homogene Differentialausdrücke, (1919). Math. Zeitschr. 7, 58-125.
357. Pidduck, F. B.: Functions of limiting matrices. Proc. Lond. Math. Soc. (2) 19, 398-408.

1921
358. Cullis, C. E.: Evaluation of the product matrix in a commutantal product of simple matrices having given nullities, (1920). Bull. Calcutta Math. Soc. 11, 105-150.
359. Kruld, W.: Uber Begleitmatrizen und Elementarteilertheorie. Diss. Freiburg.
360. Scorza, G.: Alcune proprietà delle algebre regolari. Note e Memorie di Mat. 1, 198-209.
361. Scorza, G.: Le algebre di ordine qualunque e le matrici di Riemann. Rend. Circ. Mat. Palermo 45, 1-204.
362. Scorza, G.: Corpi numerici e algebre. Messina.
363. SzÁsz, O.: Uber Hermitesche Formen mit rekurrierender Determinante und über rationale Polynome, (1920). Math. Zeits. 11, 24-57.

1922
364. DAHR, S.: On the inverse of an undegenerate non-plural quadrate slope, (1921). Bull. Calcutta Math. Soc. 12, 85-92.
365. Hitchсоск, F. L.: A solution of the linear matrix equation by double multiplication. Proc. Amer. Nat. Acad. Sci. 8, 78-83.
366. Logsdon, M. I.: Equivalence and reduction of pairs of Hermitian forms, (1921). Amer. Journ. Math. 44, 247-260.
367. Radon, J.: Lineare Scharen orthoganaler Matrizen, (1921). Hamburg Abh. 1, 1-14.
368. Schur, I.: t'ber Ringbereiche im Gebiete der ganzzahligen linearen Substitutionen. Berlin Sitzb. 1922, 145-168.
369. Shaw, J. B.: Vector calculus, chap. 9. New York.
370. Veblen, O., and P. Franklin. On matrices whose elements are integers, (1921). Annals of Math. (2) 23, 1-15.
371. Wedderburn, J. H. M.: The automorphic transformation of a bilinear form, (1921). Annals of Math. 23, 122-134.

1923

372. Birkhoff, G. D., and R. E. Langer.: The boundary problems and developments associated with a system of ordinary linear differential equations of the first order. Proc. Amer. Acad. Boston 58, 51-128.
373. Brahana, H. R.: A theorem concerning certain unit matrices with integer elements. Annals of Math. 24, 265-270.
374. Dickson, L. E.: Algebras and their arithmetics. Chicago.
375. Hasse, H.: Symmetrische Matrizen im Körper der rationalen Zahlen. Crelle 153, 12-43.
376. Hitchcock, F. L.: On double polyadics, with application to the linear matrix equation. Proc. Amer. Acad. Boston, 58, 353-395.
377. Mehmke, R.: Einige Sätze über Matrizen, (1922). Crelle 152, 33-39.
378. Weinstein, A.: Fundamentalsatz der Tensorrechnung, (1922). Math. Zeitschr. 16, 78-91.
379. Weltzien, C.: Die n-te Wurzel aus einer homogenen linearen Substitution von 3 Veränderlichen. Sitzb. Berl. Math. Ges. 22, 48.

1924
380. Dickson, L. E.: Algebras and their arithmetics. Bull. Amer. Math. Soc. 30, 247-257.
381. Kravčuk, M. (Quadratic forms and linear transformations; in Ukrainian.) Mem. Kiev Acad. Sci. 1_{3}.
382. Kravčuk, M.: (On the theory of commutative matrices; in Ukrainian.) Bull. Kiev Acad. Sci. 1, 28-33.
383. Kürschák, J.: On matrices connected with Sylvester's dialytic eliminant. Trans. Roy. Soc. So. Africa 11, 257-261.
384. Muir, T.: Note on a property of bigradient arrays connected with Sylvester's dialytic eliminant. Trans. Roy. Soc. So. Africa, 11, 101-104.

1925
385. Born, M., and P. Jordan. Zur Quantenmechanik. Zeitschr. f. Phys. 34, 858-888.
386. Collis, C. E.: Matrices and determinoids, vol. 3, pt. 1. Cambridge.
387. Kürschák, J.: Speciális Mátrixokról. Math. és Phys. Lapok 32, 9-13.
388. Schur, I.: Einige Bemerkungen zur Determinantentheorie. Sitzb. Akad. Berlin 1925, 454-463.
389. Wedderburn, J. H. M.: The absolute value of the product of two matrices. Bull. Amer. Math. Soc. 31, 304-308.

1926
390. Beck, H.: Einführung in die Axiomatik der Algebra. Berlin.
391. Born, M., W. Heisenberg and P. Jordan: Zur Quantenmechanik. II, (1925). Zeitschr. f. Phys. 53, 557-615.
392. Dickson, L. E.: Modern algebraic theories. New York.
393. Dubnov, J. S.: (Redoubled symmetric orthogonal matrices; in Russian.) Moscow State Univ. Ins. Math. Mech. 1926, 33-54.
394. Hensel, K.: Über Potenzenreihen von Matrizen. Crelle 155, 107-110.
395. Kagan, V. F.: (On some number-systems following from the Lorentz transformation; in Russian.) Moscow State Univ. Inst. Math. Mech. 1926, 3-31.
396. Krull, W.: Theorie und Anwendung der verallgemeinerten Abelschen Gruppen. Sitzb. Heidl. Akad. 1926, 1.
397. MacDuffee, C. C.: The nullity of a matrix relative to a field, (1925). Annals of Math. 27, 133-139.
398. Riley, J. L.: Theory of matrices over any division algebra. Bull. Calcutta Math. Soc. 17, 1-12.
399. Wedderburn, J. H. M.: Note on matrices in a given field. Annals of Math. 27, 245248.

1927
400. Aramata, K.: Úber einen Satz für unitäre Matrizen. Tôhoku Math. Journ. 28, 281.
401. Dickson, L. E.: Algebren und ihre Zahlentheorie. Zürich.
402. Fischer, E.: Uber die Cayleysche Eliminationsmethode, (1926). Math. Zeitschr. 26, 497-550.
403. Frisch, R.: Sur le théorème des déterminants de M. Hadamard. Comptes Rendus 185, 1244-1245.
404. Krawtchotk, M.: Uber vertauschbare Matrizen. Rend. Circ. Mat. Palermo 51, 126-130.
405. von Neumann, J.: Zur Theorie der Darstellungen kontinuierlicher Gruppen. Berlin Sitzb. 1927, 76-90.
406. Porcu-Tortrini, E.: Sulle potenze delle matrici di secondo ordine. Atti Pontificia Accad. 80, 150-153.
407. Porcu-Tortrini, E.: Calcolo delle potenze delle matrici di secondo ordine mediante riduzione alla forma canonica. Atti Pontificia Accad. 80, 277-281.
408. Porcu-Tortrini, E.: Terzo procedimento del calcolo delle potenze delle matrici di second' ordine. Atti Pontificia Accad. 80, 348-353.
409. Schur, I : thber die rationalen Darstellungen der allgemeinen linearen Gruppe. Berlin Sitzb. 1927, 58-75.
410. Spampinato, N.: Nuovi contributi alla teoria generale delle matrici di Riemann. Rend. Circ. Mat. Palermo 51, 238-258.
411. Turnbull, H. W.: The matrix square and cube roots of unity. Journ. Lond. Math. Soc. 2, 242-244.

