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Chapter 1

Introduction: Questions, Motivations,
Problems

What’s the difference between an affine space and a linear
space (vector space)?

What are affine maps?

What’s Euclidean space?

What’s Euclidean geometry?

What’s an isometry?

What’s a rotation?

What’s the difference between a rotation and an orthog-
onal matrix (with det = 1)?
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What’s a self-adjoint map?

Why do self-adjoint maps have real eigenvalues? Why
can they be diagonalized using orthogonal matrices?

How does one solve an “inconsistent” linear system

Ax = b,

e.g., when there are more equations than variables?
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Some Answers

The set of rotations of Euclidean n-space En forms a
group SO(n).

The group SO(n) is generated by the hyperplanes reflec-
tions. In fact, n reflections suffice.

Rotations in SO(3) can be “represented” by a quaternion.

Rotations in SO(4) can be “represented” by two quater-
nions.

The group SO(n) is a (path-connected) topological space.

The group SO(n) has a (smooth) differential structure.
The notion of tangent space at a point makes sense.
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This makes SO(n) into a Lie group.

The tangent space so(n) (at the origin) has some addi-
tional structure: it is a Lie algebra .

There is a map

exp: so(n) → SO(n)

called the exponential map. It provides a local represen-
tation of the space.

Similarly, the rigid motions of Euclidean affine space form
a Lie group SE(n), etc.

The exponential map can be used to interpolate in SO(n)
or SE(n). There are applications to motion interpola-
tions.

Lie groups pop up naturally in certain problems in robotics
and computer vision.
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Often, it is necessary to find out the number of “degrees
of freedom” and this turns out to be the dimension of the
Lie group.

Chris Geyer (Ph.D. under Kostas Daniilidis) used Lie
groups in an interesting way in his dissertation on cata-
dioptric sensors (and mirrors).

Every n× n-matrix A can be written as

A = QS

where Q is orthogonal and S is symmetric with non-
negative eigenvalues (the polar form).

Every n× n-matrix A can be written as

A = V DU⊤

where U and V are orthogonal and D is a diagonal ma-
trix with non-negative entries (singular value decompo-
sition, or SVD).
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The SVD can be used solve an “inconsistent” linear sys-
tem

Ax = b.

We solve the least squares problem : Minimize ‖Ax− b‖.

It can be shown that there is a vector x of smallest
norm minimizing ‖Ax− b‖. It is given by the (Penrose)
pseudo-inverse (itself given by the SVD).

All this suggests studying some basic of
Euclidean Geometry and
Lie groups and Lie algebras.
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I. Some problems in 3D-Mesh Generation

There is a class of problems, including 3D-mesh genera-
tion in medical imaging, notably brain imaging, where it
is necessary to construct a 3D-tetrahedral mesh (a “tetra-
hedrization”) from an input polyhedron (image data) pos-
sibly with boundaries.

One of the major difficulties is that such a polyhedron is
usually not convex. If the input is convex, a 3D-Delaunay
triangulation (i.e., a decomposition of the convex body
into tetrahedra, a “tetrahedrization”) is a very satisfac-
tory answer.

Furthermore, a nonconvex polyhedron cannot always
be triangulated by tetrahedra without adding extra ver-
tices!

How do we cope with these problems?
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There are at least two possible attacks:

(1) Conformal Delaunay triangulations. This means, De-
launay tetrahedral triangulations whose vertices and
faces include the vertices and faces of the original in-
put polyhedron.

Their construction requires the addition of new ver-
tices and faces. No upper bound known. Quality of
the tetrahedra not always good.

(2) Use the medial axis concept (see below).

These problems are pretty much open.
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II. Dirichlet-Voronoi Diagrams and
Delaunay Triangulations in Euclidean Space.
Applications to Tetrahedral Mesh Generation

In a Euclidean space, given a finite set P = {p1, ..., pm}
of points, the Voronoi region V (pi) of pi consists of all
points that are closer to pi than to any pj 6= pi. The
Voronoi region V (pi) is the intersection of the half planes
containing pi defined by the bisector hyperplanes of the
pairs of points (pi, pj).

Voronoi diagrams and their duals, Delaunay triangula-
tions, have many applications, as we will see below.
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The figure below shows the Voronoi diagram of a set of
twelve points.

Figure 1.1: A Voronoi diagram
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The figure below shows the Delaunay triangulation asso-
ciated with the earlier Voronoi diagram.

Figure 1.2: Delaunay triangulation associated with a Voronoi diagram



14 CHAPTER 1. INTRODUCTION: QUESTIONS, MOTIVATIONS, PROBLEMS

Delaunay trianguations are used to provide “nice” tri-
angulations for defining complicated shapes, or in the
method of finite elements.
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III. Medial Axis Representation

We can generalize the notion of a medial line. This leads
to the notion of medial axis. The basic idea is to represent
a complex shape in terms of a kind of skeleton and a
boundary representation.

The Blum medial axis of a planar shape S is defined
(roughly) as the locus of centers of all circles bitangent to
the boundary of S in two distinct points.

A similar notion can be defined for 3D-shapes, using
spheres instead of circles.

Medial axis representations are useful in medical applica-
tions, for instance: Geometric representation of the kid-
neys, liver, prostate, etc.

How are medial axes computed? For instance, as pruned
trees of Voronoi diagrams.
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Chapter 2

Basics of Affine Geometry

2.1 Affine Spaces

For simplicity, it is assumed that all vector spaces under
consideration are defined over the field R of real numbers.

It is also assumed that all families (λi)i∈I of scalars have
finite support. Recall that a family (λi)i∈I of scalars has
finite support if

λi = 0 for all i ∈ I − J ,

where J is a finite subset of I .

Obviously, finite families of scalars have finite support,
and for simplicity, the reader may assume that all families
are finite.
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Suppose we have a particle moving in 3-space and that
we want to describe the trajectory of this particle.

If one looks up a good textbook on dynamics, such as
Greenwood [?], one finds out that the particle is mod-
eled as a point, and that the position of this point x is
determined with respect to a “frame” in R3 by a vector.

A frame is a pair

(O, (e1, e2, e3))

consisting of an origin O (which is a point) together with
a basis of three vectors (e1, e2, e3).

For example, the standard frame in R3 has origin O =
(0, 0, 0) and the basis of three vectors e1 = (1, 0, 0), e2 =
(0, 1, 0), and e3 = (0, 0, 1).

The position of a point x is then defined by the “unique
vector” from O to x.
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But wait a minute, this definition seems to be defining
frames and the position of a point without defining what
a point is!

Well, let us identify points with elements of R3.

If so, given any two points a = (a1, a2, a3) and b =
(b1, b2, b3), there is a unique free vector denoted ab from
a to b, the vector ab = (b1 − a1, b2 − a2, b3 − a3).

Note that
b = a + ab,

addition being understood as addition in R3.

bc

bc

bc

O

a

b

ab

Figure 2.1: Points and free vectors

Then, in the standard frame, given a point x = (x1, x2, x3),
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the position of x is the vector Ox = (x1, x2, x3), which
coincides with the point itself.

What if we pick a frame with a different origin, say Ω =
(ω1, ω2, ω3), but the same basis vectors (e1, e2, e3)?

This time, the point x = (x1, x2, x3) is defined by two
position vectors:

Ox = (x1, x2, x3) in the frame (O, (e1, e2, e3)), and

Ωx = (x1−ω1, x2−ω2, x3−ω3) in the frame (Ω, (e1, e2, e3)).

This is because

Ox = OΩ +Ωx and OΩ = (ω1, ω2, ω3).

We note that in the second frame (Ω, (e1, e2, e3)), points
and position vectors are no longer identified.
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This gives us evidence that points are not vectors.
Inspired by physics, it is important to define points and
properties of points that are frame invariant.

An undesirable side-effect of the present approach shows
up if we attempt to define linear combinations of points.

If we consider the change of frame from the frame

(O, (e1, e2, e3))

to the frame
(Ω, (e1, e2, e3)),

where
OΩ = (ω1, ω2, ω3),

given two points a and b of coordinates (a1, a2, a3) and
(b1, b2, b3) with respect to the frame (O, (e1, e2, e3)) and
of coordinates (a′1, a

′
2, a

′
3) and (b′1, b

′
2, b

′
3) of with respect

to the frame (Ω, (e1, e2, e3)), since
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(a′1, a
′
2, a

′
3) = (a1 − ω1, a2 − ω2, a3 − ω3)

and
(b′1, b

′
2, b

′
3) = (b1 − ω1, b2 − ω2, b3 − ω3),

the coordinates of λa + µb with respect to the frame
(O, (e1, e2, e3)) are

(λa1 + µb1, λa2 + µb2, λa3 + µb3),

but the coordinates

(λa′1 + µb′1, λa
′
2 + µb′2, λa

′
3 + µb′3)

of λa + µb with respect to the frame (Ω, (e1, e2, e3)) are

(λa1 + µb1 − (λ + µ)ω1,

λa2 + µb2 − (λ + µ)ω2,

λa3 + µb3 − (λ + µ)ω3)

which are different from

(λa1 + µb1 − ω1, λa2 + µb2 − ω2, λa3 + µb3 − ω3),

unless λ + µ = 1.
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Thus, we discovered a major difference between vectors
and points: the notion of linear combination of vectors is
basis independent, but the notion of linear combination
of points is frame dependent.

In order to salvage the notion of linear combination of
points, some restriction is needed: the scalar coefficients
must add up to 1.

A clean way to handle the problem of frame invariance
and to deal with points in a more intrinsic manner is to
make a clearer distinction between points and vectors.

We duplicate R3 into two copies, the first copy corre-
sponding to points, where we forget the vector space
structure, and the second copy corresponding to free vec-
tors, where the vector space structure is important.
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Furthermore, we make explicit the important fact that the
vector space R3 acts on the set of points R3: Given any
point a = (a1, a2, a3) and any vector v = (v1, v2, v3),
we obtain the point

a + v = (a1 + v1, a2 + v2, a3 + v3),

which can be thought of as the result of translating a to
b using the vector v.

This action +:R3×R3 → R3 satisfies some crucial prop-
erties. For example,

a + 0 = a,

(a + u) + v = a + (u + v),

and for any two points a, b, there is a unique free vector
ab such that

b = a + ab.

It turns out that the above properties, although trivial in
the case of R3, are all that is needed to define the abstract
notion of affine space (or affine structure).
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Definition 2.1.1 An affine space is either the empty

set, or a triple 〈E,−→E ,+〉 consisting of a nonempty set E

(of points), a vector space
−→
E (of translations, or free

vectors), and an action +:E × −→
E → E, satisfying the

following conditions:

(A1) a + 0 = a, for every a ∈ E;

(A2) (a+u) + v = a+ (u+ v), for every a ∈ E, and every

u, v ∈ −→
E ;

(A3) For any two points a, b ∈ E, there is a unique u ∈ −→
E

such that a + u = b.

The unique vector u ∈ −→
E such that a+u = b is denoted

as ab, or sometimes as b− a. Thus, we also write

b = a + ab

(or even b = a + (b− a)).

The dimension of the affine space 〈E,−→E ,+〉 is the di-
mension dim(

−→
E ) of the vector space

−→
E . For simplicity,

it is denoted by dim(E).
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Conditions (A1) and (A2) say that the (abelian) group
−→
E acts on E, and condition (A3) says that

−→
E acts tran-

sitively and faithfully on E.

Note that
a(a + v) = v

for all a ∈ E and all v ∈ −→
E , since a(a + v) is the unique

vector such that a + v = a + a(a + v).

Thus, b = a + v is equivalent to ab = v.

It is natural to think of all vectors as having the same
origin, the null vector.

bc

bc

bc

E
−→
E

a

b = a+ u

c = a + w
u

v

w

Figure 2.2: Intuitive picture of an affine space
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For every a ∈ E, consider the mapping from
−→
E to E:

u 7→ a + u,

where u ∈ −→
E , and consider the mapping from E to

−→
E :

b 7→ ab,

where b ∈ E.

The composition of the first mapping with the second is

u 7→ a + u 7→ a(a + u),

which, in view of (A3), yields u.

The composition of the second with the first mapping is

b 7→ ab 7→ a + ab,

which, in view of (A3), yields b.

Thus, these compositions are the identity from
−→
E to

−→
E

and the identity from E to E, and the mappings are both
bijections.
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When we identify E to
−→
E via the mapping b 7→ ab,

we say that we consider E as the vector space obtained
by taking a as the origin in E, and we denote it as

Ea. Thus, an affine space 〈E,−→E ,+〉 is a way of defining
a vector space structure on a set of points E, without
making a commitment to a fixed origin in E.

For notational simplicity, we will often denote an affine

space 〈E,−→E ,+〉 as (E,
−→
E ), or even as E. The vector

space
−→
E is called the vector space associated with E.

� One should be careful about the overloading of the ad-
dition symbol +. Addition is well-defined on vectors,

as in u + v, the translate a + u of a point a ∈ E by a

vector u ∈ −→
E is also well-defined, but addition of points

a + b does not make sense.

In this respect, the notation b − a for the unique vector
u such that b = a + u, is somewhat confusing, since it
suggests that points can be substracted (but not added!).
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Any vector space
−→
E has an affine space structure spec-

ified by choosing E =
−→
E , and letting + be addition in

the vector space
−→
E . We will refer to the affine struc-

ture 〈−→E ,−→E ,+〉 on a vector space as the canonical (or

natural) affine structure on
−→
E .

In particular, the vector space Rn can be viewed as the
affine space 〈Rn,Rn,+〉 denoted as An. In order to dis-
tinguish between the double role played by members of
Rn, points and vectors, we will denote points as row vec-
tors, and vectors as column vectors. Thus, the action of
the vector space Rn over the set Rn simply viewed as a
set of points, is given by

(a1, . . . , an) +



u1
...
un


 = (a1 + u1, . . . , an + un).

We will also use the convention that if x = (x1, . . . , xn) ∈
Rn, then the column vector associated with x is denoted
as x (in boldface notation). Abusing the notation slightly,
if a ∈ Rn is a point, we also write a ∈ An.
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The affine space An is called the real affine space of
dimension n. In most cases, we will consider n = 1, 2, 3.

For a slightly wilder example, consider the subset P of A3

consisting of all points (x, y, z) satisfying the equation

x2 + y2 − z = 0.

The set P is a paraboloid of revolution, with axis Oz.

The surface P can be made into an official affine space
by defining the action

+:P × R2 → P

of R2 on P defined such that for every point (x, y, x2+y2)

on P and any

(
u
v

)
∈ R2,

(x, y, x2+y2)+

(
u
v

)
= (x+u, y+v, (x+u)2+(y+v)2).

Affine spaces not already equipped with an obvious vector
space structure arise in projective geometry. Indeed, we
will see in section ?? that the complement of a hyperplane
in a projective space has an affine structure.
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Given any three points a, b, c ∈ E, since c = a + ac,
b = a + ab, and c = b + bc, we get

c = b + bc = (a + ab) + bc = a + (ab + bc)

by (A2), and thus, by (A3),

ab + bc = ac,

which is known as Chasles’ identity .

bc

bc

bc

E
−→
E

a

b

c

ab

bc

ac

Figure 2.3: Points and corresponding vectors in affine geometry
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2.2 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a lin-
ear combination. The corresponding concept in affine
geometry is that of an affine combination, also called a
barycenter.

However, there is a problem with the naive approach in-
volving a coordinate system. The problem is that the sum
a + b may correspond to two different points depending
on which coordinate system is used for its computation!

Thus, some extra condition is needed in order for affine
combinations to make sense. It turns out that if the
scalars sum up to 1, the definition is intrinsic, as the
following lemma shows.
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Lemma 2.2.1 Given an affine space E, let (ai)i∈I be
a family of points in E, and let (λi)i∈I be a family of
scalars. For any two points a, b ∈ E, the following
properties hold:

(1) If
∑

i∈I λi = 1, then

a +
∑

i∈I
λiaai = b +

∑

i∈I
λibai.

(2) If
∑

i∈I λi = 0, then
∑

i∈I
λiaai =

∑

i∈I
λibai.

Thus, by lemma 2.2.1, for any family of points (ai)i∈I in
E, for any family (λi)i∈I of scalars such that

∑
i∈I λi = 1,

the point

x = a +
∑

i∈I
λiaai

is independent of the choice of the origin a ∈ E.
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The unique point x is called the barycenter (or barycen-
tric combination, or affine combination) of the points
ai assigned the weights λi. and it is denoted as

∑

i∈I
λiai.

In dealing with barycenters, it is convenient to introduce
the notion of a weighted point , which is just a pair (a, λ),
where a ∈ E is a point, and λ ∈ R is a scalar.

Then, given a family of weighted points ((ai, λi))i∈I , where∑
i∈I λi = 1, we also say that the point

∑

i∈I
λiai

is the barycenter of the family of weighted points
((ai, λi))i∈I.
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Note that the barycenter x of the family of weighted
points ((ai, λi))i∈I is also the unique point such that

ax =
∑

i∈I
λiaai for every a ∈ E,

and setting a = x, the point x is the unique point such
that ∑

i∈I
λixai = 0.

In physical terms, the barycenter is the center of mass
of the family of weighted points ((ai, λi))i∈I (where the
masses have been normalized, so that

∑
i∈I λi = 1, and

negative masses are allowed).
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The figure below illustrates the geometric construction of
the barycenters g1 and g2 of the weighted points

(
a, 14
)
,(

b, 14
)
, and

(
c, 12
)
, and (a,−1), (b, 1), and (c, 1).

bc bc

bc

bc

bc

bc bc

bc

bc

bc

a b

c

g1

a b

c
g2

Figure 2.4: Barycenters, g1 =
1

4
a+ 1

4
b+ 1

2
c, g2 = −a + b+ c.
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2.3 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized
as a nonempty subset of a vector space closed under linear
combinations. In affine spaces, the notion corresponding
to the notion of (linear) subspace is the notion of affine
subspace.

It is natural to define an affine subspace as a subset of an
affine space closed under affine combinations.

Definition 2.3.1 Given an affine space 〈E,−→E ,+〉, a
subset V of E is an affine subspace (of 〈E,−→E ,+〉) if
for every family of points (ai)i∈I in V , for any family
(λi)i∈I of scalars such that

∑
i∈I λi = 1, the barycenter∑

i∈I λiai belongs to V .

An affine subspace is also called a flat by some authors.
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According to definition 2.3.1, the empty set is trivially an
affine subspace, and every intersection of affine subspaces
is an affine subspace.

As an example, consider the subset U of R2 defined by

U = {(x, y) ∈ R2 | ax + by = c},
i.e. the set of solutions of the equation

ax + by = c,

where it is assumed that a 6= 0 or b 6= 0.

Given any m points (xi, yi) ∈ U and any m scalars λi
such that λ1 + · · · + λm = 1, we claim that

m∑

i=1

λi(xi, yi) ∈ U.

Thus, U is an affine subspace of A2. In fact, it is just a
usual line in A2.
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It turns out that U is closely related to the subset of R2

defined by

−→
U = {(x, y) ∈ R2 | ax + by = 0},

i.e. the set of solution of the homogeneous equation

ax + by = 0

obtained by setting the right-hand side of ax+ by = c to
zero.

Indeed, for any m scalars λi, the same calculation as
above yields that

m∑

i=1

λi(xi, yi) ∈
−→
U ,

this time without any restriction on the λi, since
the right-hand side of the equation is null.
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Thus,
−→
U is a subspace ofR2. In fact,

−→
U is one-dimensional,

and it is just a usual line in R2.

This line can be identified with a line passing through
the origin of A2, line which is parallel to the line U of
equation ax + by = c.

Now, if (x0, y0) is any point in U , we claim that

U = (x0, y0) +
−→
U ,

where

(x0, y0) +
−→
U = {(x0 + u1, y0 + u2) | (u1, u2) ∈

−→
U }.
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The above example shows that the affine line U defined
by the equation

ax + by = c

is obtained by “translating” the parallel line
−→
U of equa-

tion
ax + by = 0

passing through the origin.

In fact, given any point (x0, y0) ∈ U ,

U = (x0, y0) +
−→
U .

U

−→
U

Figure 2.5: An affine line U and its direction
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More generally, it is easy to prove the following fact.
Given any m × n matrix A and any vector b ∈ Rm,
the subset U of Rn defined by

U = {x ∈ Rn | Ax = b}
is an affine subspace of An.

Actually, observe that Ax = b should really be written
as Ax⊤ = b, to be consistent with our convention that
points are represented by row vectors.

We can also use the boldface notation for column vectors,
in which case the equation is written as Ax = b.

If we consider the corresponding homogeneous equation
Ax = 0, the set

−→
U = {x ∈ Rn | Ax = 0}

is a subspace of Rn, and for any x0 ∈ U , we have

U = x0 +
−→
U .

This is a general situation. Affine subspaces can also be

characterized in terms of subspaces of
−→
E .
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Given any point a ∈ E and any subset
−→
V of

−→
E , let

a +
−→
V denote the following subset of E:

a +
−→
V = {a + v | v ∈ −→

V }.

Lemma 2.3.2 Let 〈E,−→E ,+〉 be an affine space.

(1) A nonempty subset V of E is an affine subspace
iff, for every point a ∈ V , the set

−→
Va = {ax | x ∈ V }

is a subspace of
−→
E . Consequently, V = a +

−→
Va .

Furthermore,
−→
V = {xy | x, y ∈ V }

is a subspace of
−→
E and

−→
Va =

−→
V for all a ∈ E.

Thus, V = a +
−→
V .

(2) For any subspace
−→
V of

−→
E , for any a ∈ E, the set

V = a +
−→
V is an affine subspace.

The subspace
−→
V associated with an affine subspace V is

called the direction of V .
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It is clear that the map +:V × −→
V → V induced by

+:E×−→
E → E confers to 〈V,−→V ,+〉 an affine structure.

bc

E
−→
E

a

V = a+
−→
V

−→
V

Figure 2.6: An affine subspace V and its direction
−→
V

By the dimension of the subspace V , we mean the dimen-

sion of
−→
V .

An affine subspace of dimension 1 is called a line, and an
affine subspace of dimension 2 is called a plane.

An affine subspace of codimension 1 is called an hyper-
plane.
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We say that two affine subspaces U and V are parallel

if their directions are identical. Equivalently, since
−→
U =

−→
V , we have U = a+

−→
U , and V = b+

−→
U , for any a ∈ U

and any b ∈ V , and thus, V is obtained from U by the
translation ab.

In general, when we talk about n points a1, . . . , an, we
mean the sequence (a1, . . . , an), and not the set {a1, . . . , an}
(the ai’s need not be distinct).

We say that three points a, b, c are collinear , if the vec-
tors ab and ac are linearly dependent.

If two of the points a, b, c are distinct, say a 6= b, then
there is a unique λ ∈ R, such that ac = λab, and we
define the ratio ac

ab
= λ.

We say that four points a, b, c, d are coplanar , if the vec-
tors ab, ac, and ad, are linearly dependent.
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Lemma 2.3.3 Given an affine space 〈E,−→E ,+〉, for
any family (ai)i∈I of points in E, the set V of barycen-
ters

∑
i∈I λiai (where

∑
i∈I λi = 1) is the smallest

affine subspace containing (ai)i∈I.

Given a nonempty subset S of E, the smallest affine sub-
space of E generated by S is often denoted as 〈S〉. For
example, a line specified by two distinct points a and b is
denoted as 〈a, b〉, or even (a, b), and similarly for planes,
etc.

Remarks : Since it can be shown that the barycenter of
n weighted points can be obtained by repeated computa-
tions of barycenters of two weighted points, a nonempty
subset V of E is an affine subspace iff for every two points
a, b ∈ V , the set V contains all barycentric combinations
of a and b.

If V contains at least two points, V is an affine subspace
iff for any two distinct points a, b ∈ V , the set V contains
the line determined by a and b, that is, the set of all points
(1− λ)a + λb, λ ∈ R.
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2.4 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in
vector spaces, we have the notion of affine independence.

Given a family (ai)i∈I of points in an affine space E, we
will reduce the notion of (affine) independence of these
points to the (linear) independence of the families
(aiaj)j∈(I−{i}) of vectors obtained by chosing any ai as an
origin.

First, the following lemma shows that it sufficient to con-
sider only one of these families.

Lemma 2.4.1 Given an affine space 〈E,−→E ,+〉, let
(ai)i∈I be a family of points in E. If the family
(aiaj)j∈(I−{i}) is linearly independent for some i ∈ I,
then (aiaj)j∈(I−{i}) is linearly independent for every
i ∈ I.
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Definition 2.4.2 Given an affine space 〈E,−→E ,+〉, a
family (ai)i∈I of points in E is affinely independent if
the family (aiaj)j∈(I−{i}) is linearly independent for some
i ∈ I .

Definition 2.4.2 is reasonable, since by Lemma 2.4.1, the
independence of the family (aiaj)j∈(I−{i}) does not de-
pend on the choice of ai.

A crucial property of linearly independent vectors
(u1, . . . , um) is that if a vector v is a linear combination

v =
m∑

i=1

λiui

of the ui, then the λi are unique. A similar result holds
for affinely independent points.



2.4. AFFINE INDEPENDENCE AND AFFINE FRAMES 49

Lemma 2.4.3 Given an affine space 〈E,−→E ,+〉, let
(a0, . . . , am) be a family of m+1 points in E. Let x ∈
E, and assume that x =

∑m
i=0 λiai, where

∑m
i=0 λi = 1.

Then, the family (λ0, . . . , λm) such that x =
∑m

i=0 λiai
is unique iff the family (a0a1, . . . , a0am) is linearly in-
dependent.

bc

bc

bc

E
−→
E

a0 a1

a2

a0a1

a0a2

Figure 2.7: Affine independence and linear independence

Lemma 2.4.3 suggests the notion of affine frame.
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Let 〈E,−→E ,+〉 be a nonempty affine space, and let
(a0, . . . , am) be a family of m + 1 points in E. The
family (a0, . . . , am) determines the family of m vectors

(a0a1, . . . , a0am) in
−→
E .

Conversely, given a point a0 in E and a family of m

vectors (u1, . . . , um) in
−→
E , we obtain the family of m+1

points (a0, . . . , am) in E, where ai = a0+ui, 1 ≤ i ≤ m.

Thus, for any m ≥ 1, it is equivalent to consider a
family of m + 1 points (a0, . . . , am) in E, and a pair

(a0, (u1, . . . , um)), where the ui are vectors in
−→
E .
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When (a0a1, . . . , a0am) is a basis of
−→
E , then, for every

x ∈ E, since x = a0 + a0x, there is a unique family
(x1, . . . , xm) of scalars, such that

x = a0 + x1a0a1 + · · · + xma0am.

The scalars (x1, . . . , xm) are coordinates with respect to
(a0, (a0a1, . . . , a0am)). Since

x = a0 +

m∑

i=1

xia0ai iff x = (1−
m∑

i=1

xi)a0 +

m∑

i=1

xiai,

x ∈ E can also be expressed uniquely as

x =
m∑

i=0

λiai

with
∑m

i=0 λi = 1, and where λ0 = 1 −∑m
i=1 xi, and

λi = xi for 1 ≤ i ≤ m.

The scalars (λ0, . . . , λm) are also certain kinds of coordi-
nates with respect to (a0, . . . , am).
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Definition 2.4.4 Given an affine space 〈E,−→E ,+〉, an
affine frame with origin a0 is a family (a0, . . . , am) of
m + 1 points in E such that (a0a1, . . . , a0am) is a basis

of
−→
E . The pair (a0, (a0a1, . . . , a0am)) is also called an

affine frame with origin a0.

Then, every x ∈ E can be expressed as

x = a0 + x1a0a1 + · · · + xma0am

for a unique family (x1, . . . , xm) of scalars, called the co-
ordinates of x w.r.t. the affine frame
(a0, (a0a1, . . . , a0am)).

Furthermore, every x ∈ E can be written as

x = λ0a0 + · · · + λmam

for some unique family (λ0, . . . , λm) of scalars such that
λ0 + · · ·+ λm = 1 called the barycentric coordinates of
x with respect to the affine frame (a0, . . . , am).
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The coordinates (x1, . . . , xm) and the barycentric coor-
dinates (λ0, . . . , λm) are related by the equations λ0 =
1−∑m

i=1 xi and λi = xi, for 1 ≤ i ≤ m.

An affine frame is called an affine basis by some authors.
The figure below shows affine frames and their convex
hulls for |I| = 0, 1, 2, 3.

bc

bc bc

bc bc

bc

bc

bc

bc

bc

a0

a0 a1

a0 a1

a2

a0

a3

a2

a1

Figure 2.8: Examples of affine frames and their convex hulls.
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A family of two points (a, b) in E is affinely independent
iff ab 6= 0, iff a 6= b. If a 6= b, the affine subspace
generated by a and b is the set of all points (1−λ)a+λb,
which is the unique line passing through a and b.

A family of three points (a, b, c) in E is affinely indepen-
dent iff ab and ac are linearly independent, which means
that a, b, and c are not on a same line (they are not
collinear). In this case, the affine subspace generated by
(a, b, c) is the set of all points (1 − λ − µ)a + λb + µc,
which is the unique plane containing a, b, and c.

A family of four points (a, b, c, d) in E is affinely indepen-
dent iff ab, ac, and ad are linearly independent, which
means that a, b, c, and d are not in a same plane (they
are not coplanar). In this case, a, b, c, and d, are the
vertices of a tetrahedron.
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Given n + 1 affinely independent points (a0, . . . , an) in
E, we can consider the set of points λ0a0 + · · · + λnan,
where λ0 + · · ·+ λn = 1 and λi ≥ 0, λi ∈ R. Such affine
combinations are called convex combinations . This set
is called the convex hull of (a0, . . . , an) (or n-simplex
spanned by (a0, . . . , an)).

When n = 1, we get the segment between a0 and a1,
including a0 and a1.

When n = 2, we get the interior of the triangle whose ver-
tices are a0, a1, a2, including boundary points (the edges).

When n = 3, we get the interior of the tetrahedron whose
vertices are a0, a1, a2, a3, including boundary points (faces
and edges).
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The set

{a0+λ1a0a1+· · ·+λna0an |where 0 ≤ λi ≤ 1 (λi ∈ R)},
is called the parallelotope spanned by (a0, . . . , an). When
E has dimension 2, a parallelotope is also called a paral-
lelogram , and when E has dimension 3, a parallelepiped .

A parallelotope is shown in figure 2.9: it consists of the
points inside of the parallelogram (a0, a1, a2, d), including
its boundary.

bc bc

bc bc

a0 a1

da2

Figure 2.9: A parallelotope

More generally, we say that a subset V of E is convex ,
if for any two points a, b ∈ V , we have c ∈ V for every
point c = (1− λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R).
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2.5 Affine Maps

Corresponding to linear maps, we have the notion of an
affine map.

Definition 2.5.1 Given two affine spaces 〈E,−→E ,+〉 and
〈E ′,

−→
E ′ ,+′〉, a function f :E → E ′ is an affine map iff

for every family (ai)i∈I of points in E, for every family
(λi)i∈I of scalars such that

∑
i∈I λi = 1, we have

f(
∑

i∈I
λiai) =

∑

i∈I
λif(ai).

In other words, f preserves affine combinations (barycen-
ters).

Affine maps can be obtained from linear maps as follows.
For simplicity of notation, the same symbol + is used for
both affine spaces (instead of using both + and +′).
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Given any point a ∈ E, any point b ∈ E ′, and any linear

map h:
−→
E →

−→
E ′ , the map f :E → E ′ defined such that

f(a + v) = b + h(v)

is an affine map.