1928
412. Aitken, A. C.: On the latent roots of certain matrices, (1927). Proc. Edinb. Math. Soc. (2) 1, 135-138.
413. Aitien, A. C.: Note on the elementary divisors of some related matrices. Proc. Edinb. Math. Soc. (2) 1, 166-168.
414. Brauer, R.: Ưber einen Satz für unitäre Matrizen. Tôhoku Math. Journ. 30, 72.
415. Browne, E. T.: Involutions that belong to a linear class. Annals of Math. 29, 483492.
416. Burgatti, P.: Sulle equazioni algebriche a matrice. Boll. Un. Mat. Ital. 7, 65-69.
417. Dickson, L. E.: A new theory of linear transformations and pairs of bilinear forms, (1924). Proc. Ihtern. Congr. Math. Toronto, 1, 361-363.
418. Fantappiè, L.: Le calcul des matrices. Comptes Rendus 186, 619-621.
419. Giorgi, G.: Sulle funzioni delle matrici. R. Accad. Lincei Rend. (6) 7, 178-184.
420. Giorgi, G.: Nuove osservazioni sulle funzioni delle matrici. R. Accad. Lincei Rend. (6) 8, 3-8.
421. Hensel, K.: Uber den Zusammenanhang zwischen den Systemen und ihren Determinanten. Crelle 159, 246-254.
422. Kowalewsei, G.: Uber lineare Differentialsysteme mit konstanten Koefficienten. Leipz. Ber. 80, 359-366.
423. MacDuffee, C. C.: A correspondence between matrices and quadratic ideals, (1927). Annals of Math. 29, 199-214.
424. Martis, S.: Ricerca di un'espressione razionale per le potenze di una matrice di secondo ordine. R. Accad. Lincei Rend. (6) 8, 130-133.
425. Martis, S.: Sugli esponenziali delle matrici di secondo ordine e loro applicazione alla teoria dei gruppi. R. Accad. Lincei Rend. (6) 8, 276-280.
426. Martis, S.: Calcolo del logaritmo di una matrice di secondo ordine, R. Accad. Lincei Rend. (6) 8, 474-480.
427. Ory, H.: Sur l'équation $x^{n}=a$ ou a est un tableau carré du deuxième ordre. Comptes Rendus 187, 1012-1014.
428. Polya, G.: Uber die Funktionalgleichung der Exponentialfunktionen im Matrizenkalkül. Berlin Sitzb. 1928, 96-99.
429. Porcu-Tortrini, E.: Calcolo delle funzioni qualunque di matrici di second' ordine. R. Accad. Lincei Rend. (6) 7, 206-208.
430. Roth, W. E.: A solution of the matrix equation $P(X)=A$, (1927). Trans. Amer. Math. Soc. 30, 579-596.
431. Schrokta, L.: Ein Beweis des Hauptsatzes der Theorie der Matrizes, (1924). Monatsh. f. Math. u. Phys. 35, 83-86.
432. Toscano, L.: Determinanti involutori, (1927). Rend. R. Ist. Lombardo (2) 61, 187-195.
433. Toscano, L.: Equazioni reciproche a matrice. R. Accad. Lincei Rend. (6) 8, 664-669.
434. Turnbull, H. W.: The theory of determinants, matrices, and invariants. London.
435. Turnbull, H. W.: Non-commutative algebra, (1927). Math. Gaz. 14, 12-22.
436. Turnbull, H. W.: On differentiating a matrix, (1927). Proc. Edinb. Math. Soc. (2) 1, 111-128.
437. Vaidyanathaswamy, R.: Integer roots of the unit matrix. Journ. Lond. Math. Soc. $3,121-124$.
438. Vaidyanathaswamy, R.: On the possible periods of integer-matrices. Journ. Lond. Math. Soc. 3, 268-272.
439. Voghera, G.: Sulla forma canonica delle matrici, (1927). Boll. Un. Mat. Ital. 7, 32-34.
440. Weyl, H.: Gruppentheorie und Quantenmechanik. Leipzig. 1929
441. Beckenbach, E. F.: An inequality for definite hermitian determinants. Bull. Amer Math. Soc. 35, 325-329.
442. Cherubino, S.: Un'applicazione del calculo di matrici alla teoria delle forme quadratiche. Rend. R. Ist. Lomb. (2) 62, 505-514.
443. Chertbino, S.: Alcune osservazioni sulle matrici rettangolari e lora utilità per la decomposizione di una forma quadratica in somme di quadrati. Rend. R. Ist. Lomb. (2) 62, 623-649.
444. MacDuffee, C. C.: An introduction to the theory of ideals in linear associative algebras, (1927). Trans. Amer. Math. Soc. 31, 71-90.
445. MacDuffee, C. C.: On the independence of the first and second matrices of an algebra. Bull. Amer. Math. Soc. 35, 344-349.
446. Martis, S.: Ricerca di un'espressione razionale per le potenze di una matrice del terz'ordine. R. Accad. Lincei Rend. (6) 9, 206-213.
447. Pillai, S. S.: A theorem concerning the primitive periods of integer matrices. Journ. Lond. Math. Soc. 4, 250-251.
448. Roth, W. E.: A convenient check on the accuracy of the product of two matrices. Amer. Math. Monthly 36, 37-38.
449. Schlesinger, L.: Uber den Logarithmus einer Matrix. Crelle 161, 199-200.
450. Scorza, G.: Sulle matrici di Riemann. R. Accad. Lincei Rend (6) 9, 253-258.
451. Shoda, K.: Uber die mit einer Matrix vertauschbaren Matrizen. Math. Zeits. 29, 696-712.
452. Toscano, L.: Equazioni a matrice con radici reali. Tôhoku Math. Journ. 32, 27-31.
453. Tsuji, M.: On the roots of the characteristic equation of a certain matrix. Proc. Imp. Acad. Tokyo 5, 111-112.
454. Wintner, A.: Spektraltheorie der unendlichen Matrizen. Leipzig.
455. Albert, A. A.: The non-existence of pure Riemann matrices with normal multiplication algebras of order sixteen, (1929). Annals of Math. 31, 375-380
456. Albert, A. A.: On the structure of pure Riemann matrices with non-commutative multiplication algebras. Proc. Amer. Nat. Acad. Sci. 16, 308-312.
457. Albert, A. A.: On direct products, cyclic division algebras, and pure Riemann matrices. Proc. Amer. Nat. Acad. Sci. 16, 313-315.
458. Amante, S.: Risoluzione, nel campo delle matrici complesse, di una qualsiasi equazione analitica a coefficienti numerici. R. Accad. Lincei Rend. (6) 12, 290-296.
459. Bell, E. T.: A type of commutative matrices. Bull. Calcutta Math. Soc. 22, 53-60.
460. Born, M. and P. Jordan. Elementare Quantenmechanik Berlin.
461. Browne, E. T.: On the separation property of the roots of the secular equation. Amer. Journ. Math. 52, 843-850.
462. Browne, E. T.: The characteristic roots of a matrix. Bull. Amer. Math. Soc. 36, 705-710.
463. Dienes, P.: The exponential function in linear algeb:as. Quart. Journ. (2) 1, 300-309.
464. Ingraham, M. H.: An elementary theorem on matrices. Bull. Amer. Math. Soc. 36, 673-674.
465. Laura, E.: La teoria delle matrici e il metodo dell' $n \cdot$ edro mobile. Rend. Sem. Mat. Padova 1, 85-109.
466. Loewy, A. and R. Brauer. Ưber einen Satz für unitäre Matrizen. Tôhoku Math. Journ. 32, 44-49.
467. Mehmie, R.: Praktische Lösung der Grundaufgaben über Determinanten, Matrizen n^{0} und lineare Transformationen. Math. Ann. 103, 300-318.
468. Mehmie, R.: Berichtigung, das Aufstellung der identischen Gleichung einer Matrix betreffend. Math. Ann. 104, 167-168.
469. Muir, T.: The literature of Cayleyan matrices. Trans. Roy. Soc. So. Africa 18, 219-225.
470. Nowlan, F. S.: On the direct product of a division algebra and a total matric algebra, (1927). Bull. Amer. Math. Soc. 36, 265-268.
471. Perron, O.: Über eine Matrixtransformation. Math. Zeits. 32, 465-473.
472. Rasch, G.: Om systemer af lineaere differentialligninger. Swende Skandin. Mat. Kongr., 1929, 117-126.
473. Rasch, G.: Om matrixregning og dens anvendelse paa differens- og differentialligninger. Diss. Copenhagen.
474. Roth, W. E.: On the unilateral equation in matrices, (1929). Trans. Amer. Math. Soc. 32, 61-80.
475. Tocchi, L.: Sulla caratteristica delle matrici. Giorn. di Mat. 68, 201-217.
476. Wellstein, J.: Über symmetrische, alternierende und orthogonale Normalformen von Matrizen. Crelle 163, 166-182.