As a more concrete example, the map

(
x1
x2

)
7→
(
1 2
0 1

)(
x1
x2

)
+

(
3
1

)

defines an affine map in A2. It is a “shear” followed
by a translation. The effect of this shear on the square
(a, b, c, d) is shown in figure 2.10. The image of the square
(a, b, c, d) is the parallelogram (a′, b′, c′, d′).

bc bc

bc bc

bc bc

bc bc

a b

cd

a′ b′

c′d′

Figure 2.10: The effect of a shear

Let us consider one more example.
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The map

(
x1
x2

)
7→
(
1 1
1 3

)(
x1
x2

)
+

(
3
0

)

is an affine map.

Since we can write

(
1 1
1 3

)
=
√
2

( √
2
2 −

√
2
2√

2
2

√
2
2

)(
1 2
0 1

)
,

this affine map is the composition of a shear, followed by a
rotation of angle π/4, followed by a magnification of ratio√
2, followed by a translation. The effect of this map on

the square (a, b, c, d) is shown in figure 2.11. The image
of the square (a, b, c, d) is the parallelogram (a′, b′, c′, d′).

bc bc

bc bc

bc

bc

bc

bc

a b

cd

a′

b′

c′

d′

Figure 2.11: The effect of an affine map
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The following lemma shows the converse of what we just
showed. Every affine map is determined by the image of
any point and a linear map.

Lemma 2.5.2 Given an affine map f :E → E ′, there

is a unique linear map
−→
f :

−→
E →

−→
E ′, such that

f(a + v) = f(a) +
−→
f (v),

for every a ∈ E and every v ∈ −→
E .

The unique linear map
−→
f :

−→
E →

−→
E ′ given by lemma

2.5.2 is the linear map associated with the affine map
f .
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Note that the condition

f(a + v) = f(a) +
−→
f (v),

for every a ∈ E and every v ∈ −→
E , can be stated equiva-

lently as

f(x) = f(a) +
−→
f (ax), or f(a)f(x) =

−→
f (ax),

for all a, x ∈ E.

bc

bc

bc

bc

E
−→
E

E ′ −→
E ′

a

f(a)

a+ v

f(a) +
−→
f (v)

= f(a+ v)

v

−→
f (v)

f −→
f

Figure 2.12: An affine map f and its associated linear map
−→
f
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Lemma 2.5.2 shows that for any affine map f :E → E ′,
there are points a ∈ E, b ∈ E ′, and a unique linear map
−→
f :

−→
E →

−→
E ′ , such that

f(a + v) = b +
−→
f (v),

for all v ∈ −→
E (just let b = f(a), for any a ∈ E).

Since an affine map preserves barycenters, and since an
affine subspace V is closed under barycentric combina-
tions, the image f(V ) of V is an affine subspace in E ′.

So, for example, the image of a line is a point or a line,
the image of a plane is either a point, a line, or a plane.

Affine maps for which
−→
f is the identity map are called

translations . Indeed, if
−→
f = id, it is easy to show that

for any two points a, x ∈ E,

f(x) = x + af(a).
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It is easily verified that the composition of two affine maps
is an affine map.

Also, given affine maps f :E → E ′ and g:E ′ → E ′′, we
have

g(f(a + v)) = g(f(a) +
−→
f (v)) = g(f(a)) +−→g (

−→
f (v)),

which shows that
−−−→
(g ◦ f) = −→g ◦ −→f .

It is easy to show that an affine map f :E → E ′ is injec-

tive iff
−→
f :

−→
E →

−→
E ′ is injective, and that f :E → E ′ is

surjective iff
−→
f :

−→
E →

−→
E ′ is surjective.

An affine map f :E → E ′ is constant iff
−→
f :

−→
E →

−→
E ′ is

the null (constant) linear map equal to 0 for all v ∈ −→
E .
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IfE is an affine space of dimensionm, and (a0, a1, . . . , am)
is an affine frame for E, for any other affine space F , for
any sequence (b0, b1, . . . , bm) of m+ 1 points in F , there
is a unique affine map f :E → F such that f(ai) = bi,
for 0 ≤ i ≤ m.

The following diagram illustrates the above result when
m = 2.

bc bc

bc

bc

bc

bc bc

bc

a0 a1

a2

λ0a0 + λ1a1 + λ2a2

b0

b1 b2

λ0b0 + λ1b1 + λ2b2

Figure 2.13: An affine map mapping a0, a1, a2 to b0, b1, b2.

Using affine frames, affine maps can be represented in
terms of matrices.
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We explain how an affine map f :E → E is represented
with respect to a frame (a0, . . . , an) in E.

Since

f(a0 + x) = f(a0) +
−→
f (x)

for all x ∈ −→
E , we have

a0f(a0 + x) = a0f(a0) +
−→
f (x).

Since x, a0f(a0), and a0f(a0 + x), can be expressed as

x = x1a0a1 + · · · + xna0an,

a0f(a0) = b1a0a1 + · · · + bna0an,

a0f(a0 + x) = y1a0a1 + · · · + yna0an,

if A = (ai j) is the n×n-matrix of the linear map
−→
f over

the basis (a0a1, . . . , a0an), letting x, y, and b denote the
column vectors of components (x1, . . . , xn), (y1, . . . , yn),
and (b1, . . . , bn),

a0f(a0 + x) = a0f(a0) +
−→
f (x)

is equivalent to
y = Ax + b.
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Note that b 6= 0 unless f(a0) = a0. Thus, f is generally
not a linear transformation, unless it has a fixed point ,
i.e., there is a point a0 such that f(a0) = a0. The vector
b is the “translation part” of the affine map.

Affine maps do not always have a fixed point. Obviously,
nonnull translations have no fixed point. A less trivial
example is given by the affine map

(
x1
x2

)
7→
(
1 0
0 −1

)(
x1
x2

)
+

(
1
0

)
.

This map is a reflection about the x-axis followed by a
translation along the x-axis. The affine map

(
x1
x2

)
7→
(

1 −
√
3√

3
4

1
4

)(
x1
x2

)
+

(
1
1

)

can also be written as

(
x1
x2

)
7→
(
2 0
0 1

2

)(
1
2 −

√
3
2√

3
2

1
2

)(
x1
x2

)
+

(
1
1

)

which shows that it is the composition of a rotation of
angle π/3, followed by a stretch (by a factor of 2 along the
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x-axis, and by a factor of 1/2 along the y-axis), followed
by a translation. It is easy to show that this affine map
has a unique fixed point.

On the other hand, the affine map

(
x1
x2

)
7→
(

8
5 −6

5
3
10

2
5

)(
x1
x2

)
+

(
1
1

)

has no fixed point, even though

(
8
5 −6

5
3
10

2
5

)
=

(
2 0
0 1

2

)(
4
5 −3

5
3
5

4
5

)
,

and the second matrix is a rotation of angle θ such that
cos θ = 4

5
and sin θ = 3

5
.
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There is a useful trick to convert the equation y = Ax+b
into what looks like a linear equation. The trick is to
consider an (n + 1) × (n + 1)-matrix. We add 1 as the
(n+1)th component to the vectors x, y, and b, and form
the (n + 1)× (n + 1)-matrix

(
A b
0 1

)

so that y = Ax + b is equivalent to

(
y
1

)
=

(
A b
0 1

)(
x
1

)
.

This trick is very useful in kinematics and dynamics,
where A is a rotation matrix. Such affine maps are called
rigid motions .
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If f :E → E ′ is a bijective affine map, given any three
collinear points a, b, c in E, with a 6= b, where say, c =
(1 − λ)a + λb, since f preserves barycenters, we have
f(c) = (1−λ)f(a)+λf(b), which shows that f(a), f(b), f(c)
are collinear in E ′.

There is a converse to this property, which is simpler to
state when the ground field is K = R.

The converse states that given any bijective function
f :E → E ′ between two real affine spaces of the same
dimension n ≥ 2, if f maps any three collinear points to
collinear points, then f is affine. The proof is rather long
(see Berger [?] or Samuel [?]).
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Given three collinear points where a, b, c, where a 6= c,
we have b = (1 − β)a + βc for some unique β, and we
define the ratio of the sequence a, b, c, as

ratio(a, b, c) =
β

(1− β)
=

ab

bc
,

provided that β 6= 1, i.e. that b 6= c. When b = c, we
agree that ratio(a, b, c) = ∞.

We warn our readers that other authors define the ratio of
a, b, c as −ratio(a, b, c) = ba

bc. Since affine maps preserves
barycenters, it is clear that affine maps preserve the ratio
of three points.
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2.6 Affine Groups

We now take a quick look at the bijective affine maps.

Given an affine space E, the set of affine bijections
f :E → E is clearly a group, called the affine group of
E, and denoted as GA(E).

Recall that the group of bijective linear maps of the vector

space
−→
E is denoted as GL(

−→
E ). Then, the map f 7→ −→

f

defines a group homomorphism L: GA(E) → GL(
−→
E ).

The kernel of this map is the set of translations on E.

The subset of all linear maps of the form λ id−→
E
, where

λ ∈ R−{0}, is a subgroup of GL(
−→
E ), and is denoted as

R∗id−→
E
.
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The subgroup DIL(E) = L−1(R∗id−→
E
) of GA(E) is par-

ticularly interesting. It turns out that it is the disjoint
union of the translations and of the dilatations of ratio
λ 6= 1.

The elements of DIL(E) are called affine dilatations (or
dilations).

Given any point a ∈ E, and any scalar λ ∈ R, a dilata-
tion (or central dilatation, or magnification, or ho-
mothety) of center a and ratio λ, is a map Ha,λ defined
such that

Ha,λ(x) = a + λax,

for every x ∈ E.

Observe that Ha,λ(a) = a, and when λ 6= 0 and x 6= a,
Ha,λ(x) is on the line defined by a and x, and is obtained
by “scaling” ax by λ. When λ = 1, Ha,1 is the identity.
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Note that
−−→
Ha,λ = λ id−→

E
. When λ 6= 0, it is clear that

Ha,λ is an affine bijection.

It is immediately verified that

Ha,λ ◦Ha,µ = Ha,λµ.

We have the following useful result.

Lemma 2.6.1 Given any affine space E, for any affine

bijection f ∈ GA(E), if
−→
f = λ id−→

E
, for some λ ∈ R∗

with λ 6= 1, then there is a unique point c ∈ E such
that f = Hc,λ.

Clearly, if
−→
f = id−→

E
, the affine map f is a translation.

Thus, the group of affine dilatations DIL(E) is the dis-
joint union of the translations and of the dilatations of
ratio λ 6= 0, 1. Affine dilatations can be given a purely
geometric characterization.
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2.7 Affine Geometry, a Glimpse

In this section, we state and prove three fundamental
results of affine geometry.

Roughly speaking, affine geometry is the study of proper-
ties invariant under affine bijections. We now prove one
of the oldest and most basic results of affine geometry,
the theorem of Thalés.

Lemma 2.7.1 Given any affine space E, if H1, H2, H3

are any three distinct parallel hyperplanes, and A and
B are any two lines not parallel to Hi, letting
ai = Hi∩A and bi = Hi∩B, then the following ratios
are equal:

a1a3
a1a2

=
b1b3

b1b2
= ρ.

Conversely, for any point d on the line A, if a1d
a1a2

= ρ,
then d = a3.

The diagram below illustrates the theorem of Thalés.
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bc

bc

bc

bc

bc

bc

a3

a2

a1

b3

b2

b1

A B

H3

H2

H1

Figure 2.14: The theorem of Thalés
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Lemma 2.7.2 Given any affine space E, given any
two distinct points a, b ∈ E, for any affine dilatation
f different from the identity, if a′ = f(a), D = 〈a, b〉
is the line passing through a and b, and D′ is the line
parallel to D and passing through a′, the following are
equivalent:

(i) b′ = f(b);

(ii) If f is a translation, then b′ is the intersection of
D′ with the line parallel to 〈a, a′〉 passing through
b;

If f is a dilatation of center c, then b′ = D′ ∩ 〈c, b〉.

bc bc

bc bc

bc bc

bc

bc

bc

b

D

b′
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c
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D′

a′

b

D

a

Figure 2.15: Affine Dilatations
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The first case is the parallelogram law, and the second
case follows easily from Thalés’ theorem.

We are now ready to prove two classical results of affine
geometry, Pappus’ theorem and Desargues’ theorem. Ac-
tually, these results are theorem of projective geometry,
and we are stating affine versions of these important re-
sults. There are stronger versions which are best proved
using projective geometry.

There is a converse to Pappus’ theorem, which yields a
fancier version of Pappus’ theorem, but it is easier to
prove it using projective geometry.
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Lemma 2.7.3 Given any affine plane E, given any
two distinct lines D and D′, for any distinct points
a, b, c on D, and a′, b′, c′ on D′, if a, b, c, a′, b′, c′ are
distinct from the intersection of D and D′ (if D and
D′ intersect) and if the lines 〈a, b′〉 and 〈a′, b〉 are par-
allel, and the lines 〈b, c′〉 and 〈b′, c〉 are parallel, then
the lines 〈a, c′〉 and 〈a′, c〉 are parallel.

bc

bc

bc

bc

bc

bc

a

c′

b

b′

c

a′

D

D′

Figure 2.16: Pappus’ theorem (affine version)

We now prove an affine version of Desargues’ theorem.
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Lemma 2.7.4 Given any affine space E, given any
two triangles (a, b, c) and (a′, b′, c′), where a, b, c, a′, b′, c′

are all distinct, if 〈a, b〉 and 〈a′, b′〉 are parallel and
〈b, c〉 and 〈b′, c′〉 are parallel, then 〈a, c〉 and 〈a′, c′〉
are parallel iff the lines 〈a, a′〉, 〈b, b′〉, and 〈c, c′〉, are
either parallel or concurrent (i.e., intersect in a com-
mon point).
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Figure 2.17: Desargues’ theorem (affine version)

There is a fancier version of Desargues’ theorem, but it is
easier to prove it using projective geometry.
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Desargues’ theorem yields a geometric characterization of
the affine dilatations. An affine dilatation f on an affine
space E is a bijection that maps every line D to a line
f(D) parallel to D.



2.8. AFFINE HYPERPLANES 81

2.8 Affine Hyperplanes

In section 2.3, we observed that the set L of solutions of
an equation

ax + by = c

is an affine subspace of A2 of dimension 1, in fact a line
(provided that a and b are not both null).

It would be equally easy to show that the set P of solu-
tions of an equation

ax + by + cz = d

is an affine subspace of A3 of dimension 2, in fact a plane
(provided that a, b, c are not all null).

More generally, the set H of solutions of an equation

λ1x1 + · · · + λmxm = µ

is an affine subspace of Am, and if λ1, . . . , λm are not all
null, it turns out that it is a subspace of dimensionm− 1
called a hyperplane.
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We can interpret the equation

λ1x1 + · · · + λmxm = µ

in terms of the map f :Rm → R defined such that

f(x1, . . . , xm) = λ1x1 + · · · + λmxm − µ

for all (x1, . . . , xm) ∈ Rm.

It is immediately verified that this map is affine, and the
set H of solutions of the equation

λ1x1 + · · · + λmxm = µ

is the null set, or kernel, of the affine map f :Am → R,
in the sense that

H = f−1(0) = {x ∈ Am | f(x) = 0},
where x = (x1, . . . , xm).

Thus, it is interesting to consider affine forms , which are
just affine maps f :E → R from an affine space to R.
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Unlike linear forms f ∗, for which Ker f ∗ is never empty
(since it always contains the vector 0), it is possible that
f−1(0) = ∅, for an affine form f .

Recall the characterization of hyperplanes in terms of lin-
ear forms.

Given a vector space E over a field K, a linear map
f :E → K is called a linear form . The set of all lin-
ear forms f :E → K is a vector space called the dual
space of E, and denoted as E∗.

Hyperplanes are precisely the Kernels of nonnull linear
forms.
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Lemma 2.8.1 Let E be a vector space. The following
properties hold:

(a) Given any nonnull linear form f ∈ E∗, its kernel
H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ∈ E∗ such that H = Ker f .

(c) Given any hyperplane H in E and any (nonnull)
linear form f ∈ E∗ such that H = Ker f , for every
linear form g ∈ E∗, H = Ker g iff g = λf for some
λ 6= 0 in K.

Going back to an affine space E, given an affine map
f :E → R, we also denote f−1(0) as Ker f , and we call
it the kernel of f . Recall that an (affine) hyperplane is
an affine subspace of codimension 1.

Affine hyperplanes are precisely the Kernels of noncon-
stant affine forms.
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Lemma 2.8.2 Let E be an affine space. The follow-
ing properties hold:

(a) Given any nonconstant affine form f :E → R, its
kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant
affine form f :E → R such that H = Ker f . For
any other affine form g:E → R such that
H = Ker g, there is some λ ∈ R such that g = λf
(with λ 6= 0).

(c) Given any hyperplane H in E and any (noncon-
stant) affine form f :E → R such that H = Ker f ,
every hyperplane H ′ parallel to H is defined by a
nonconstant affine form g such that
g(a) = f(a)− λ, for all a ∈ E, for some λ ∈ R.



86 CHAPTER 2. BASICS OF AFFINE GEOMETRY

2.9 Intersection of Affine Spaces

In this section, we take a closer look at the intersection
of affine subspaces.

First, we need a result of linear algebra.

Lemma 2.9.1 Given a vector space E and any two
subspaces M and N , we have the Grassmann relation:

dim(M) + dim(N) = dim(M +N) + dim (M ∩N).

We now prove a simple lemma about the intersection of
affine subspaces.



2.9. INTERSECTION OF AFFINE SPACES 87

Lemma 2.9.2 Given any affine space E, for any two
nonempty affine subspaces M and N , the following
facts hold:

(1) M ∩N 6= ∅ iff ab ∈ −→
M +

−→
N for some a ∈M and

some b ∈ N .

(2) M∩N consists of a single point iff ab ∈ −→
M+

−→
N for

some a ∈M and some b ∈ N , and
−→
M ∩−→

N = {0}.
(3) If S is the least affine subspace containing M and

N , then
−→
S =

−→
M +

−→
N +Kab (the vector space

−→
E

is defined over the field K).

Remarks : (1) The proof of Lemma 2.9.2 shows that if

M ∩ N 6= ∅ then ab ∈ −→
M +

−→
N for all a ∈ M and all

b ∈ N .

(2) Lemma 2.9.2 (2) implies that for any two nonempty

affine subspacesM and N , if
−→
E =

−→
M ⊕−→

N , thenM ∩N
consists of a single point.
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Lemma 2.9.3 Given an affine space E and any two
nonempty affine subspaces M and N , if S is the least
affine subspace containing M and N , then the follow-
ing properties hold:

(1) If M ∩N = ∅, then

dim(M) + dim(N) < dim(E) + dim(
−→
M +

−→
N ),

and

dim(S) = dim(M) + dim(N) + 1− dim(
−→
M ∩ −→

N ).

(2) If M ∩N 6= ∅, then
dim(S) = dim(M) + dim(N)− dim(M ∩N).



Chapter 3

Properties of Convex Sets: A Glimpse

3.1 Convex Sets

Convex sets play a very important role in geometry. In
this chapter, we state some of the “classics” of convex
affine geometry: Carathéodory’s theorem, Radon’s theo-
rem, and Helly’s theorem.

These theorems share the property that they are easy to
state, but they are deep, and their proof, although rather
short, requires a lot of creativity.

Given an affine space E, recall that a subset V of E is
convex if for any two points a, b ∈ V , we have c ∈ V for
every point c = (1− λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R).

89
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The notation [a, b] is often used to denote the line segment
between a and b, that is,

[a, b] = {c ∈ E | c = (1− λ)a + λb, 0 ≤ λ ≤ 1},
and thus, a set V is convex if [a, b] ⊆ V for any two
points a, b ∈ V (a = b is allowed).

The empty set is trivially convex, every one-point set {a}
is convex, and the entire affine spaceE is of course convex.
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It is obvious that the intersection of any family (finite or
infinite) of convex sets is convex.

Then, given any (nonempty) subset S of E, there is a
smallest convex set containing S denoted as C(S) (or
conv(S)) and called the convex hull of S (namely, the
intersection of all convex sets containing S).

Lemma 3.1.1 Given an affine space 〈E,−→E ,+〉, for
any family (ai)i∈I of points in E, the set V of convex
combinations

∑
i∈I λiai (where

∑
i∈I λi = 1 and

λi ≥ 0) is the convex hull of (ai)i∈I.

In view of lemma 3.1.1, it is obvious that any affine sub-
space of E is convex.
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Convex sets also arise in terms of hyperplanes. Given
a hyperplane H , if f :E → R is any nonconstant affine
form defining H (i.e., H = Ker f), we can define the two
subsets

H+(f) = {a ∈ E | f(a) ≥ 0},
H−(f) = {a ∈ E | f(a) ≤ 0},

called (closed) half spaces associated with f .

Observe that if λ > 0, then H+(λf) = H+(f), but if
λ < 0, thenH+(λf) = H−(f), and similarly forH−(λf).

However, the set {H+(f), H−(f)} only depends on the
hyperplane H , and the choice of a specific f defining H
amounts to the choice of one of the two half-spaces.

For this reason, we will also say that H+(f) and H−(f)
are the (closed) half spaces associated with H .
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Clearly,

H+(f) ∪H−(f) = E and H+(f) ∩H−(f) = H.

It is immediately verified that H+(f) and H−(f) are con-
vex.

Bounded convex sets arising as the intersection of a finite
family of half-spaces associated with hyperplanes play a
major role in convex geometry and topology (they are
called convex polytopes).

It is natural to wonder whether lemma 3.1.1 can be sharp-
ened in two directions:

(1) is it possible have a fixed bound on the number of
points involved in the convex combinations?

(2) Is it necessary to consider convex combinations of all
points, or is it possible to only consider a subset with
special properties?
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The answer is yes in both cases. In case 1, assuming that
the affine space E has dimensionm, Carathéodory’s the-
orem asserts that it is enough to consider convex combi-
nations of m + 1 points.

In case 2, the theorem of Krein and Milman asserts that
a convex set which is also compact is the convex hull of
its extremal points (see Berger [?] or Lang [?]).

First, we will prove Carathéodory’s theorem. The follow-
ing technical (and dull!) lemma plays a crucial role in the
proof.

Lemma 3.1.2 Given an affine space 〈E,−→E ,+〉, let
(ai)i∈I be a family of points in E. The family (ai)i∈I
is affinely dependent iff there is a family (λi)i∈I such
that λj 6= 0 for some j ∈ I,

∑
i∈I λi = 0, and∑

i∈I λixai = 0 for every x ∈ E.
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Theorem 3.1.3 Given any affine space E of dimen-
sion m, for any (nonempty) family S = (ai)i∈L in E,
the convex hull C(S) of S is equal to the set of convex
combinations of families of m + 1 points of S.

Proof . By lemma 3.1.1,

C(S) = {
∑

i∈I
λiai | ai ∈ S,

∑

i∈I
λi = 1, λi ≥ 0,

I ⊆ L, I finite}.
We would like to prove that

C(S) = {
∑

i∈I
λiai | ai ∈ S,

∑

i∈I
λi = 1, λi ≥ 0,

I ⊆ L, |I| = m + 1}.
We proceed by contradiction. If the theorem is false, there
is some point b ∈ C(S) such that b can be expressed as
a convex combination b =

∑
i∈I λiai, where I ⊆ L is a

finite set of cardinality |I| = q with q ≥ m + 2, and b
cannot be expressed as any convex combination
b =

∑
j∈J µjaj of strictly less than q points in S

(with |J | < q).
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We shall prove that b can be written as a convex com-
bination of q − 1 of the ai. Since E has dimension m
and q ≥ m + 2, the points a1, . . . , aq must be affinely
dependent, and we use lemma 3.1.2.

If S is a finite (of infinite) set of points in the affine plane
A2, theorem 3.1.3 confirms our intuition that C(S) is the
union of triangles (including interior points) whose ver-
tices belong to S.

Similarly, the convex hull of a set S of points in A3 is
the union of tetrahedra (including interior points) whose
vertices belong to S.

We get the feeling that triangulations play a crucial role,
which is of course true!

We conlude this short section by stating two other classics
of convex geometry. We begin with Radon’s theorem .
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Theorem 3.1.4 Given any affine space E of dimen-
sion m, for every subset X of E, if X has at least
m + 2 points, then there is a partition of X into two
nonempty disjoint subsets X1 and X2 such that the
convex hulls of X1 and X2 have a nonempty intersec-
tion.

Finally, we state a version of Helly’s theorem .

Theorem 3.1.5 Given any affine space E of dimen-
sion m, for every family {K1, . . . , Kn} of n convex
subsets of E, if n ≥ m+2 and the intersection

⋂
i∈IKi

of any m + 1 of the Ki is nonempty (where I ⊆
{1, . . . , n}, |I| = m + 1), then

⋂n
i=1Ki is nonempty.

An amusing corollary of Helly’s theorem is the following
result. Consider n ≥ 4 parallel line segments in the affine
plane A2. If every three of these line segments meet a
line, then all of these line segments meet a common line.
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3.2 Separation Theorems

It seems intuitively rather obvious that if A and B are
two nonempty disjoint convex sets in A2, then there is
a line, H , separating them, in the sense that A and B
belong to the two (disjoint) open half–planes determined
by H .

However, this is not always true! For example, this fails
if both A and B are closed and unbounded (find an ex-
ample).

Nevertheless, the result is true if both A and B are open,
or if the notion of separation is weakened a little bit.
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The key result, from which most separation results follow,
is a geometric version of the Hahn-Banach theorem .

In the sequel, we restrict our attention to real affine spaces
of finite dimension. Then, if X is an affine space of di-
mension d, there is an affine bijection f between X and
Ad.

Now, Ad is a topological space, under the usual topology
on Rd (in fact, Ad is a metric space).

Recall that if a = (a1, . . . , ad) and b = (b1, . . . , bd)
are any two points in Ad, their Euclidean distance,
d(a, b), is given by

d(a, b) =
√
(b1 − a1)2 + · · · + (bd − ad)2,

which is also the norm , ‖ab‖, of the vector ab and that
for any ǫ > 0, the open ball of center a and radius ǫ,
B(a, ǫ), is given by

B(a, ǫ) = {b ∈ Ad | d(a, b) < ǫ}.
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A subset U ⊆ Ad is open (in the norm topology) if
either U is empty or for every point, a ∈ U , there is
some (small) open ball, B(a, ǫ), contained in U .

A subset C ⊆ Ad is closed iff Ad − C is open. For
example, the closed balls , B(a, ǫ), where

B(a, ǫ) = {b ∈ Ad | d(a, b) ≤ ǫ},
are closed.

A subsetW ⊆ Ad is bounded iff there is some ball (open
or closed), B, so that W ⊆ B.

A subset W ⊆ Ad is compact iff every family, {Ui}i∈I ,
that is an open cover of W (which means that
W =

⋃
i∈I(W∩Ui), with each Ui an open set) possesses a

finite subcover (which means that there is a finite subset,
F ⊆ I , so that W =

⋃
i∈F (W ∩ Ui)).

In Ad, it can be shown that a subsetW is compact iffW
is closed and bounded.
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Given a function, f :Am → An, we say that f is con-
tinuous if f−1(V ) is open in Am whenever V is open in
An.

If f :Am → An is a continuous function, although it is
generally false that f(U ) is open if U ⊆ Am is open,
it is easily checked that f(K) is compact if K ⊆ Am is
compact.

An affine space X of dimension d becomes a topological
space if we give it the topology for which the open subsets
are of the form f−1(U ), where U is any open subset of
Ad and f :X → Ad is an affine bijection.

Given any subset, A, of a topological space X , the small-
est closed set containing A is denoted by A, and is called
the closure or adherence of A.

A subset, A, of X , is dense in X if A = X .
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The largest open set contained in A is denoted by
◦
A, and

is called the interior of A.

The set Fr A = A ∩X − A, is called the boundary (or
frontier ) of A. We also denote the boundary of A by
∂A.

In order to prove the Hahn-Banach theorem, we will need
two lemmas.

Given any two distinct points x, y ∈ X , we let

]x, y[ = {(1− λ)x + λy ∈ X | 0 < λ < 1}.
Lemma 3.2.1 Let S be a nonempty convex set, and

let x ∈
◦
S and y ∈ S. Then, we have ]x, y[⊆

◦
S.

Corollary 3.2.2 If S is convex, then
◦
S is also convex

and we have
◦
S =

◦
S. Further, if

◦
S 6= ∅, then S =

◦
S.
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There is a simple criterion to test whether a convex set
has an empty interior, based on the notion of dimension
of a convex set.

Definition 3.2.3 The dimension of a nonempty con-
vex subset, S, of X , denoted by dim S, is the dimension
of the smallest affine subset 〈S〉 containing S.

Proposition 3.2.4 A nonempty convex set S has a
nonempty interior iff dim S = dimX.

� Proposition 3.2.4 is false in infinite dimension.

Proposition 3.2.5 If S is convex, then S is also con-
vex.

One can also easily prove that convexity is preserved un-
der direct image and inverse image by an affine map.
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The next lemma, which seems intuitively obvious, is the
core of the proof of the Hahn-Banach theorem. This is
the case where the affine space has dimension two.

First, we need to define what is a convex cone.

Definition 3.2.6 A convex set, C, is a convex cone
with vertex x if C is invariant under all central magnifi-
cations Hx,λ of center x and ratio λ, with λ > 0
(i.e., Hx,λ(C) = C).

Given a convex set, S, and a point x /∈ S, we can define

conex(S) =
⋃

λ>0

Hx,λ(S).

It is easy to check that this is a convex cone.

Lemma 3.2.7 Let B be a nonempty open and convex
subset of A2, and let O be a point of A2 so that
O /∈ B. Then, there is some line, L, through O, so
that L ∩B = ∅.
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Finally, we come to the Hahn-Banach theorem.

Theorem 3.2.8 (Hahn-Banach theorem, geometric
form) Let X be a (finite-dimensional) affine space, A
be a nonempty open and convex subset of X and L be
an affine subspace of X so that A∩L = ∅. Then, there
is some hyperplane, H, containing L, that is disjoint
from A.

Proof . The case where dim X = 1 is trivial. Thus, we
may assume that dimX ≥ 2. We reduce the proof to the
case where dimX = 2.

Remark: The geometric form of the Hahn-Banach the-
orem also holds when the dimension of X is infinite,
but a more sophisticated proof is required (it uses Zorn’s
lemma).
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� Theorem 3.2.8 is false if we omit the assumption that
A is open. For a counter-example, let A ⊆ A2 be the

union of the half space y < 0 with the close segment
[0, 1] on the x-axis and let L be the point (2, 0) on the
boundary of A. It is also false if A is closed! (Find a
counter-example).

Theorem 3.2.8 has many important corollaries. First, we
define the notion of separation. For this, recall the defi-
nition of the closed (or open) half–spaces determined by
a hyperplane.

Given a hyperplane H , if f :E → R is any nonconstant
affine form defining H (i.e., H = Ker f), we define the
closed half-spaces associated with f by

H+(f) = {a ∈ E | f(a) ≥ 0},
H−(f) = {a ∈ E | f(a) ≤ 0}.

Observe that if λ > 0, then H+(λf) = H+(f), but if
λ < 0, thenH+(λf) = H−(f), and similarly forH−(λf).
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Thus, the set {H+(f), H−(f)} only depends on the hy-
perplane H , and the choice of a specific f defining H
amounts to the choice of one of the two half-spaces.