1931
477. Aitken, A. C.: Further studies in algebraic equations and matrices. Proc. Roy . Soc. Edinb. 51, 80-90.
478. Albert, A. A.: The structure of matrices with any normal division algebra of multiplications, (1930). Annals of Math. 32, 131-148.
479. Cecioni, F.: Sull'equazione fra matrici $A X=X A$. Ann. Univ. Toscane 14, fasc. 2, 1-49.
480. Finan, E. J.: A determination of the domains of integrity of the complete rational matric algebra of order 4. Amer. Journ. Math. 53, 920-928.
481. Franklin, P.: Algebraic matric equations. Journ. Math. Phys. 10, 289-314.
482. Galanti, G.: Algoritmi di calcolo motoriale. Accad. Lincei Rend. (6) 13, 861-866.
483. Hasse, H.: Ưber p-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme. Math. Ann. 104, 495-534.
484. Klein, F.: Über rechteckige Matrizen, bei denen die Determinanten maximaler Reihenanzahl teilerfremd zu einem Modul sind. Jbr. Deutsch. Math. Ver. 40, 233-238.
485. Kravcuk, M. and A. Smogorzevskij: Sur les transformations unitaires et orthogonales. Journ. Cycle Math. 1, 3-41.
486. Kravcuk, M.: Sur une inegalité. Bull. Acad. Sci. Ukraine 1, 96-101.
487. Littlewood, D. E.: Identical relations satisfied in an algebra, (1930). Proc. Lond. Math. Soc. (2) 32, 312-320.
488. MacDuffee, C. C.: The discriminant matrices of a linear associative algebra, (1930). Annals of Math. 32, 60-66.
489. MacDuffee, C. C.: The discriminant matrix of a semi-simple algebra, (1930). Trans. Amer. Math. Soc. 33, 425-432.
490. Murnaghan, F. D.: On the representation of a Lorentz transformation by means of two-rowed matrices. Amer. Math. Monthly 38, 504-511.
491. Murnaghan, F. D., and A. Wintner: A canonical form for real matrices under orthogonal transformations. Proc. Amer. Nat. Acad. Sci. 17, 417-420.
492. Nowlan, F. S.: A note on primitive idempotent elements of a total matric algebra, (1927). Bull. Amer. Math. Soc. 37, 854-856.
493. Romanovsky, V.: Sur les zéros des matrices stocastiques. Comptes Rendus 192, 266-269.
494. Schlesinger, L.: Neue Grundlagen für einen Infinitesimalkalkül der Matrizen, (1929). Math. Zeits. 33, 33-61.
495. Spampinato, N. : Algebre elementari, teoria delle semialgebre e ciclipseudoriemanniani. Note Esercit. Mat. 6, 107-245.
496. Takahashi, S.: On the roots of the characteristic equation of a certain matrix. Proc. Imp. Acad. Tokyo 7, 241-243.
497. Thomas, J. M.: Matrices of integers ordering derivatives. Trans. Amer. Math. Soc. 33, 389-410.
498. Thurston, H. S.: On the characteriştic equations of products of square matrices. Amer. Math. Monthly 38, 322-324.
499. Thurston, H. S.: The characteristic equations of the adjoint and the inverse of a matrix. Amer. Math. Monthly 38, 448-449.
500. Turnboll, H. W.: The invariant theory of a general bilinear form, (1930). Proc. Lond. Math. Soc. (2) 33, 1-21.
501. Turnbull, H. W.: Matrix differentiation of the characteristic function. Proc. Edinb. Math. Soc. (2) 2, 256-264.
502. Ward, M.: The algebra of recurring series, (1930). Annals of Math. 32, 1-9.
503. Wedderburn, J. H. M. : Non-commutative domains of integrity. Crelle 167, 129-141.
504. Williamson, J.: Bazin's matrix and other allied matrices. Proc. Edinb. Math. Soc. (2) 2, 240-251.
505. Williamson, J.: The latent roots of a matrix of special type. Bull. Amer. Math. Soc. 37, 585-590.
506. Wintner, A., and F. D. Murnaghan: On a polar representation of non-singular matrices. Proc. Amer. Nat. Acad. Sci. 17, 676-678.

1932

507. Amato, V.: Sulla risoluzione di equazioni nel campo delle matrici complesse. Boll. Accad. Gioenia, Catania, Ser. (2), fasc. 62, 50-55.
508. Bottema, O.: Over machtreekseen van matrices. Nieuw Arch. Wisk. 17, 114-118.
509. Bush, L. E.: Note on the discriminant matrix of an algebra, (1931). Bull. Amer. Math. Soc. 38, 49-51.
510. Cipolla, M.: Sulle matrici espressioni analitiche di un'altra. Rend. Circ. Mat. Palermo 56, 144-154.
511. Eddington, A. S.: On sets of anti-commuting matrices, (1931). Journ. Lond. Math. Soc. 7, 58-68.
512. Menge, W. O.: On the rank of the product of certain square matrices, (1930). Bull. Amer. Math. Soc. 38, 88-94.
513. Mitchell, A. K.: On a matrix differential operator. Bull. Amer. Math. Soc. 38, 251-254.
514. Murnaghan, F. D.: On the unitary invariants of a square matrix. Proc. Amer. Nat. Acad. Sci. 185-189.
515. Mursi-Ahmed, M.: On the composition of simultaneous differential systems of the first order. Proc. Edinb. Math. Soc. (2) 3, 128-131.
516. Newman, M. H. A.: Note on an algebraic theorem of Eddington. Journ. Lond. Math. Soc. 7, 93-99.
517. Pierce, T. A.: The practical evaluation of resultants. Amer. Math. Monthly 39, 161-162.
518. Rutherford, D. E.: On the solution of the matrix equation $A X+X B=C$. Akad. Wet. Amsterdam Proc. 35, 54-59.
519. Rutherford, D. E.: On the canonical form of a rational integral function of a matrix. Proc. Edinb. Math. Soc. (2) 3, 135-143.
520. Rutherford, D. E.: On the rational commutant of a square matrix. Proc. Akad. Wet. Amsterdam 35, 870-875.
521. Schlesinger, L.: Weitere Beiträge zum Infinitesimalkalkül der Matrizen, (1931). Math. Zeits. 35, 485-501.
522. Schreier, O., and E. Sperner: Vorlesungen über Matrizen. Leipzig.
523. SмоноRshevsky, A.: Sur les matrices unitaires du type de circulants. Journ. Cycle Math. 2, 89-90.
524. Takahashi, S.: Zum verallgemeinerten Infinitesimalkalkül der Matrizen. Jap. Journ. Math. 9, 27-46.
525. Turnbull, H. W.,.and A. C. Aiteen: An introduction to the theory of canonical matrices. Edinburgh.
526. Weitzenböck, R.: U'ber die Matrixgleichung $A X+X B=C$. Proc. Akad. Wet. Amsterdam 35, 60-61.
527. Wettzenböck, R.: Über die Matrixgleichung $X^{2}=A$. Proc. Akad. Wet. Amsterdam 35, 157-161.
528. Weitzenböck, R.: Uber die Matrixgleichung $X X^{\prime}=A$. Proc. Akad. Wet. Amstertam 35, 328-330.
529. Williamson, J.: The product of a circulant matrix and a special diagonal matrix. Amer. Math. Monthly 39, 280-285.
530. Wilson, R.: Eliminants of the characteristic equations. Proc. Lond. Math. Soc. (2) 33, 517-524.
531. Eddington, A. S.: On sets of anticommuting matrices. II. The factorization of E-numbers. Journ. Lond. Math. Soc. 8, 142-152.
532. Hensel, K.: Uber die Ausführbarkeit der elementaren Rechenoperationen in Ringen von Systemen. Crelle 169, 67-70.
533. MacDuffee, C. C.: Matrices with elements in a principal ideal ring. Bull. Amer. Math. Soc. 39, 564-584.
534. MacDuffee, C. C.: The theory of matrices. Berlin.
535. Menge, W. O.: Construction of transformations to canonical forms. Amer. Journ. Math. 55, 671-682.
536. Milne-Thomson, L. M.: A matrix representation of ascending and descending continued fractions, (1932). Proc. Edinb. Math. Soc. (2) 3, 189-200.
537. Röseler, H.: Normalformen von Matrizen gegenüber unitären Transformationen. Diss. Darmstadt.
538. Romanovsky, V.: Un théorème sur les zéros des matrices non négative. Bull. Soc. Math. France 61, 213-219.
539. Roth, W. E.: On the equation $P(A, X)=0$ in matrices. Trans. Amer. Math. Soc. 35, 689-708.
540. Rutherford, D. E.: On the condition that two Zehfuss matrices be equal. Bull. Amer. Math. Soc. 39, 801-808.
541. Rutherford, D. E.: On the rational solution of the matrix equation $S X=X T$. Proc. Akad. Wet. Amsterdam 36, 432-442.
542. Sokolvikoff, E. S.: Matrices conjugate to a given matrix with respect to its minimum equation. Amer. Journ. Math. 55, 167-180.
543. Turnbull, H. W.: Diagonal matrices. Proc. Cambr. Phil. Soc. 29, 347-372.
544. Turnbull, H. W.: Matrices and continued fractions, II. Proc. Roy. Soc. Edinb. 53, 208-219.
545. Wegner, U.: Uber die Frobeniusschen Kovarianten. Monatsh. Math. Phys. 40, 201-208.
546. Wegner, C'. and J. Wellstein: Bemerkungen zur Transformation vor. Komplexen symmetrischen Matrizen. Monatsh. Math. Phys. 40, 319-322.
547. Williamson, J.: The expansion of determinants of composite order. Amer. Math. Monthly 40, 65-69.
548. Williamson, J.: Sets of semi-commutative matrices, (1932). Proc. Edinb. Math. Soc. (2) 3, 179-188.
549. Williamson, J.: Matrices whose sth compounds are equal. Bull. Amer. Math. Soc. 39, 108-111.

INDEX TO BIBLIOGRAPHY

Aitken, A. C., 412, 413, 477, 525
Albert, A. A., 455, 456, 457, 478
Amaldi, U., 180, 295
Amante, S., 458
Amato, V., 319, 507
Aramata, K., 400
Autonne, L., 199, 200, 210, 211, 212, 213, 214, 239, 262, 278, 296, 304, 320

Bachmann, P., 164
Baker, H. F., 150, 174, 215, 216, 226
Ball, R., 263
Beck, H., 390
Beckenbach, E. F., 441
Bell, E. T., 459
Bendixson, J., 181, 201
Bennett, A. A., 349
Birkhoff, G. D., 305, 326, 372
Bliss, G. A., 310
Bôcher, M., 247
Boehm, K., 321
Born, M., 385, 391, 460
Bose, A. C., 352
Bottema, O., 508
Brahana, H. R., 373
Brauer, R., 414, 466
Brill, J., 128, 137, 151, 248
Bromwich, T. J. I'A., 187, 188, 189, 190, 191, 233, 240
Browne, E. T., 415, 461, 462
Brunel, G., 76
Bucheim, A., 39, 40, 59, 60, 61, 69, 72, 73, 77, 81, 192
Burgatti, P., 416
Burgess, H. T., 285, 286, 327, 328, 340
Burnside, W., 202, 227
Bush, L. E., 509
Carlini, L., 193, 203
Cartan, E., 253
Carvallo, E., 88
Cayley, A., 2, 3, 7, 12, 22, 23, 62. 63, 70, 89, 90
Cecioni, F., 264, 265, 279. 479
Chapman, C. H., 91
Châtelet, A., 287
Cherubino, S., 442, 443
Cipolla, M., 311, 510

Clifford, W. K., 27
Coolidge, J. L., 353
Cullis, C. E., 306, 329, 336, 341, 358, 386
Cunningham, E., 234
David, L., 288
Dhar, S., 364
Dickson, L. E., 204, 266, 312, 374, 380, 392, 401, 417
Dienes, P., 463
Drach, J., 297
Dubnov, J. S., 393
Eddington, A. S., 511, 531
van Elfrinkhof, L., 101. 102, 129, 130
Élie, B., 109, 289
Fantappiè, L., 418
Finan, E. J., 480
Fischer, E., 402
Forsyth, A. R., 41
Franklin, F., 116
Franklin, P., 370, 481
Frisch, R., 403
Frobenius, G., 18, 19, 20, 24, 25, 138, 139, 140, 217, 254, 267, 280, 290, 291, 292, 298

Galanti, G., 482
Gamberini, G., 268, 270
Ghosh, N., 354
Gibbs, J. W., 74, 194, 241
Giorgi, G., 419, 420
Grassmann, H., 5
Hamilton, W. R., 1, 4, 6, 8
Hasse, H., 375, 483
Hawkes, H. E., 281
Heisenberg, W., 391
Hensel, K., 131, 205, 228, 394, 421, 532
Hilton, H., 299, 300, 301, 302, 307, 313, 314
Hitchcock, F. L., 365, 376
Hirsch, A., 206
Hudson, R. W. H. T., 218
Hurwitz, A., 117
Hutchinson, J. I., 282
Ingraham, M. H., 464

Jackson, D., 271
Joly, C. J., 132, 141, 142, 165, 195, 219, 220, 235
Jordan, P., 385, 391, 460
Kagan, V. F., 395
Karst, L., 272
Klein, F., 484
Kowalewski, G., 337, 422
Kravcuk, M., 322, 381, 382, 404, 485, 486
Kreis, H., 242, 255, 283
Kronecker, L., 92
Krull, W., 359, 396
Kürschák, J., 383, 387
Kumamoto, A., 71
Laguerre, E. N., 9
Laisant, C.-A., 26
Landsberg, G., 143, 205
Langer, R. E., 372
Lattès, S., 303, 323, 330
Laura, E., 465
Laurent, H., 144, 152, 166, 229
Leveugle, R., 355
Levi, B., 331
Littlewood, D. E., 487
Loewy, A., 153, 154, 167, 168, 182, 183, 196, $284,308,338,342,343,356,466$
Logsdon, M. I., 366
McAulay, A., 110
MacDuffee, C. C., 397, 423, 444, 445, 488, 489, 533, 534
Martis, S., 424, 425, 426, 446
Mehmke, R., 377, 467, 468
Menge, W. O., 512, 535
Metzler, W. H., 103, 111, 118, 119, 120, 315
Meyer, W. F., 297
Milne-Thomson, L. M., 536
Mitchell, A. K., 513
Molenbroek, P., 93
Molien, T., 104
Moore, C. L. E., 344_{4}
Morrice, G., 78
Muir, T., 64, 169, 345, 384, 469
Murnaghan, F. D., 490, 491, 506, 514
Mursi-Ahmed, M., 515
Muth, P., 175, 236
v. Neumann, J., 405