We also define the open half–spaces associated with f
as the two sets

◦
H+ (f) = {a ∈ E | f(a) > 0},
◦
H− (f) = {a ∈ E | f(a) < 0}.

The set {
◦
H+ (f),

◦
H− (f)} only depends on the hyper-

plane H .

Clearly,
◦
H+ (f) = H+(f)−H and

◦
H− (f) = H−(f)−H .
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Definition 3.2.9 Given an affine space, X , and two
nonempty subsets, A and B, of X , we say that a hyper-
plane H separates (resp. strictly separates) A and B
if A is in one and B is in the other of the two half–spaces
(resp. open half–spaces) determined by H .

We will eventually prove that for any two nonempty dis-
joint convex setsA andB there is a hyperplane separating
A and B, but this will take some work.

We begin with the following version of the Hahn-Banach
theorem:

Theorem 3.2.10 (Hahn-Banach, second version)
Let X be a (finite-dimensional) affine space, A be a
nonempty convex subset of X with nonempty interior
and L be an affine subspace of X so that A ∩ L = ∅.
Then, there is some hyperplane, H, containing L and
separating L and A.
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Corollary 3.2.11 Given an affine space, X, let A
and B be two nonempty disjoint convex subsets and

assume that A has nonempty interior (
◦
A 6= ∅). Then,

there is a hyperplane separating A and B.

Remark: Theorem 3.2.10 and Corollary 3.2.11 also hold

in the infinite case.

Corollary 3.2.12 Given an affine space, X, let A
and B be two nonempty disjoint open and convex sub-
sets. Then, there is a hyperplane strictly separating
A and B.

� Beware that Corollary 3.2.12 fails for closed convex
sets. However, Corollary 3.2.12 holds if we also assume

that A (or B) is compact.
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We need to review the notion of distance from a point to
a subset.

Let X be a metric space with distance function d. Given
any point a ∈ X and any nonempty subset B of X , we
let

d(a,B) = inf
b∈B

d(a, b)

(where inf is the notation for least upper bound).

Now, if X is an affine space of dimension d, it can be
given a metric structure by giving the corresponding vec-
tor space a metric structure, for instance, the metric in-
duced by a Euclidean structure.

We have the following important property: For any
nonempty closed subset, S ⊆ X (not necessarily con-
vex), and any point, a ∈ X , there is some point s ∈ S
“achieving the distance from a to S,” i.e., so that

d(a, S) = d(a, s).
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Corollary 3.2.13 Given an affine space, X, let A
and B be two nonempty disjoint closed and convex
subsets, with A compact. Then, there is a hyperplane
strictly separating A and B.

Finally, we have the separation theorem announced ear-
lier for arbitrary nonempty convex subsets. (For a differ-
ent proof, see Berger [?], Corollary 11.4.7.)

Corollary 3.2.14 Given an affine space, X, let A
and B be two nonempty disjoint convex subsets. Then,
there is a hyperplane separating A and B.
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Remarks:

(1) The reader should compare the proof from Valentine
[?], Chapter II with Berger’s proof using compactness
of the projective space Pd [?] (Corollary 11.4.7).

(2) Rather than using the Hahn-Banach theorem to de-
duce separation results, one may proceed differently
and use the following intuitively obvious lemma, as in
Valentine [?] (Theorem 2.4):

Lemma 3.2.15 If A and B are two nonempty con-
vex sets such that A∪B = X and A∩B = ∅, then
V = A ∩B is a hyperplane.

One can then deduce Corollaries 3.2.11 and 3.2.14.
Yet another approach is followed in Barvinok [?].

(3) How can some of the above results be generalized to
infinite dimensional affine spaces, especially Theorem
3.2.8 and Corollary 3.2.11?
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One approach is to simultaneously relax the notion
of interior and tighten a little the notion of closure,
in a more “linear and less topological” fashion, as in
Valentine [?].

Given any subset A ⊆ X (where X may be infi-
nite dimensional, but is a Hausdorff topological vector
space), say that a point x ∈ X is linearly accessi-
ble from A iff there is some a ∈ A with a 6= x and
]a, x[ ⊆ A. We let lina A be the set of all points
linearly accessible from A and lin A = A ∪ lina A.

A point a ∈ A is a core point of A iff for every
y ∈ X , with y 6= a, there is some z ∈]a, y[ , such
that [a, z] ⊆ A. The set of all core points is denoted
core A.

It is not difficult to prove that lin A ⊆ A and
◦
A⊆ core A. If A has nonempty interior, then

lin A = A and
◦
A = core A.
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Also, if A is convex, then core A and lin A are con-
vex. Then, Lemma 3.2.15 still holds (where X is not
necessarily finite dimensional) if we redefine V as
V = lin A ∩ lin B and allow the possibility that V
could be X itself.

Corollary 3.2.11 also holds in the general case if we as-
sume that coreA is nonempty. For details, see Valen-
tine [?], Chapter I and II.

(4) Yet another approach is to define the notion of an
algebraically open convex set, as in Barvinok [?].

A convex set, A, is algebraically open iff the inter-
section of A with every line, L, is an open interval,
possibly empty or infinite at either end (or all of L).

An open convex set is algebraically open. Then, the
Hahn-Banach theorem holds provided that A is an
algebraically open convex set and similarly, Corollary
3.2.11 also holds provided A is algebraically open.

For details, see Barvinok [?], Chapter 2 and 3. We do
not know how the notion “algebraically open” relates
to the concept of core.
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(5) Theorems 3.2.8, 3.2.10 and Corollary 3.2.11 are proved
in Lax using the notion of gauge function in the more
general case where A has some core point (but beware
that Lax uses the terminology interior point instead
of core point!).

An important special case of separation is the case where
A is convex and B = {a} for some point a in A.
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3.3 Supporting Hyperplanes

Definition 3.3.1 Let X be an affine space and let A be
any nonempty subset of X . A supporting hyperplane of
A is any hyperplane, H , containing some point, a, of A,
and separating {a} andA. We say thatH is a supporting
hyperplane of A at a.

Observe that if H is a supporting hyperplane of A at a,
then we must have a ∈ ∂A.

Also, if A is convex, then H ∩
◦
A = ∅.

One should experiment with various pictures and realize
that supporting hyperplanes at a point may not exist (for
example, if A is not convex), may not be unique, and may
have several distinct supporting points!

However, we have the following important proposition
first proved by Minkowski (1896):
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Proposition 3.3.2 (Minkowski) Let A be a nonempty
closed and convex subset. Then, for every point,
a ∈ ∂A, there is a supporting hyperplane to A through
a.

� Beware that Proposition 3.3.2 is false when the dimen-

sion X of A is infinite and when
◦
A = ∅.

The proposition below gives a sufficient condition for a
closed subset to be convex.

Proposition 3.3.3 Let A be a closed subset with
nonempty interior. If there is a supporting hyperplane
for every point a ∈ ∂A, then A is convex.

� The condition that A has nonempty interior is crucial!

The proposition below characterizes closed convex sets in
terms of (closed) half–spaces. It is another intuitive fact
whose rigorous proof is nontrivial.

Proposition 3.3.4 Let A be a nonempty closed and
convex subset. Then, A is the intersection of all the
closed half–spaces containing it.
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Next, we consider various types of boundary points of
closed convex sets.

3.4 Boundary of a Convex Set: Vertices and Extremal

Points

Definition 3.4.1 Let X be an affine space of dimen-
sion d. For any nonempty closed and convex subset, A,
of dimension d, a point a ∈ ∂A has order k(a) if the
intersection of all the supporting hyperplanes of A at a
is an affine subspace of dimension k(a). We say that
a ∈ ∂A is a vertex if k(a) = 0; we say that a is smooth
if k(a) = d− 1, i.e., if the supporting hyperplane at a is
unique.

A vertex is a boundary point a such that there are d
independent supporting hyperplanes at a.

A d-simplex has boundary points of order 0, 1, . . . , d− 1.
The following proposition is shown in Berger [?] (Propo-
sition 11.6.2):
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Proposition 3.4.2 The set of vertices of a closed and
convex subset is countable.

Another important concept is that of an extremal point.

Definition 3.4.3 Let X be an affine space. For any
nonempty convex subset A, a point a ∈ ∂A is extremal
(or extreme) if A− {a} is still convex.

It is fairly obvious that a point a ∈ ∂A is extremal if
it does not belong to any closed nontrivial line segment
[x, y] ⊆ A (x 6= y).

Observe that a vertex is extremal, but the converse is
false.

Also, if dimX ≥ 3, the set of extremal points of a compact
convex may not be closed.

Actually, it is not at all obvious that a nonempty compact
convex possesses extremal points.
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In fact, a stronger results holds (Krein and Milman’s the-
orem).

In preparation for the proof of this important theorem,
observe that any compact (nontrivial) interval of A1 has
two extremal points, its two endpoints.

Lemma 3.4.4 Let X be an affine space of dimension
n, and let A be a nonempty compact and convex set.
Then, A = C(∂A), i.e., A is equal to the convex hull
of its boundary.

The following important theorem shows that only ex-
tremal points matter as far as determining a compact
and convex subset from its boundary.

Theorem 3.4.5 (Krein and Milman) Let X be an
affine space of dimension n. Every compact and con-
vex nonempty subset A is equal to the convex hull of
its set of extremal points.
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Observe that Krein and Milman’s theorem implies that
any nonemty compact and convex set has a nonempty
subset of extremal points. This is intuitively obvious, but
hard to prove!

Krein and Milman’s theorem also holds for infinite di-
mensional affine spaces, provided that they are locally
convex.
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Chapter 4

Basics of Euclidean Geometry

4.1 Inner Products, Euclidean Spaces

In Affine geometry, it is possible to deal with ratios of
vectors and barycenters of points, but there is no way to
express the notion of length of a line segment, or to talk
about orthogonality of vectors.

A Euclidean structure will allow us to deal with metric
notions such as orthogonality and length (or distance).

We begin by defining inner products and Euclidean Spaces.
The Cauchy-Schwarz inequality and the Minkovski in-
equality are shown.

123
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We define othogonality of vectors and of subspaces, oth-
ogonal families, and orthonormal families. We offer a
glimpse at Fourier series in terms of the orthogonal fam-
ilies (sin px)p≥1 ∪ (cos qx)q≥0 and (eikx)k∈Z.

We prove that every finite dimensional Euclidean space
has orthonormal bases.

The first proof uses duality, and the second one the Gram-
Schmidt procedure. The QR-decomposition of matrices
is shown as an application.

Linear isometries (also called orthogonal transformations)
are defined and studied briefly.

The orthogonal group and orthogonal matrices are stud-
ied briefly.

First, we define a Euclidean structure on a vector space,
and then, on an affine space.
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Definition 4.1.1 A real vector space E is a Euclidean
space iff it is equipped with a symmetric bilinear form
ϕ:E × E → R which is also positive definite,which
means that

ϕ(u, u) > 0, for every u 6= 0.

More explicitly, ϕ:E × E → R satisfies the following
axioms:

ϕ(u1 + u2, v) = ϕ(u1, v) + ϕ(u2, v),

ϕ(u, v1 + v2) = ϕ(u, v1) + ϕ(u, v2),

ϕ(λu, v) = λϕ(u, v),

ϕ(u, λv) = λϕ(u, v),

ϕ(u, v) = ϕ(v, u),

u 6= 0 implies that ϕ(u, u) > 0.

The real number ϕ(u, v) is also called the inner product
(or scalar product) of u and v.
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We also define the quadratic form associated with ϕ as
the function Φ:E → R+ such that

Φ(u) = ϕ(u, u),

for all u ∈ E.

Since ϕ is bilinear, we have ϕ(0, 0) = 0, and since it is
positive definite, we have the stronger fact that

ϕ(u, u) = 0 iff u = 0,

that is Φ(u) = 0 iff u = 0.

Given an inner product ϕ:E×E → R on a vector space
E, we also denote ϕ(u, v) by

u · v, or 〈u, v〉, or (u|v),
and

√
Φ(u) as ‖u‖.
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Example 1. The standard example of a Euclidean space
is Rn, under the inner product · defined such that

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + x2y2 + · · · + xnyn.

Example 2. Let E be a vector space of dimension 2, and
let (e1, e2) be a basis of E.

If a > 0 and b2 − ac < 0, the bilinear form defined such
that

ϕ(x1e1+y1e2, x2e1+y2e2) = ax1x2+b(x1y2+x2y1)+cy1y2

yields a Euclidean structure on E.

In this case,

Φ(xe1 + ye2) = ax2 + 2bxy + cy2.
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Example 3. Let C[a, b] denote the set of continuous func-
tions f : [a, b] → R. It is easily checked that C[a, b] is a
vector space of infinite dimension.

Given any two functions f, g ∈ C[a, b], let

〈f, g〉 =
∫ b

a

f(t)g(t)dt.

We leave as an easy exercise that 〈−,−〉 is indeed an
inner product on C[a, b].

When [a, b] = [−π, π] (or [a, b] = [0, 2π], this makes
basically no difference), one should compute

〈sin px, sin qx〉, 〈sin px, cos qx〉,
and 〈cos px, cos qx〉,

for all natural numbers p, q ≥ 1. The outcome of these
calculations is what makes Fourier analysis possible!
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Let us observe that ϕ can be recovered from Φ. Indeed,
by bilinearity and symmetry, we have

Φ(u + v) = ϕ(u + v, u + v)

= ϕ(u, u + v) + ϕ(v, u + v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Φ(u) + 2ϕ(u, v) + Φ(v).

Thus, we have

ϕ(u, v) =
1

2
[Φ(u + v)− Φ(u)− Φ(v)].

We also say that ϕ is the polar form of Φ.

One of the very important properties of an inner product
ϕ is that the map u 7→

√
Φ(u) is a norm.
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Lemma 4.1.2 Let E be a Euclidean space with inner
product ϕ and quadratic form Φ. For all u, v ∈ E, we
have the Cauchy-Schwarz inequality:

ϕ(u, v)2 ≤ Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkovski inequality:
√
Φ(u + v) ≤

√
Φ(u) +

√
Φ(v),

the equality holding iff u and v are linearly dependent,
where in addition if u 6= 0 and v 6= 0, then u = λv for
some λ > 0.



4.1. INNER PRODUCTS, EUCLIDEAN SPACES 131

Sketch of proof . Define the function T :R → R, such
that

T (λ) = Φ(u + λv),

for all λ ∈ R. Using bilinearity and symmetry, we can
show that

Φ(u + λv) = Φ(u) + 2λϕ(u, v) + λ2Φ(v).

Since ϕ is positive definite, we have T (λ) ≥ 0 for all
λ ∈ R.

If Φ(v) = 0, then v = 0, and we also have ϕ(u, v) = 0.
In this case, the Cauchy-Schwarz inequality is trivial,



132 CHAPTER 4. BASICS OF EUCLIDEAN GEOMETRY

If Φ(v) > 0, then

λ2Φ(v) + 2λϕ(u, v) + Φ(u) = 0

can’t have distinct roots, which means that its discrimi-
nant

∆ = 4(ϕ(u, v)2 − Φ(u)Φ(v))

is zero or negative, which is precisely the Cauchy-Schwarz
inequality.

The Minkovski inequality can then be shown.
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Let us review the definition of a normed vector space.

Definition 4.1.3 Let E be a vector space over a field
K, where K is either the field R of reals, or the field
C of complex numbers. A norm on E is a function
‖ ‖ :E → R+, assigning a nonnegative real number ‖u‖
to any vector u ∈ E, and satisfying the following condi-
tions for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖ . (scaling)

(N3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ . (triangle inequality)

A vector space E together with a norm ‖ ‖ is called a
normed vector space.

From (N3), we easily get

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ .
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The Minkovski inequality
√

Φ(u + v) ≤
√
Φ(u) +

√
Φ(v)

shows that the map u 7→
√
Φ(u) satisfies the triangle

inequality , condition (N3) of definition 4.1.3, and since ϕ
is bilinear and positive definite, it also satisfies conditions
(N1) and (N2) of definition 4.1.3, and thus, it is a norm
on E.