Newman, M. H. A., 516
Nicolletti, O., 207, 256
Nowlan, F. S., 470, 492

Ory, H., 427
Peano, G., 75, 121
Peirce, B., 17
Peirce, C. S., 28, 34, 35
Perron, O., 249, 324, 471
Petr, K., 243, 244
Phillips, H. B., 344,350
Pidduck, F. B., 357
Pierce, T. A., 517
Pillai, S. S., 447
Pincherle, S., 145
Plarr, G., 21, 29
Plemelj, J., 197
Polya, G., 428
Porcu-Tortrini, E., 406, 407, 408, 429
Rabinovic, J., 293
Radon, J., 367
Rados, G., 94, 105, 106, 146, 147, 170, 176, 221, 222
Ranum, A., 257, 294
Rasch, G., 472, 473
Ravut, L., 171
Riley, J. L., 398
Röseler, H., 537
Romanovsky, V., 493, 538
Rost, G., 107
Roth, W. E., 430, 448, 474, 539
Rutherford, D. E., 518, 519, 520, 540, 541
Schlesinger, L., 133, 184, 237, 258, 449, 494, 521
Schreier, O., 522
Schrutka, L., 431
Schur, I., 198, 208, 238, 273, 368, 388, 409
Scorza, G., 332, 346, 360, 361, 362, 450
de Séguier, J. A., 230, 250, 259, 260, 274
Sforza, G., 122
Shaw, J. B., 155, 177, 223, 251, 369
Shoda, K., 451
Smohorshevsky, A., 485, 523
Sokolnikoff, E. S., 542
Spampinato, N., 410, 495
Speiser, A., 351
Sperner, E., 522
Stein, J., 316
Stephanos, C., 172, 178, 185
Study, E., 95, 179, 253, 347
Sylvester, J. J., 30, 31, 32, 33, 36, 37, 38, 42, $43,44,45,46,47,48,49,50,51,52,53,54$, $55,56,57,58,65,82$
Szász, O., 339, 363

Taber, H., 84, 96, 97, 98, 99, 112, 113, 114, 115, Ward, M., 502
123, 124, 125, 126, 134, 135, 148, 149, Wedderburn, J. H. M., 224, 232, 245, 252,

156, 157, 158, 231, 333
Tait, P. G., $10,11,13,14,15,16,159,160$, 161, 186
Takahashi, S., 496, 524
Thomas, J. M., 497
Thurston, H. S., 498, 499
Tocchi, L., 475
Toeplitz, O., 348
Toscano, L., 432, 433, 452
Tsuji, M., 453
Turnbull, H. W., 411, 434, 435, 436, 500, 501, 525, 543, 544

Vaidyanathaswamy, R., 437, 438
Veblen, O., 370
Voghera, G., 439
Volterra, V., 209
Voss, A., 85, 86, 108, 162, 163

309, 317, 318, 325, 371, 389, 399, 503
Wegner, U.., 545, 546
Weinstein, A., 378
Weitzenböck, R., 526, 527, 528
Wellstein, J., 225, 275, 276, 476, 546.
Weltzien, C., 379
van Wettum, T. B., 87, 100, 127, 136
Weyl, H., 440
Weyr, E., 66, 67, 68, 79, 80, 83
Whitehead, A. N., 173
Whittaker, E. T., 334
Widder, W., 277, 335
Williamson, J., 504, 505, 529, 547, 548, 549
Wilson, E. B., 194, 261
Wilson, R., 530
Wintner, A., 454, 491, 506
Wirth, J., 246

INDEX

Absolute value, 125 ff ., 171
Adjoint, 7, 66
Algebraic functions, 119
Algebras, 147 ff .
basis of, 148
classification of, 158
difference, 153
division, 147, 159, 162
group, 167
index of, 153
matric, 156, 159
matric representation of, 149
nilpotent, 153
radical of, $154,157 \mathrm{ff}$.
semi-simple, 154, 159 ff ., 168
simple, 154, 159 ff .
Associated matrix, 76 ff., 96
determinant of, 79
irreducible, 85
Associative algebra, 147
Automorphic transformation, 140 ff., 171
Baker, H. F., 170
Basis, 2, 10, 11, 13, 73, 148, 150
change of, 9
canonical, 54
fundamental, 3, 11
linear elementary, 52
normal, 49, 55
orthogonal, 12
reciprocal, 11
unitary, 13
Bibliography, 172
index to, 194
Bilinear form, 9, 68 ff ., 128, 140
Bordered determinant, 67
Born, M., 135
Canonical basis, 54, 55
form, 41, 62, 90
of a function, 166
rational, 123
Cayley, 169, 170, 171
Chain, 44, 55
Characteristic, 39
equation, 23, 112, 169
function, 23, 24

Christoffel symbols, 133
Classification of algebras, 158
Cogredient transformation, 98 ff .
Commutative matrices, 20, 27, 102 ff .
Complement, 64
Complementary subspace, 3,50
Complex, 150
Components, 1
Compound matrices, 64 ff .
determinant of, 66
roots of, 67
supplementary, 65, 126
Contravariant vector, 132
Coordinates, 1, 4, 72
Covariant differential operator, 134
vector, 132
Decomposable representation, 165 ff .
Definite, 92, 100
Degree invariants, 48
Derivative, 128
covariant, 135
Determinants, 7, 64, 66, 67
bordered, 67
compound, 69
vector, 73, 170
Dextrolateral, 115, 130
Dickson, L. E., 170
Difference algebra, 153
Differential, 131
Differential operator, 131, 135
covariant, 134
Differentiation formulae, 136
Direct product, 74, 108, 151, 158 sum, 151, 161
Division algebra, 147, 159, 162
Division of polynomials, 21
Divisors, elementary, 38 ff., $88,92,93,105$, 125

Elementary divisors, 38 ff ., 93, 105
of matrix, $39,93,125$
of hermitian matrix, 88
of real skew-matrix, 88
of real symmetric matrix, 88, 93
of orthogonal matrix, 92
of unitary matrix, 92

Elementary transformation, 33 ff ., 47, 169
integral set, 50
linear set, 52 ff .
polynomial, 21, 50
set, 49
Equation, characteristic, 23, 112
reduced, 24 .
$y^{m}=x, 119$
Equivalent, 34, 47, 76, 85, 100
strictly, 48, 55, 61, 99
Exponential function, 116, 122, 171

Factors, determinantal, 36
invariant, 36, 37, 52, 71, 107, 170
Field, 1, 147
Forms, bilinear, 9, 68 ff., 128, 140
hermitian, 92, 94
Francke, 69
Frobenius, 106, 150, 169, 170
Function, algebraic, 119
canonical form, 116
characteristic, 23, 32
exponential, 116, 122, 171
Kronecker delta, 6
linear vector, 3
logarithmic, 116, 122
of matric variable, 115, 135
of commutative matrices, 110
of matrix, $26,28,29,30,115 \mathrm{ff}$.
of scalar variable, 128
of vector variable, 130, 132
reduced characteristic, 24
Fundamental basis, 3
unit matrices, 5

Grade, 16, 73, 74
Grassmann, 16, 64, 169, 170, 171
Ground of matrix, 15, 61
Group algebra, 167
Hadamard, 126
Hamilton, 131, 169, 170, 171
Hamiltonian function, 137
Hermite, 171
Hermitian forms, 92 ff.
matrices, 88 ff .
elementary divisors, 88, 93
invariant vectors, 90
rank, 89
roots, 88,170
signature, 95
Hilton, H., 170

Hurwitz, A., 170
Hypernumber, 1, 72

Idempotent elements, 29, 42, 154, 162
matrix, 7, 29
Identities, 20, 111
Identity matrix, 5
Index, of algebra, 153 of chain, 55 of nilpotent matrix, 7
Induced matrix, 75
Infinite products, 127, 171
series, 115
Integral, 129
Integral set, 47 ff., 120
elementary, 50, 52
Interpolation formula, 26, 28
Intersection, 150
Invariant, 48
degree, 48
factors, $36,38,52,71,107,170$
Kronecker, 55
of hermitian matrix, 90
subalgebra, 152, 161
subspaces, 166
vectors, 43 ff., 169, 170
Irreducible transformable sets, 85
algebra, 161
Jacobian matrix, 132
Kronecker, 99, 170
delta function, 6
invariants, 55
reduction, 96
Laevolateral, 115, 130
Lagrange, 25, 68
Laguerre, 169, 171
Laplace, 63, 66
Latent roots, 24
Linear algebra, 147 ff .
dependence, 2, 10, 16
elementary bases, 52
polynomial, 37 ff ., 170
singular, 55 ff ., 170
set, 2, 19
transformable, 80
transformation, 1
vector function, 3
Loewy, A., 170, 171
Logarithm, 116, 122

McAulay, A., 135
Matric function of scalar variable, 128
polynomials in scalar variable, $20,21,22$,
$24,27,29,30,33 \mathrm{ff} ., 71,115,130$
invariant factors, 36
linear, 37 ff ., 55 ff .
normal form, 34
representation of algebra, 149
subalgebras, 156, 159
Matrix, 3, 169
adjoint, 7
associated, 76
compound, 64
conjugate, 8
hermitian, 88
induced, 75
Jacobian, 132
orthogonal, 12
power, 75
product transformation, 75
scalar, 5, 6
skew, $8,88,91$
symmetric, $8,88,90$
transposed, 8
transverse, 8, 9
unitary, 13
Muir, 169
Muth, 170
Nilpotent algebra, 153
matrix, 7
Normal basis, 49, 55
form, 34
Nullity, 15, 169
Nullspace, 15, 43, 45, 69
Operator, covariant differential, 134
matric differential, 135
vector differential, 131
Order of complex, 150 of set, 2
Orthogonal basis, 12
matrix, 12, 90, 91, 92, 142
Partial elements, 42
Peano, 171
Peirce, 169
Permanent, 75
Pole, 43
Polynomial, elementary, 21, 50
linear, 37 ff ., 55 ff .
matric, 20, 24, 25, 26, 33 ff., 115
normal form, 34
scalar, 26, 28, 30, 106
vector, 47 ff .
Power matrix, 75
Powers of matrix, 6, 26, 120
Primitive idempotent element, 155, 162
Principal idempotent elements, 29
nilpotent elements, 29
unit, 147, 155
Product of complexes, 150
direct, 74, 108, 151, 158
infinite, 127, 171
of matrices, 4
of tensors, 72
scalar, 9,63
transformation, 75
Quasi-hermitian forms, 92 ff .
Quasi-orthogonal, 93
Radical, 154, 157 ff.
Rados, 170
Rank, 14, 16, 34,'69, 96, 169
hermitian matrix, 89, 94
Reciprocal bases, 11
Reduced characteristic function, 24, 32 equation, 24
Reducible matrix, 31, 77
representation, 165, 167
Reduction of bilinear forms, 68
hermitian forms, 93, 96
quadratic forms, 93,96
Regular matrix, 7 representation, 166, 167
Remainder theorem, 22, 169
Representation of algebra, 149, 165
Roots of associated matrix, 79 commutative matrices, 111
compound matrix, 67
permitian matrix, 88, 170
matric function, $26,29,30,111$
matrix, 24, 27
orthogonal matrix, 91
skew matrix, 91, 170
symmetric matrix, 88,170
unitary matrix, 91
0 and $1,118,171$
Scalar, 1, 9, 63, 81
matrix, 5, 6
polynomials, $26,28,30$
Schur, I., 170
Semi-definite, 92
Semi-simple algebra, 154,158 ff., 168

Series, infinite, 115
Set, elementary, 49, 52, 55
integral, 47 ff .
linear, 2, 19
transformable, 80, 85
order of, 2
Signature, 95, 100
Similar matrices, 11, 25, 38, 41, 113, 141
linear elementary sets, 55
Simple algebra, 154 ff .
Singular, 7, 158
Skew matrix, 8, 93, 96, 99, 142 real, 88,91
Smith, 170
Square root, 30, 118, 169
Stephanos, 170
Subalgebra, invariant, 152, 161 matric, 156 ff .
semi-invariant, 163 ff .
Subspace, 2
complementary, 3
Supplementary compound, 65, 126
Sum of complexes, 150 of matrices, 4
Sylvester, 69, 80, 111, 113, 169, 170, 171
Sylvester's identities, 111
Symmetric matrices, 8, 93, 95, 96, 99, 101, 142
real, $88,90,95$
Taber, 135, 170, 171
Tait, 170
Tensor, 73
absolute value, 127
product, 72
scalar product, 81

Trace, 26, 125, 135, 136, 150, 155
Transform, 11
Transformable linear sets, 80,85
systems, 79
Transformation, automorphic, 140 ff., 171
cogredient, 98
elementary, 33 ff ., 47, 169
product, 75
Transverse, 8, 9, 11, 141
Turnbull, H. W., 135

Unit matrices, 5, 11, 108, 169
principal, 147, 155, 156, 161
tensor, 73
vector, 3
Unitary basis, 13
matrix, 13, 90, 91, 92

Vector, 1, 74
complement, 64
contravariant, 132
convariant, 132
invariant, 43, 90, 169, 170
function of, 130, 132
grade, 16, 74
polynomials, 47 ff .
product, 72
pure, 16, 74
scalar product, 9
unit, 3
Voss, 171

Weierstrass, 170
Weyl, H., 86, 170

1903
214 (a) Baker, H. F.: On the integration of linear differential equations (1902). Proc. Lond. Math. Soc. 35, 333-378.
220 (a) Kronbckbr, L.: Vorlesungen über die Theorie der Deterninante (1883-1891). Leipzig.
1922
363 (a) Bennett, A. A.: Some algebraic analogues in matric theory. Annals of Math. (2) 23, 91-96.
364 (a) Franklin, F.: Generalized conjugate matrices. Annals of Math. (2) 23, 97-100.
1925
386 (a) Hilton, H.: (Question 2165). Intermédiaire Math. (2) 4, 106-107.
1927
399 (a) Andrboli, G.: Sulla teoria di certi determinanti decomponibili in fattori, e sulle teoria delle algebre. Note Eserc. Mat. Catania 5, 22-35, 105-115.

1931
489 (a) Mitchble, A. K. : A note on the characteristic determinant of a matrix. Amer. Math. Monthly 38, 386-388.
494 (a) Smith, T.: Tesseral matrices. Quart. Journ. (2) 2, 241-251.
1932
509 (a) Caubr, W.: Über Funktionen mit positiven Realteil (1931). Math. Ann. 106, 369-394.
511 (a) Krishnamurthy Rao, S.: Invariant-factors of a certain class of linear substitutions. Journ. Indian Math. Soc. 19, 233-240.
511 (b) Krull, W.: Matrizen, Moduln und verallgemeinerte Abelsche Gruppen im Bereich der ganzen algebraischen Zahlen. Sitzb. Heid. Akad. Wiss., Math-Nat. Kl. 1932, Abh. 2, 13-38.
511 (c) Newman, M. H. A.: Note on an algebraic theorem of Eddington. Journ. Lond. Math. Soc. 7, 93-99, 272.

1933
530 (a) Aitken, A. C.: On the canonical form of the singular matrix pencil. Quart. Journ. Math. (2) 4, 241-245.

530 (b) Amante, S.: Sulla riduzione a forma canonica di una classe speciale di matrici. R. Accad. Lincei Rend. (6) 17, 31-36, 431-436.
536 (a) Mitchele, A. K.: The Cayley-Hamilton theorem. Amer. Math. Monthly 40, 153-154.
545 (a) Wegner, U.: The product of a circulant matrix and a special diagonal matrix. Amer. Math. Monthly 40, 23-25.
548 (a) Williamson, J.: Sets of semi-commutative matrices. Proc. Edinb. Math. Soc. (2) 3, 179-200, 231-240.