The norm induced by ϕ is called the Euclidean norm
induced by ϕ.
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Note that the Cauchy-Schwarz inequality can be written
as

|u · v| ≤ ‖u‖ ‖v‖ ,
and the Minkovski inequality as

‖u + v‖ ≤ ‖u‖ + ‖v‖ .

u v

u+ v

Figure 4.1: The triangle inequality

We now define orthogonality.
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4.2 Orthogonality

Definition 4.2.1 Given a Euclidean space E, any two
vectors u, v ∈ E are orthogonal, or perpendicular iff
u · v = 0. Given a family (ui)i∈I of vectors in E, we say
that (ui)i∈I is orthogonal iff ui · uj = 0 for all i, j ∈ I ,
where i 6= j. We say that the family (ui)i∈I is orthonor-
mal iff ui · uj = 0 for all i, j ∈ I , where i 6= j, and
‖ui‖ = ui · ui = 1, for all i ∈ I . For any subset F of E,
the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},
of all vectors orthogonal to all vectors in F , is called the
orthogonal complement of F .

Since inner products are positive definite, observe that for
any vector u ∈ E, we have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement
F⊥ of F is a subspace of E.
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Example 4. Going back to example 3, and to the inner
product

〈f, g〉 =
∫ π

−π
f(t)g(t)dt

on the vector space C[−π, π], it is easily checked that

〈sin px, sin qx〉 =
{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 1

〈cos px, cos qx〉 =
{
π if p = q, p, q ≥ 1,
0 if p 6= q, p, q ≥ 0

and
〈sin px, cos qx〉 = 0,

for all p ≥ 1 and q ≥ 0, and of course,
〈1, 1〉 =

∫ π
−π dx = 2π.

As a consequence, the family (sin px)p≥1 ∪ (cos qx)q≥0 is
orthogonal.

It is not orthonormal, but becomes so if we divide every
trigonometric function by

√
π, and 1 by

√
2π.
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Remark : Observe that if we allow complex valued func-
tions, we obtain simpler proofs. For example, it is imme-
diately checked that

∫ π

−π
eikxdx =

{
2π if k = 0;
0 if k 6= 0,

because the derivative of eikx is ikeikx.

� However, beware that something strange is going on!

Indeed, unless k = 0, we have

〈eikx, eikx〉 = 0,

since

〈eikx, eikx〉 =
∫ π

−π
(eikx)2dx =

∫ π

−π
ei2kxdx = 0.

The inner product 〈eikx, eikx〉 should be strictly positive.
What went wrong?
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The problem is that we are using the wrong inner product.
When we use complex-valued functions, we must use the
Hermitian inner product

〈f, g〉 =
∫ π

−π
f(x)g(x)dx,

where g(x) is the conjugate of g(x).

The Hermitian inner product is not symmetric. Instead,

〈g, f〉 = 〈f, g〉.

(Recall that if z = a+ib, where a, b ∈ R, then z = a−ib.
Also eiθ = cos θ + i sin θ).

With the Hermitian inner product, everthing works out
beautifully! In particular, the family (eikx)k∈Z is orthog-
onal.
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Lemma 4.2.2 Given a Euclidean space E, for any
family (ui)i∈I of nonnull vectors in E, if (ui)i∈I is or-
thogonal, then it is linearly independent.

Lemma 4.2.3 Given a Euclidean space E, any two
vectors u, v ∈ E are orthogonal iff

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

One of the most useful features of orthonormal bases is
that they afford a very simple method for computing the
coordinates of a vector over any basis vector.

Indeed, assume that (e1, . . . , em) is an orthonormal basis.
For any vector

x = x1e1 + · · · + xmem,

if we compute the inner product x · ei, we get
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x · ei = x1e1 · ei + · · · + xiei · ei + · · · + xmem · ei = xi,

since

ei · ej =
{
1 if i = j,
0 if i 6= j,

is the property characterizing an orthonormal family.

Thus,
xi = x · ei,

which means that xiei = (x·ei)ei is the orthogonal projec-
tion of x onto the subspace generated by the basis vector
ei.

If the basis is orthogonal but not necessarily orthonormal,
then

xi =
x · ei
ei · ei

=
x · ei
‖ei‖2

.

All this is true even for an infinite orthonormal (or or-
thogonal) basis (ei)i∈I.
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� However, remember that every vector x is expressed as
a linear combination

x =
∑

i∈I
xiei

where the family of scalars (xi)i∈I has finite support,
which means that xi = 0 for all i ∈ I − J , where J is a
finite set.

Thus, even though the family (sin px)p≥1 ∪ (cos qx)q≥0

is orthogonal (it is not orthonormal, but becomes one if
we divide every trigonometric function by

√
π, and 1 by√

2π; we won’t because it looks messy!), the fact that a
function f ∈ C0[−π, π] can be written as a Fourier series
as

f(x) = a0 +
∞∑

k=1

(ak cos kx + bk sin kx)

does not mean that (sin px)p≥1 ∪ (cos qx)q≥0 is a basis
of this vector space of functions, because in general, the
families (ak) and (bk) do not have finite support!
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In order for this infinite linear combination to make sense,
it is necessary to prove that the partial sums

a0 +
n∑

k=1

(ak cos kx + bk sin kx)

of the series converge to a limit when n goes to infinity.

This requires a topology on the space.

Still, a small miracle happens. If f ∈ C[−π, π] can indeed
be expressed as a Fourier series

f(x) = a0 +
∞∑

k=1

(ak cos kx + bk sin kx),

the coefficients a0 and ak, bk, k ≥ 1, can be computed
by projecting f over the basis functions, i.e. by taking
inner products with the basis functions in (sin px)p≥1 ∪
(cos qx)q≥0.
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Indeed, for all k ≥ 1, we have

a0 =
〈f, 1〉
‖1‖2

,

and

ak =
〈f, cos kx〉
‖cos kx‖2

, bk =
〈f, sin kx〉
‖sin kx‖2

,

that is

a0 =
1

2π

∫ π

−π
f(x)dx,

and

ak =
1

π

∫ π

−π
f(x) cos kx dx, bk =

1

π

∫ π

−π
f(x) sin kx dx.
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If we allow f to be complex-valued and use the family
(eikx)k∈Z, which is is indeed orthogonal w.r.t. the Hermi-
tian inner product

〈f, g〉 =
∫ π

−π
f(x)g(x)dx,

we consider functions f ∈ C[−π, π] that can be expressed
as the sum of a series

f(x) =
∑

k∈Z
cke

ikx.

Note that the index k is allowed to be a negative integer.
Then, the formula giving the ck is very nice:

ck =
〈f, eikx〉
‖eikx‖2

,

that is

ck =
1

2π

∫ π

−π
f(x)e−ikxdx.
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Note the presence of the negative sign in e−ikx, which is
due to the fact that the inner product is Hermitian.

Of course, the real case can be recovered from the complex
case. If f is a real-valued function, then we must have

ak = ck + c−k and bk = i(ck − c−k).

Also note that

1

2π

∫ π

−π
f(x)e−ikxdx

is not only defined for all discrete values k ∈ Z, but for
all k ∈ R, and that if f is continuous over R, the integral
makes sense.
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This suggests defining

f̂ (k) =

∫ ∞

−∞
f(x)e−ikxdx,

called the Fourier transform of f . It analyses the func-
tion f in the “frequency domain” in terms of its spectrum
of harmonics.

Amazingly, there is an inverse Fourier transform (change
e−ikx to e+ikx and divide by the scale factor 2π) which
reconstructs f (under certain assumptions on f).
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A very important property of Euclidean spaces of finite
dimension is that the inner product induces a canonical
bijection (i.e., independent of the choice of bases) between
the vector space E and its dual E∗.

Given a Euclidean space E, for any vector u ∈ E, let
ϕu:E → R be the map defined such that

ϕu(v) = u · v,
for all v ∈ E.
Since the inner product is bilinear, the map ϕu is a

linear form in E∗.
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Thus, we have a map ♭:E → E∗, defined such that

♭(u) = ϕu.

Lemma 4.2.4 Given a Euclidean space E, the map
♭:E → E∗, defined such that

♭(u) = ϕu,

is linear and injective. When E is also of finite di-
mension, the map ♭:E → E∗ is a canonical isomor-
phism.

The inverse of the isomorphism ♭:E → E∗ is denoted by
♯:E∗ → E.
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As a consequence of lemma 4.2.4, ifE is a Euclidean space
of finite dimension, every linear form f ∈ E∗ corresponds
to a unique u ∈ E, such that

f(v) = u · v,
for every v ∈ E.

In particular, if f is not the null form, the kernel of f ,
which is a hyperplane H , is precisely the set of vectors
that are orthogonal to u.

Lemma 4.2.4 allows us to define the adjoint of a linear
map on a Euclidean space.
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Let E be a Euclidean space of finite dimension n, and let
f :E → E be a linear map.

For every u ∈ E, the map

v 7→ u · f(v)
is clearly a linear form in E∗, and by lemma 4.2.4, there
is a unique vector in E denoted as f ∗(u), such that

f ∗(u) · v = u · f(v),
for every v ∈ E.

Lemma 4.2.5 Given a Euclidean space E of finite
dimension, for every linear map f :E → E, there is a
unique linear map f ∗:E → E, such that

f ∗(u) · v = u · f(v),
for all u, v ∈ E. The map f ∗ is called the adjoint of
f (w.r.t. to the inner product).



152 CHAPTER 4. BASICS OF EUCLIDEAN GEOMETRY

Linear maps f :E → E such that f = f ∗ are called
self-adjoint maps.

They play a very important role because they have real
eigenvalues, and because orthonormal bases arise from
their eigenvectors.

Furthermore, many physical problems lead to self-adjoint
linear maps (in the form of symmetric matrices).

Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are isometries . Rota-
tions are special kinds of isometries.
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Another important class of linear maps are the linear
maps satisfying the property

f ∗ ◦ f = f ◦ f ∗,
called normal linear maps .

We will see later on that normal maps can always be
diagonalized over orthonormal bases of eigenvectors, but
this will require using a Hermitian inner product (over
C).

Given two Euclidean spaces E and F , where the inner
product onE is denoted as 〈−,−〉1 and the inner product
on F is denoted as 〈−,−〉2, given any linear map f :E →
F , it is immediately verified that the proof of lemma 4.2.5
can be adapted to show that there is a unique linear map
f ∗:F → E such that

〈f(u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also
called the adjoint of f .
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Remark : Given any basis for E and any basis for F , it is
possible to characterize the matrix of the adjoint f ∗ of f
in terms of the matrix of f , and the symmetric matrices
defining the inner products. We will do so with respect
to orthonormal bases.

We can also use lemma 4.2.4 to show that any Euclidean
space of finite dimension has an orthonormal basis.

Lemma 4.2.6 Given any nontrivial Euclidean space
E of finite dimension n ≥ 1, there is an orthonormal
basis (u1, . . . , un) for E.

There is a more constructive way of proving lemma 4.2.6,
using a procedure known as theGram–Schmidt orthonor-
malization procedure.

Among other things, the Gram–Schmidt orthonormal-
ization procedure yields the so-called QR-decomposition
for matrices , an important tool in numerical methods.
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Lemma 4.2.7 Given any nontrivial Euclidean space
E of dimension n ≥ 1, from any basis (e1, . . . , en) for
E, we can construct an orthonormal basis (u1, . . . , un)
for E, with the property that for every k, 1 ≤ k ≤ n,
the families (e1, . . . , ek) and (u1, . . . , uk) generate the
same subspace.

Proof . We proceed by induction on n. For n = 1, let

u1 =
e1
‖e1‖

.

For n ≥ 2, we define the vectors uk and u
′
k as follows.

u′1 = e1, u1 =
u′1
‖u′1‖

,

and for the inductive step

u′k+1 = ek+1 −
k∑

i=1

(ek+1 · ui) ui, uk+1 =
u′k+1∥∥u′k+1

∥∥.
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We need to show that u′k+1 is nonzero, and we conclude
by induction.

e1
e2

e3

u1

(e2 · u1)u1

(e3 · u1)u1

(e3 · u2)u2u2 u′
2

u3

u′
3

Figure 4.2: The Gram-Schmidt orthonormalization procedure
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Remarks :

(1) Note that u′k+1 is obtained by subtracting from ek+1

the projection of ek+1 itself onto the orthonormal vectors
u1, . . . , uk that have already been computed. Then, we
normalize u′k+1.

The QR-decomposition can now be obtained very easily.
We will do this in section 4.4.

(2) We could compute u′k+1 using the formula

u′k+1 = ek+1 −
k∑

i=1

(
ek+1 · u′i
‖u′i‖2

)
u′i,

and normalize the vectors u′k at the end.

This time, we are subtracting from ek+1 the projection of
ek+1 itself onto the orthogonal vectors u′1, . . . , u

′
k.

This might be preferable when writing a computer pro-
gram.
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(3) The proof of lemma 4.2.7 also works for a countably
infinite basis for E, producing a countably infinite or-
thonormal basis.

Example 5. If we consider polynomials and the inner
product

〈f, g〉 =
∫ 1

−1

f(t)g(t)dt,

applying the Gram–Schmidt orthonormalization proce-
dure to the polynomials

1, x, x2, . . . , xn, . . . ,

which form a basis of the polynonials in one variable with
real coefficients, we get a family of orthonormal polyno-
mials Qn(x) related to the Legendre polynomials .

The Legendre polynomials Pn(x) have many nice proper-
ties. They are orthogonal, but their norm is not always
1. The Legendre polynomials Pn(x) can be defined as
follows:
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If we let fn be the function

fn(x) = (x2 − 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f (n)n (x),

where f
(n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n + 1

n + 1
xPn(x)−

n

n + 1
Pn−1(x).

It turns out that the polynomials Qn are related to the
Legendre polynomials Pn as follows:

Qn(x) =
2n(n!)2

(2n)!
Pn(x).
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As a consequence of lemma 4.2.6 (or lemma 4.2.7), given
any Euclidean space of finite dimension n, if (e1, . . . , en)
is an orthonormal basis for E, then for any two vectors
u = u1e1 + · · · + unen and v = v1e1 + · · · + vnen, the
inner product u · v is expressed as

u ·v = (u1e1+ · · ·+unen) · (v1e1+ · · ·+vnen) =
n∑

i=1

uivi,

and the norm ‖u‖ as

‖u‖ = ‖u1e1 + · · · + unen‖ =

√√√√
n∑

i=1

u2i .

We can also prove the following lemma regarding orthog-
onal spaces.

Lemma 4.2.8 Given any nontrivial Euclidean space
E of finite dimension n ≥ 1, for any subspace F of
dimension k, the orthogonal complement F⊥ of F has
dimension n− k, and E = F ⊕ F⊥. Furthermore, we
have F⊥⊥ = F .
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Definition 4.2.9 An affine space (E,
−→
E ) is aEuclidean

affine space iff its underlying vector space
−→
E is a Eu-

clidean vector space. Given any two points a, b ∈ E,
we define the distance between a and b, or length of
the segment (a, b), as ‖ab‖, the Euclidean norm of ab.
Given any two pairs of points (a, b) and (c, d), we define
their inner product as ab · cd. We say that (a, b) and
(c, d) are orthogonal, or perpendicular iff ab · cd = 0.
We say that two affine subspaces F1 and F2 of E are

orthogonal iff their directions
−→
F1 and

−→
F2 are orthogonal.

Note that a Euclidean affine space is a normed affine
space, in the sense of definition 4.2.10 below.

Definition 4.2.10 Given an affine space (E,
−→
E ), where

the space of translations
−→
E is a vector space over R or

C, we say that (E,
−→
E ) is a normed affine space iff

−→
E

is a normed vector space with norm ‖ ‖.
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We denote asEm the Euclidean affine space obtained from
the affine space Am by defining on the vector space Rm

the standard inner product

(x1, . . . , xm) · (y1, . . . , ym) = x1y1 + · · · + xmym.