550 Aitken, A. C.: The normal form of compound and induced matrices. Proc. Lond. Math. Soc. (2) $38,354-376$.

551 Albert, A. A.: On the construction of Riemann matrices I (1933). Annals of Math. (2) 35, 1-28.
552 Albert, A. A.: A solution of the principal problem in the theory of Riemann matrices. Annals of Math. (2) 35, 500-515.
553 Albert, A. A.: The principal matrices of a Riemann matrix. Bull. Amer. Math. Soc. 40, 843-846.

554 Duncan, W. J., and A. R. Collar : A method for the solution of oscillation problems by matrices. Phil. Mag. (7) 17, 865-909.
555 Franz, W.: Elementarteilertheoric in algebraischen Zahlkörper. Journ. reine angew. Math. 171, 149-161.
556 Hzrmann, A.: Über Matrixgleichungen und die Zerlegung von Polynomen in Linearfaktoren. Compositio Math. 1, 284-302.
557 Hopkins, C.: An elementary proof of the theorem that the most general matrix commutative with a given n-rowed square matrix involves at least n arbitrary parameters. Tôhoku Math. Journ. 39, 358-360.
558 Jacobsthal, E.: Zur Theorie der linearen Abbildungen. Sitzb. Berl. Math. Ges. 33, 15-34.
559 König, K.: Die Vektormatrizen als Verallgemeinerung der Quaternionen. Mitt. Math. Ges. Hamburg 7, 232-237.
560 Littlewood, D. E.: Note on the anticommuting matrices of Eddington. Journ. Lond. Math. Soc. 9, 41-50.
561 McCor, N. H.: On quasi-commutative matrices. Trans. Amer. Math. Soc. 36, 327-340.
562 Metzler, W. H.: A new theorem concerning the rank of a matrix. Amer. Math. Monthly 41, 607-608.
563 Nakano, H. : Über die Matrixfunktion. Jap. Journ. Math. 11, 9-13.
564 Nowlan, F. S.: Transformations which leave invariant the multiplication table of a total matric algebra. Tôhoku Math. Journ. 39, 372-379.
565 Pirne, K.: Regning med matriser. Norsk Mat. Tidsskr. 16, 33-55.
566 Rasch, G.: Zur Theorie und Anwendung. des Produktintegrals. Journ. reine angew. Math. 171, 65-119.
567 Roth, W. E.: On direct product matrices. Bull. Amer. Math. Soc. 40, 461-468.
568 Rusam, F.: Matrizenringe mit Koeffizienten aus Ringen ganzer Zahlen. Diss. Erlangen 1934.
569 Scorza, G.: Sulla riduzione a forma canonica di una classe speciale di matrici. Rend. Accad. Sci. Fis. Mat. Napoli (4) 4, 154-156.
570 Schwbrdtpeger, H.: Sur les racines charactéristiques des matrices de formes linéaires. Comptes Rendus 199, 508-510.
571 Seitz, F.: A matrix-algebraic development of the crystallographic groups. I. Zeits. Kristall. A 88, 433-459.
572 Szücs, A.: Sur les équations définissant une matrice en fonction algébrique d'une autre. Acta Litt. Sci. Szeged 7, 48-50.
$573 \mathrm{~T}_{\text {rott, }}$ G. R.: On the canonical form of a non-singular pencil of Hermitian matrices. Amer. Journ. Math. 56, 359-371.
574 Turnbull, H. W.: Power vectors, Proc. Lond. Math. Soc. (2) 37, 106-146.
575 Wedderburn, J. H. M.: Lectures on matrices. New York.
576 Weyc, H .: On generalized Riemann matrices. Annals of Math. (2) 35, 714-729.
577 Whyburn, W. M.: Matrix differential equations. Amer. Journ. Math. 56, 587-592.
578 Wintner, A.: Über die automorphen Transformation beschränkter nicht-singuläre hermitscher Formen. Math. Zeits. 38, 695-700.

1935
579 Albrrt, A. A.: Involutorial simple algebras and real Riemann matrices. Annals of Math. (2) 36, 886-964.
580 Andreoli, G.: Sulle funzioni di composizione di matrici. (Funzioni isogene.) Atti Accad. Sci. Fis. Mat. Napoli (2) 20, no. 10, 1-31.
581 Browne, E. T.: On the matric equations $\mathrm{P}(\mathrm{X})=\mathrm{A}$ and $\mathrm{P}(\mathrm{A}, \mathrm{X})=\mathrm{O}$. Bull. Amer. Math. Soc. 41, 737-743.

582 Burington, R. S.: Matrices in electric circuit theory. Journ. Math. Phys. 14, 325-349.
583 Chbrubino, S.: Sul rango delle matrici pseudonulle. Boll. Un. Mat. Ital. 14, 143-149.
584 Chbrubino, S.: Sopra un teorema particolare e sui due fondamentali nella teoria delle matrici. Boll. Un. Mat. Ital. 14, 230-234.
585 Cherubino, S.: Sulle matrici permutabili e diagonalizzabili. Atti Accad. Pelor. Messina 37, 299-308.
586 Duncan, W. J., and A. R. Collar: Matrices applied to motions of damped systems. Phil. Mag. (7) 19, 197-219.

587 Finan, E J.: On the number theory of certain non-maximal domains of the total matric algebra of order 4. Duke Math. Journ. 1, 484-490.
588 Flood, M. M.: Division by non-singular matric polynomials. Annals of Math. (2) 36, 859-869.
589 Gantmacher, F., and M. Krein: Sur les matrices oscillatoires. Comptes Rendus 201, 577-579.
590 Harris, L.: The theory of linear matrix transformations with applications to the theory of linear matrix equations. Journ. Math. Phys. 13, 299-420.
591 Herrmann, A.: Lineare Differentialsysteme und Matrixgleichungen. Proc. Akad. Wet. Amsterdam 38, 394-401.
592 Ingraham, M. H., and K. W. Wegner: The equivalence of pairs of Hermitian matrices. Trans. Amer. Math. Soc. 38, 145-162.
593 König, K.: Über Vektormatrizen II. Mitt. Math. Ges. Hamburg 7, 253-258.
594 Kwal, B.: Sur la représentation matricielle des quaternions. Bull. des Sci. Math. (2) 59, 328-332.
595 Lappo-Danilevskij, J. A.: Mémoires sur la théorie des systèmes des équations différentielles linéaires II. Trav. Inst. Phys.-Math. Stekloff 7, 1-210.
596 Ledbrmann, W.: Reduction of singular pencils of matrices. Proc. Edinb. Math. Soc. (2) 4, 92-105.
597 Littlewood, D. E.: On induced and compound matrices. Proc. Lond. Math. Soc. (2) 40, 370-381.
598 MacDurfer, C. C., and E. D. Jenkins: A substitute for the Euclid algorithm in algebraic fields. Annals of Math. (2) 36, 40-45.
599 McCoy, N. H.: On the rational canonical form of a function of a matrix. Amer. Journ. Math. 57, 491-502.
600 Oldenburger, R.: Canonical triples of bilinear forms. Tobhoku Math. Journ. 41, 216-221.
601 Parker, W. V.: The degree of the highest common factors of two polynomials (1934). Amer. Math. Monthly 42, 164-166.
602 Romano, S.: Clebschiano di rette definito da matrice nulla. Atti Accad. Pelor. Messina 37, 35-42.
603 Schibfner, L. M.: On the m-th power of a matrix. C. R. Acad. Sci. WRSS 1, 599-601.
604 Schirfner, L. M.: (On the m-th power of a matrix), (Russian with English summary). Rec. Math. Moscou 42, 385-394.
605 Schluckbbier, M. L.: Äquimodulare Matizen. Diss. Bonn.
606 Schwerdtprger, H.: Sur les fonctions de matrices. Comptes Rendus 201, 414-416.
607 Serrz, F.: A matrix-algebraic development of the crystallographic groups II. Zeits. Kristall. A 90, 289-313.
608 Seitz, F.: (same title) III. Zeits. Kristall. A 91, 336-366.
609 Sibgel, C. L.: Über die analytische Theorie der quadratischen Formen (1934).Annals of Math. (2) $36,527-606$.

610 Tognetti, M.: Sulle matrici permutabili. R. Accad. Lincei Rend. (6) 21, 149-196.
611 Tognetti, M.: Sulla riduzione a forma canonica di una classe speciale di matrici. Atti Acead. Sci. Torino 71, 97-104.
612 Toscano, L.: Una equazione a matrice circolante. Bull. Un. Mat. Ital. 14, 293-296.

613 Trump, P. L.: On a reduction of a matrix by the group of matrices commutative with a given matrix. Bull. Amer. Math. Soc. 41, 374-380.
614 Turnbull, H. W.: On the reduction of singular matrix pencils. Proc. Edinb. Math. Soc. (2) 4, 67-76.
615 Turnbull, H. W.: On the equivalence of pencils of Hermitian forms. Proc. Lond. Math: Soc. (2) 39, 232-248.

616 Wazewski, T.: Sur les matrices dont les éléments sont des fonctions continues. Compositio Math. 2, 63-68.
617 Werjbitzky, B.: (La convergence absolue des séries potentielles de plusieurs matrices.) (Russian with French summary). Rec. Math. Moscou 42, 725-736.
618 Werjertzky, B. : (La simplification des séries de plusieurs matrices.) (Russian with French summary). Rec. Math. Moscou 42, 737-743.
619 Whitney, H.: On the abstract properties of linear dependence. Amer. Journ. Math. 57, 509-533.
620 Williamson, J. : A polar representation of singular matrices. Bull. Amer. Math. Soc. 41, 118-123.
621 Williamson, J.: The simultaneous reduction of two matrices to triangle form. Amer. Jour. Math. 57, 281-293.
622 Williamson, J.: The equivalence of non-singular pencils of Hermitian matrices in an arbitrary field. Amer. Journ. Math. 57, 475-490.
623 Wittmeyer, H.: Einfluss der Änderung einer Matrix auf die Lösung des zugehörigen Gleichungssystems, sowie auf die Eigenvektoren. Diss. Darmstadt 1935.

1936

624 Andrubtto, G.: Sul modulo di una matrice. Rend. R. Ist Lomb. (2) 69, 300-308.
625 Boruvka, O.: Sur les matrices singulières. Comptes Rendus 203, 600-602, 762.
626 Bydzovsky, B.: Sur les matrices orthogonales symétriques. Cas. Mat. Fys. 65, 189-194.
627 Chbrubino, S. : Fonctions holomorphes de matrice. Comptes Rendus 202, 1892-1894.
628 Cherubino, S.: Sulla riduzione delle matrici a forma canonica. R. Accad. Lincei Rend. (6) 23, 478-482, 647-653.
629 Cherubino, S.: Sulle radici caratteristiche delle funzioni olomorfe di matrici. R. Accad. Lincei Rend. (6) 23, 846-849.
630 Chbrubino, S.: Sulle matrici permutabili con una data. Rend. Sem. Mat. Padova 7, 128-156.
631 Chrrubino, S.: Estensione, mediante il calcolo delle matrici, alcuni teoremi sulle omografie degli iperspazi. Scritti Mat. Off. Luigi Berzolari 431-437.
23 Chbrubino, S.: Su certe equazioni fondamentali e sul simbolismo delle matrici. Rend. Sem. Mat. Roma (4) 1, 96-109.
33 Chevalley, C.: L'arithmétique dans les algèbres de matrices. Actualités Scientifiques et Industrielles. 323. Paris.
4 Combssatti, A.: Intorno ad un nuovo carattere delle matrici di Riemann. Mem. Accad. Ital. 7, 81-129.
635 Eckhart, C., and G. Young: The approximation of one matrix by another of lower rank. Psychometrika 1, 211-218.
Fiting, H.: Über den Zusammenhang zwishen dem Begriff der Gleichartigkeit zweier Ideale und den Äquivalenzbegriff der Elementarteilertheorie. Math. Annals 112, 572-582.
637 Herrmann, A.: Remarques sur un théorème de Sylvester. Enseignement Math. 34, 332-336.
638 Kraus, F.: Über konvexe Matrixfunktionen. Math. Zeits. 41, 18-42.
639 Ledermann, W.: On singular pencils of Zehfuss, compound, and Schläflian matrices. Proc. Roy. Soc. Edinb. 56, 50-89.

640 Ledrrmann, W.: The automorphic transformations of a singular matrix pencil. Quart. Journ. Math. (2) 7, 277-289.
641 McCoy, N. H.: On the characteristic roots of matric polynomials. Bull. Amer. Math. Soc. 42, 592-600.
642 MacDupper, C. C.: A recursion formula for the polynomial solutions of a partial differential equation. Bull. Amer. Math. Soc. 42, 244-247.
643 MacDuppee, C. C.: On a fundamental theorem in matric theory. Amer. Journ. Math. 58, 504-506.
644 Motzkin, Th.: On vanishing coaxial minors. Proc. Edinb. Math. Soc. (2) 4, 210-217.
645 Pauli, W.: Contributions mathematiques à la théorie des matrices de Dirac. Annals Inst. Poincaré, 6, 109-136.
646 Raiford, T. E.: Geometry as a basis for canonical forms. Amer. Math. Monthly 43, 82-89.
647 Richardson, A. R.: Conjugate matrices. Quart. Journ. Math. (2) 7, 256-270.
648 Ringhart, R. F.: Some properties of the discriminant matrices of a linear associative algebra. Bull Amer. Math. Soc. 42, 570-576.
649 Roth, W. E.: On the characteristic values of the matrix f(A, B). Trans. Amer. Math. Soc. 39, 234-243.
650 Roth, W. E.: On k-commutative matrices. Trans. Amer. Math. Soc. 39, 483-495.
651 Schirokow, P.: (Über den Rand des Wertvorrates der Matrix) (Russian with German summary). Bull. Soc. Phys.-Math. Kazan (3) 7, 89-96.
652 Schwbrdtpeger, H. : Über mehrdeutige Matrixfunktionen. Compositio Math. 3, 380-390.
653 Serrz, F.: A matrix-algebraic development of the crystallographic groups IV. Zeits. Kristall. A 94, 100-130.
654 Specht, W.: Zur Theorie der Matrizen. Jbr. Deutsch. Math. Ver. 46, 45-50.
655 Toscano, L.: Sulle potenze di una matrice del secondo ordine. R Accad. Lincei Rend. (6) 23, 493-495.
656 Turnbule, H. W., and J. Williamson: Hereditary matrices. Proc. Lond. Math. Soc. (2) 41, 57.76.

657 Wililiamson, J.: On the equivalence of two singular matrix pencils. Proc. Edinb. Math. Soc. (2) 4, 224-231.

658 Williamson, J.: The idempotent and nilpotent elements of a matrix. Amer. Journ. Math. 58, 747-758.
659 Weyd, H.: Generalized Riemann matrices and factor sets. Annals of Math. (2) 37, 709-745.
660 Wolp, L. A.: Similarity of matrices in which the elements are real quaternions. Bull. Amer. Math. Soc. 42, 737-743.
$661 Z_{\text {IA-ud-Din, }}$ M. : Invariant matrices and S-functions. Proc. Edinb. Math. Soc. (2) 5, 43-45.

[^0]: ${ }^{1}$ In these Notes, numbers refer to the Bibliography unless otherwise indicated.