The corresponding Euclidean norm is

‖(x1, . . . , xm)‖ =
√
x21 + · · · + x2m.

We now consider linear maps between Euclidean spaces
that preserve the Euclidean norm. These transformations
sometimes called rigid motions play an important role
in geometry.
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4.3 Linear Isometries (Orthogonal Transformations)

In this section, we consider linear maps between Eu-
clidean spaces that preserve the Euclidean norm.

Definition 4.3.1 Given any two nontrivial Euclidean
spaces E and F of the same finite dimension n, a function
f :E → F is an orthogonal transformation, or a linear
isometry iff it is linear and

‖f(u)‖ = ‖u‖ ,
for all u ∈ E.

Thus, a linear isometry is a linear map that preserves the
norm.



164 CHAPTER 4. BASICS OF EUCLIDEAN GEOMETRY

Remarks : (1) A linear isometry is often defined as a linear
map such that

‖f(v)− f(u)‖ = ‖v − u‖ ,
for all u, v ∈ E. Since the map f is linear, the two defi-
nitions are equivalent. The second definition just focuses
on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of
definition 4.3.1 is called a metric map, and a linear isom-
etry is defined as a bijective metric map.

Also, an isometry (without the word linear) is sometimes
defined as a function f :E → F (not necessarily linear)
such that

‖f(v)− f(u)‖ = ‖v − u‖ ,
for all u, v ∈ E, i.e., as a function that preserves the
distance.
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This requirement turns out to be very strong. Indeed, the
next lemma shows that all these definitions are equivalent
when E and F are of finite dimension, and for functions
such that f(0) = 0.

Lemma 4.3.2 Given any two nontrivial Euclidean
spaces E and F of the same finite dimension n, for
every function f :E → F , the following properties are
equivalent:

(1) f is a linear map and ‖f(u)‖ = ‖u‖, for all u ∈ E;

(2) ‖f(v)− f(u)‖ = ‖v − u‖, for all u, v ∈ E, and
f(0) = 0;

(3) f(u) · f(v) = u · v, for all u, v ∈ E.

Furthermore, such a map is bijective.
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For (2), we shall prove a slightly stronger result. We prove
that if

‖f(v)− f(u)‖ = ‖v − u‖
for all u, v ∈ E, for any vector τ ∈ E, the function
g:E → F defined such that

g(u) = f(τ + u)− f(τ )

for all u ∈ E is a linear map such that g(0) = 0 and (3)
holds.

Remarks : (i) The dimension assumption is only needed
to prove that (3) implies (1) when f is not known to be
linear, and to prove that f is surjective, but the proof
shows that (1) implies that f is injective.
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(ii) In (2), when f does not satisfy the condition f(0) = 0,
the proof shows that f is an affine map.

Indeed, taking any vector τ as an origin, the map g is
linear, and

f(τ + u) = f(τ ) + g(u)

for all u ∈ E, proving that f is affine with associated
linear map g.

(iii) The implication that (3) implies (1) holds if we also
assume that f is surjective, even if E has infinite dimen-
sion.

In view of lemma 4.3.2, we will drop the word “linear” in
“linear isometry”, unless we wish to emphasize that we
are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries
f :E → E of a Euclidean space of finite dimension.
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4.4 The Orthogonal Group, Orthogonal Matrices

In this section, we explore some of the fundamental prop-
erties of the orthogonal group and of orthogonal matrices.

As an immediate corollary of the Gram–Schmidt orthonor-
malization procedure, we obtain the QR-decomposition
for invertible matrices.

We prove an important structure theorem for the isome-
tries, namely that they can always be written as a com-
position of reflections (Theorem 5.2.1).
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Lemma 4.4.1 Let E be any Euclidean space of finite
dimension n, and let f :E → E be any linear map.
The following properties hold:

(1) The linear map f :E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . , en) of E, if
the matrix of f is A, then the matrix of f ∗ is the
transpose A⊤ of A, and f is an isometry iff A
satisfies the identities

AA⊤ = A⊤A = In,

where In denotes the identity matrix of order n, iff
the columns of A form an orthonormal basis of E,
iff the rows of A form an orthonormal basis of E.

Lemma 4.4.1 shows that the inverse of an isometry f is
its adjoint f ∗. Lemma 4.4.1 also motivates the following
definition:
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Definition 4.4.2 A real n×n matrix is an orthogonal
matrix iff

AA⊤ = A⊤A = In.

Remarks : It is easy to show that the conditions
AA⊤ = In, A

⊤A = In, and A
−1 = A⊤, are equivalent.

Given any two orthonormal bases (u1, . . . , un) and
(v1, . . . , vn), if P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn) since the columns of P are
the coordinates of the vectors vj with respect to the basis
(u1, . . . , un), and since (v1, . . . , vn) is orthonormal, the
columns of P are orthonormal, and by lemma 4.4.1 (2),
the matrix P is orthogonal.

The proof of lemma 4.3.2 (3) also shows that if f is an
isometry, then the image of an orthonormal basis
(u1, . . . , un) is an orthonormal basis.
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Recall that the determinant det(f) of an endomorphism
f :E → E is independent of the choice of a basis in E.

Also, for every matrix A ∈ Mn(R), we have
det(A) = det(A⊤), and for any two n×n-matrices A and
B, we have det(AB) = det(A) det(B) (for all these basic
results, see Lang [?]).

Then, if f is an isometry, and A is its matrix with respect
to any orthonormal basis, AA⊤ = A⊤A = In implies
that det(A)2 = 1, that is, either det(A) = 1, or
det(A) = −1.

It is also clear that the isometries of a Euclidean space
of dimension n form a group, and that the isometries of
determinant +1 form a subgroup.
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Definition 4.4.3 Given a Euclidean space E of dimen-
sion n, the set of isometries f :E → E forms a group
denoted as O(E), or O(n) when E = Rn, called the
orthogonal group (of E).

For every isometry, f , we have det(f) = ±1, where det(f)
denotes the determinant of f . The isometries such that
det(f) = 1 are called rotations, or proper isometries,
or proper orthogonal transformations , and they form
a subgroup of the special linear group SL(E) (and of
O(E)), denoted as SO(E), or SO(n) when E = Rn,
called the special orthogonal group (of E).

The isometries such that det(f) = −1 are called im-
proper isometries, or improper orthogonal transfor-
mations, or flip transformations .
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4.5 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix,
we can explain how the Gram–Schmidt orthonormaliza-
tion procedure immediately yields theQR-decomposition
for matrices.

Lemma 4.5.1 Given any n × n real matrix A, if A
is invertible then there is an orthogonal matrix Q and
an upper triangular matrix R with positive diagonal
entries such that A = QR.

Proof . We can view the columns ofA as vectorsA1, . . . , An

in En.

If A is invertible, then they are linearly independent, and
we can apply lemma 4.2.7 to produce an orthonormal
basis using the Gram–Schmidt orthonormalization pro-
cedure.
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Recall that we construct vectors Qk and Q
′
k as follows:

Q′
1 = A1, Q1 =

Q′
1

‖Q′
1‖
,

and for the inductive step

Q′
k+1 = Ak+1 −

k∑

i=1

(Ak+1 ·Qi)Qi, Qk+1 =
Q′
k+1∥∥Q′
k+1

∥∥,

where 1 ≤ k ≤ n− 1.

If we express the vectors Ak in terms of the Qi and Q
′
i,

we get a triangular system

A1 = ‖Q′
1‖Q1,

. . .

Aj = (Aj ·Q1)Q1 + · · ·+ (Aj ·Qi)Qi + · · ·+ (Aj ·Qj−1)Qj−1 +
∥∥Q′

j

∥∥Qj,

. . .

An = (An ·Q1)Q1 + · · ·+ (An ·Qn−2)Qn−2 + (An ·Qn−1)Qn−1 + ‖Q′
n‖Qn.
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Remarks : (1) Because the diagonal entries of R are pos-
itive, it can be shown that Q and R are unique.

(2) The QR-decomposition holds even when A is not in-
vertible. In this case, R has some zero on the diagonal.
However, a different proof is needed. We will give a nice
proof using Householder matrices (see also Strang [?]).

Example 6. Consider the matrix

A =




0 0 5
0 4 1
1 1 1




We leave as an exercise to show that A = QR with

Q =




0 0 1
0 1 0
1 0 0


 and R =




1 1 1
0 4 1
0 0 5
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Another example of QR-decomposition is

A =




1 1 2
0 0 1
1 0 0




where

Q =




1/
√
2 1/

√
2 0

0 0 1
1/
√
2 −1/

√
2 0




and

R =




√
2 1/

√
2

√
2

0 1/
√
2

√
2

0 0 1




The QR-decomposition yields a rather efficient and nu-
merically stable method for solving systems of linear equa-
tions.
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Indeed, given a system Ax = b, where A is an n × n
invertible matrix, writingA = QR, sinceQ is orthogonal,
we get

Rx = Q⊤b,

and since R is upper triangular, we can solve it by Gaus-
sian elimination, by solving for the last variable xn first,
substituting its value into the system, then solving for
xn−1, etc.

The QR-decomposition is also very useful in solving least
squares problems (we will come back to this later on), and
for finding eigenvalues.

It can be easily adapted to the case where A is a rect-
angular m × n matrix with independent columns (thus,
n ≤ m).

In this case, Q is not quite orthogonal. It is an m × n
matrix whose columns are orthogonal, and R is an invert-
ible n × n upper diagonal matrix with positive diagonal
entries. For more on QR, see Strang [?].
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It should also be said that the Gram–Schmidt orthonor-
malization procedure that we have presented is not very
stable numerically, and instead, one should use the mod-
ified Gram–Schmidt method .

To compute Q′
k+1, instead of projecting Ak+1 onto

Q1, . . . , Qk in a single step, it is better to perform k pro-
jections.

We compute Q1
k+1, Q

2
k+1, . . . , Q

k
k+1 as follows:

Q1
k+1 = Ak+1 − (Ak+1 ·Q1)Q1,

Qi+1
k+1 = Qi

k+1 − (Qi
k+1 ·Qi+1)Qi+1,

where 1 ≤ i ≤ k − 1.

It is easily shown that Q′
k+1 = Qk

k+1. The reader is urged
to code this method.



Chapter 5

The Cartan–Dieudonné Theorem

5.1 Orthogonal Reflections

Orthogonal symmetries are a very important example of
isometries. First let us review the definition of projec-
tions.

Given a vector space E, let F and G be subspaces of E
that form a direct sum E = F ⊕G.

Since every u ∈ E can be written uniquely as
u = v + w, where v ∈ F and w ∈ G, we can define the
two projections pF :E → F and pG:E → G, such that

pF (u) = v and pG(u) = w.

179
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It is immediately verified that pG and pF are linear maps,
and that p2F = pF , p

2
G = pG, pF ◦ pG = pG ◦ pF = 0, and

pF + pG = id.

Definition 5.1.1 Given a vector space E, for any two
subspaces F and G that form a direct sum E = F ⊕G,
the symmetry with respect to F and parallel to G, or
reflection about F is the linear map s:E → E, defined
such that

s(u) = 2pF (u)− u,

for every u ∈ E.

Because pF + pG = id, note that we also have

s(u) = pF (u)− pG(u)

and
s(u) = u− 2pG(u),

s2 = id, s is the identity on F , and s = −id on G.
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We now assume that E is a Euclidean space of finite
dimension.

Definition 5.1.2 Let E be a Euclidean space of finite
dimension n. For any two subspaces F and G, if F and
G form a direct sum E = F ⊕ G and F and G are
orthogonal, i.e. F = G⊥, the orthogonal symmetry with
respect to F and parallel to G, or orthogonal reflection
about F is the linear map s:E → E, defined such that

s(u) = 2pF (u)− u,

for every u ∈ E.

When F is a hyperplane, we call s an hyperplane sym-
metry with respect to F (or reflection about F ), and
when G is a plane, we call s a flip about F .

It is easy to show that s is an isometry.
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u

s(u)

pG(u)

−pG(u)

pF (u)

F

G

Figure 5.1: A reflection about a hyperplane F

Using lemma 4.2.7, it is possible to find an orthonormal
basis (e1, . . . , en) of E consisting of an orthonormal basis
of F and an orthonormal basis of G.

Assume that F has dimension p, so that G has dimension
n− p.

With respect to the orthonormal basis (e1, . . . , en), the
symmetry s has a matrix of the form

(
Ip 0
0 −In−p

)
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Thus, det(s) = (−1)n−p, and s is a rotation iff n − p is
even.

In particular, when F is a hyperplane H , we have
p = n − 1, and n − p = 1, so that s is an improper
orthogonal transformation.

When F = {0}, we have s = −id, which is called the
symmetry with respect to the origin . The symmetry
with respect to the origin is a rotation iff n is even, and
an improper orthogonal transformation iff n is odd.

When n is odd, we observe that every improper orthogo-
nal transformation is the composition of a rotation with
the symmetry with respect to the origin.
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When G is a plane, p = n− 2, and det(s) = (−1)2 = 1,
so that a flip about F is a rotation.

In particular, when n = 3, F is a line, and a flip about
the line F is indeed a rotation of measure π.

When F = H is a hyperplane, we can give an explicit for-
mula for s(u) in terms of any nonnull vector w orthogonal
to H .

We get

s(u) = u− 2
(u · w)
‖w‖2

w.

Such reflections are represented by matrices calledHouse-
holder matrices , and they play an important role in nu-
merical matrix analysis. Householder matrices are sym-
metric and orthogonal.
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Over an orthonormal basis (e1, . . . , en), a hyperplane re-
flection about a hyperplane H orthogonal to a nonnull
vector w is represented by the matrix

H = In − 2
WW⊤

‖W‖2
= In − 2

WW⊤

W⊤W
,

where W is the column vector of the coordinates of w.

Since

pG(u) =
(u · w)
‖w‖2

w,

the matrix representing pG is

WW⊤

W⊤W
,

and since pH + pG = id, the matrix representing pH is

In −
WW⊤

W⊤W
.
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The following fact is the key to the proof that every isom-
etry can be decomposed as a product of reflections.

Lemma 5.1.3 Let E be any nontrivial Euclidean space.
For any two vectors u, v ∈ E, if ‖u‖ = ‖v‖, then there
is an hyperplane H such that the reflection s about H
maps u to v, and if u 6= v, then this reflection is
unique.
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5.2 The Cartan–Dieudonné Theorem for Linear Isome-

tries

The fact that the group O(n) of linear isometries is gen-
erated by the reflections is a special case of a theorem
known as the Cartan–Dieudonné theorem.

Elie Cartan proved a version of this theorem early in the
twentieth century. A proof can be found in his book on
spinors [?], which appeared in 1937 (Chapter I, Section
10, pages 10–12).

Cartan’s version applies to nondegenerate quadratic forms
over R or C. The theorem was generalized to quadratic
forms over arbitrary fields by Dieudonné [?].

One should also consult Emil Artin’s book [?], which con-
tains an in-depth study of the orthogonal group and an-
other proof of the Cartan–Dieudonné theorem.

First, let us recall the notions of eigenvalues and eigen-
vectors.
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Recall that given any linear map f :E → E, a vector
u ∈ E is called an eigenvector, or proper vector, or
characteristic vector of f iff there is some λ ∈ K such
that

f(u) = λu.

In this case, we say that u ∈ E is an eigenvector asso-
ciated with λ.

A scalar λ ∈ K is called an eigenvalue, or proper value,
or characteristic value of f iff there is some nonnull
vector u 6= 0 in E such that

f(u) = λu,

or equivalently if Ker (f − λid) 6= {0}.

Given any scalar λ ∈ K, the set of all eigenvectors asso-
ciated with λ is the subspace Ker (f − λid), also denoted
as Eλ(f) or E(λ, f), called the eigenspace associated
with λ, or proper subspace associated with λ.
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Theorem 5.2.1 Let E be a Euclidean space of di-
mension n ≥ 1. Every isometry f ∈ O(E) which
is not the identity is the composition of at most n re-
flections. For n ≥ 2, the identity is the composition
of any reflection with itself.

Remarks .

(1) The proof of theorem 5.2.1 shows more than stated.

If 1 is an eigenvalue of f , for any eigenvector w associated
with 1 (i.e., f(w) = w, w 6= 0), then f is the composition
of k ≤ n− 1 reflections about hyperplanes Fi, such that
Fi = Hi ⊕ L, where L is the line Rw, and the Hi are
subspaces of dimension n− 2 all orthogonal to L.

If 1 is not an eigenvalue of f , then f is the composition
of k ≤ n reflections about hyperplanes H,F1, . . . , Fk−1,
such that Fi = Hi⊕ L, where L is a line intersecting H ,
and theHi are subspaces of dimension n−2 all orthogonal
to L.



190 CHAPTER 5. THE CARTAN–DIEUDONNÉ THEOREM

u

h

w

λw

H

H1

Hi

Hk

L
Fi

Figure 5.2: An Isometry f as a composition of reflections, when 1 is an eigenvalue of f

w

f(w)

f(w)− w
L⊥

H1

Hi

Hk−1

L
Fi

H

Figure 5.3: An Isometry f as a composition of reflections, when 1 is not an eigenvalue of f
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(2) It is natural to ask what is the minimal number of
hyperplane reflections needed to obtain an isometry f .

This has to do with the dimension of the eigenspace
Ker (f − id) associated with the eigenvalue 1.

We will prove later that every isometry is the composition
of k hyperplane reflections, where

k = n− dim(Ker (f − id)),

and that this number is minimal (where n = dim(E)).

When n = 2, a reflection is a reflection about a line, and
theorem 5.2.1 shows that every isometry in O(2) is either
a reflection about a line or a rotation, and that every
rotation is the product of two reflections about some lines.
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In general, since det(s) = −1 for a reflection s, when
n ≥ 3 is odd, every rotation is the product of an even
number ≤ n− 1 of reflections, and when n is even, every
improper orthogonal transformation is the product of an
odd number ≤ n− 1 of reflections.

In particular, for n = 3, every rotation is the product of
two reflections about planes.

If E is a Euclidean space of finite dimension and
f :E → E is an isometry, if λ is any eigenvalue of f and
u is an eigenvector associated with λ, then

‖f(u)‖ = ‖λu‖ = |λ| ‖u‖ = ‖u‖ ,
which implies |λ| = 1, since u 6= 0.

Thus, the real eigenvalues of an isometry are either +1 or
−1.
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When n is odd, we can say more about improper isome-
tries. This is because they admit −1 as an eigenvalue.
When n is odd, an improper isometry is the composi-
tion of a reflection about a hyperplane H with a rotation
consisting of reflections about hyperplanes F1, . . . , Fk−1

containing a line, L, orthogonal to H .

Lemma 5.2.2 Let E be a Euclidean space of finite
dimension n, and let f :E → E be an isometry. For
any subspace F of E, if f(F ) = F , then f(F⊥) ⊆ F⊥

and E = F ⊕ F⊥.
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Lemma 5.2.2 is the starting point of the proof that every
orthogonal matrix can be diagonalized over the field of
complex numbers.

Indeed, if λ is any eigenvalue of f , then
f(Eλ(f)) = Eλ(f), and thus the orthogonal Eλ(f)

⊥ is
closed under f , and

E = Eλ(f)⊕ Eλ(f)
⊥.

The problem over R is that there may not be any real
eigenvalues.
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However, when n is odd, the following lemma shows that
every rotation admits 1 as an eigenvalue (and similarly,
when n is even, every improper orthogonal transforma-
tion admits 1 as an eigenvalue).

Lemma 5.2.3 Let E be a Euclidean space.

(1) If E has odd dimension n = 2m + 1, then ev-
ery rotation f admits 1 as an eigenvalue and the
eigenspace F of all eigenvectors left invariant un-
der f has an odd dimension 2p + 1. Furthermore,
there is an orthonormal basis of E, in which f is
represented by a matrix of the form

(
R2(m−p) 0

0 I2p+1

)

where R2(m−p) is a rotation matrix that does not
have 1 as an eigenvalue.
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(2) If E has even dimension n = 2m, then every im-
proper orthogonal transformation f admits 1 as an
eigenvalue and the eigenspace F of all eigenvectors
left invariant under f has an odd dimension 2p+1.
Furthermore, there is an orthonormal basis of E,
in which f is represented by a matrix of the form

(
S2(m−p)−1 0

0 I2p+1

)

where S2(m−p)−1 is an improper orthogonal matrix
that does not have 1 as an eigenvalue.

An example showing that lemma 5.2.3 fails for n even is
the following rotation matrix (when n = 2):

R =

(
cos θ − sin θ
sin θ cos θ

)

The above matrix does not have real eigenvalues if
θ 6= kπ.
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It is easily shown that for n = 2, with respect to any
chosen orthonormal basis (e1, e2), every rotation is rep-
resented by a matrix of form

R =

(
cos θ − sin θ
sin θ cos θ

)

where θ ∈ [0, 2π[, and that every improper orthogonal
transformation is represented by a matrix of the form

S =

(
cos θ sin θ
sin θ − cos θ

)

In the first case, we call θ ∈ [0, 2π[ themeasure of the an-
gle of rotation of R w.r.t. the orthonormal basis (e1, e2).

In the second case, we have a reflection about a line, and
it is easy to determine what this line is. It is also easy
to see that S is the composition of a reflection about the
x-axis with a rotation (of matrix R).



198 CHAPTER 5. THE CARTAN–DIEUDONNÉ THEOREM

� We refrained from calling θ “the angle of rotation”,
because there are some subtleties involved in defining

rigorously the notion of angle of two vectors (or two lines).

For example, note that with respect to the “opposite ba-
sis” (e2, e1), the measure θ must be changed to 2π − θ
(or −θ if we consider the quotient set R/2π of the real
numbers modulo 2π).

We will come back to this point after having defined the
notion of orientation (see Section 5.8).

It is easily shown that the group SO(2) of rotations in
the plane is abelian.
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We can perform the following calculation, using some el-
ementary trigonometry:

(
cosϕ sinϕ
sinϕ − cosϕ

)(
cosψ sinψ
sinψ − cosψ

)

=

(
cos(ϕ + ψ) sin(ϕ + ψ)
sin(ϕ + ψ) − cos(ϕ + ψ)

)
.

The above also shows that the inverse of a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)

is obtained by changing θ to −θ (or 2π − θ).

Incidently, note that in writing a rotation r as the product
of two reflections r = s2s1, the first reflection s1 can be
chosen arbitrarily, since s21 = id, r = (rs1)s1, and rs1 is
a reflection.
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For n = 3, the only two choices for p are p = 1, which
corresponds to the identity, or p = 0, in which case, f is
a rotation leaving a line invariant.

u

R(u)

θ/2

D

Figure 5.4: 3D rotation as the composition of two reflections

This line is called the axis of rotation . The rotation R
behaves like a two dimentional rotation around the axis
of rotation.
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The measure of the angle of rotation θ can be determined
through its cosine via the formula

cos θ = u ·R(u),
where u is any unit vector orthogonal to the direction of
the axis of rotation.

However, this does not determine θ ∈ [0, 2π[ uniquely,
since both θ and 2π − θ are possible candidates.

What is missing is an orientation of the plane (through
the origin) orthogonal to the axis of rotation. We will
come back to this point in Section 5.8.

In the orthonormal basis of the lemma, a rotation is rep-
resented by a matrix of the form

R =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .



202 CHAPTER 5. THE CARTAN–DIEUDONNÉ THEOREM

Remark : For an arbitrary rotation matrix A, since

a1 1 + a2 2 + a3 3

(the trace of A) is the sum of the eigenvalues of A, and
since these eigenvalues are cos θ + i sin θ, cos θ − i sin θ,
and 1, for some θ ∈ [0, 2π[, we can compute cos θ from

1 + 2 cos θ = a1 1 + a2 2 + a3 3.

It is also possible to determine the axis of rotation (see
the problems).

An improper transformation is either a reflection about a
plane, or the product of three reflections, or equivalently
the product of a reflection about a plane with a rotation,
and a closer look at theorem 5.2.1 shows that the axis of
rotation is orthogonal to the plane of the reflection.
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Thus, an improper transformation is represented by a
matrix of the form

S =




cos θ − sin θ 0
sin θ cos θ 0
0 0 −1


 .

When n ≥ 3, the group of rotations SO(n) is not only
generated by hyperplane reflections, but also by flips (about
subspaces of dimension n− 2).

We will also see in Section 5.4 that every proper affine
rigid motion can be expressed as the composition of at
most n flips, which is perhaps even more surprising!

The proof of these results uses the following key lemma.
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Lemma 5.2.4 Given any Euclidean space E of di-
mension n ≥ 3, for any two reflections h1 and h2
about some hyperplanes H1 and H2, there exist two
flips f1 and f2 such that h2 ◦ h1 = f2 ◦ f1.

Using lemma 5.2.4 and the Cartan-Dieudonné theorem,
we obtain the following characterization of rotations when
n ≥ 3.

Theorem 5.2.5 Let E be a Euclidean space of di-
mension n ≥ 3. Every rotation f ∈ SO(E) is the
composition of an even number of flips f = f2k◦· · ·◦f1,
where 2k ≤ n. Furthermore, if u 6= 0 is invariant un-
der f (i.e. u ∈ Ker (f − id)), we can pick the last flip
f2k such that u ∈ F⊥

2k, where F2k is the subspace of
dimension n− 2 determining f2k.
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Remarks :

(1) It is easy to prove that if f is a rotation in SO(3), if
D is its axis and θ is its angle of rotation, then f is the
composition of two flips about linesD1 andD2 orthogonal
to D and making an angle θ/2.

(2) It is natural to ask what is the minimal number of
flips needed to obtain a rotation f (when n ≥ 3). As
for arbitrary isometries, we will prove later that every
rotation is the composition of k flips, where

k = n− dim(Ker (f − id)),

and that this number is minimal (where n = dim(E)).

Hyperplane reflections can be used to obtain another proof
of the QR-decomposition.
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5.3 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated
in terms of Householder matrices, we obtain the fact ad-
vertised earlier that every matrix (not necessarily invert-
ible) has a QR-decomposition.
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Lemma 5.3.1 Let E be a nontrivial Euclidean space
of dimension n. Given any orthonormal basis
(e1, . . . , en), for any n-tuple of vectors (v1, . . . , vn), there
is a sequence of n isometries h1, . . . , hn, such that
hi is a hyperplane reflection or the identity, and if
(r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),
then every rj is a linear combination of the vectors
(e1, . . . , ej), (1 ≤ j ≤ n). Equivalently, the matrix
R whose columns are the components of the rj over
the basis (e1, . . . , en) is an upper triangular matrix.
Furthermore, the hi can be chosen so that the diagonal
entries of R are nonnegative.

Remarks . (1) Since every hi is a hyperplane reflection or
the identity,

ρ = hn ◦ · · · ◦ h2 ◦ h1
is an isometry.
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(2) If we allow negative diagonal entries in R, the last
isometry hn may be omitted.

(3) Instead of picking rk,k = ‖u′′k‖, which means that

wk = rk,k ek − u′′k,

where 1 ≤ k ≤ n, it might be preferable to pick
rk,k = −‖u′′k‖ if this makes ‖wk‖2 larger, in which case

wk = rk,k ek + u′′k.

Indeed, since the definition of hk involves division by
‖wk‖2, it is desirable to avoid division by very small num-
bers.

Lemma 5.3.1 immediately yields the QR-decomposition
in terms of Householder transformations.
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Lemma 5.3.2 For every real n × n-matrix A, there
is a sequence H1, . . . , Hn of matrices, where each Hi

is either a Householder matrix or the identity, and an
upper triangular matrix R, such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where
Q is orthogonal and R is upper triangular, such that
A = QR (a QR-decomposition of A). Furthermore,
R can be chosen so that its diagonal entries are non-
negative.

Remarks . (1) Letting

Ak+1 = Hk · · ·H2H1A,

with A1 = A, 1 ≤ k ≤ n, the proof of lemma 5.3.1 can be
interpreted in terms of the computation of the sequence
of matrices A1, . . . , An+1 = R.
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The matrix Ak+1 has the shape

Ak+1 =




× × × uk+1
1 × × × ×

0 × ... ... ... ... ... ...
0 0 × uk+1

k × × × ×
0 0 0 uk+1

k+1 × × × ×
0 0 0 uk+1

k+2 × × × ×
... ... ... ... ... ... ... ...
0 0 0 uk+1

n−1 × × × ×
0 0 0 uk+1

n × × × ×




where the (k + 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1),

and thus
u′k+1 = (uk+1

1 , . . . , uk+1
k ),

and
u′′k+1 = (uk+1

k+1, u
k+1
k+2, . . . , u

k+1
n ).

If the last n− k − 1 entries in column k + 1 are all zero,
there is nothing to do and we let Hk+1 = I .
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Otherwise, we kill these n− k− 1 entries by multiplying
Ak+1 on the left by the Householder matrixHk+1 sending

(0, . . . , 0, uk+1
k+1, . . . , u

k+1
n ) to (0, . . . , 0, rk+1,k+1, 0, . . . , 0),

where
rk+1,k+1 =

∥∥(uk+1
k+1, . . . , u

k+1
n )

∥∥ .

(2) If we allow negative diagonal entries in R, the matrix
Hn may be omitted (Hn = I).

(3) If A is invertible and the diagonal entries of R are
positive, it can be shown that Q and R are unique.
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(4) The method allows the computation of the determi-
nant of A. We have

det(A) = (−1)mr1,1 · · · rn,n,
where m is the number of Householder matrices (not the
identity) among the Hi.

(5) The “condition number” of the matrix A is preserved
(see Strang [?]). This is very good for numerical stability.

We conclude our discussion of isometries with a brief dis-
cussion of affine isometries.
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5.4 Affine Isometries (Rigid Motions)

Definition 5.4.1 Given any two nontrivial Euclidean
affine spaces E and F of the same finite dimension n, a
function f :E → F is an affine isometry (or rigid map)
iff it is an affine map and

‖f(a)f(b)‖ = ‖ab‖ ,
for all a, b ∈ E. When E = F , an affine isometry
f :E → E is also called a rigid motion .

Thus, an affine isometry is an affine map that preserves
the distance. This is a rather strong requirement.

In fact, we will show that for any function f :E → F , the
assumption that

‖f(a)f(b)‖ = ‖ab‖
for all a, b ∈ E, forces f to be an affine map.
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Remark : Sometimes, an affine isometry is defined as a
bijective affine isometry. When E and F are of finite
dimension, the definitions are equivalent.

Lemma 5.4.2 Given any two nontrivial Euclidean
affine spaces E and F of the same finite dimension
n, an affine map f :E → F is an affine isometry iff

its associated linear map
−→
f :

−→
E → −→

F is an isometry.
An affine isometry is a bijection.

Let us now consider affine isometries f :E → E. If
−→
f is a

rotation, we call f a proper (or direct) affine isometry ,

and if
−→
f is a an improper linear isometry, we call f a an

improper (or skew) affine isometry .

It is easily shown that the set of affine isometries
f :E → E forms a group denoted as Is(E) (or Mo(E)),

and those for which
−→
f is a rotation is a subgroup denoted

as SE(E).
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The translations are the affine isometries f for which
−→
f = id, the identity map on

−→
E .

The following lemma is the counterpart of lemma 4.3.2
for isometries between Euclidean vector spaces:

Lemma 5.4.3 Given any two nontrivial Euclidean
affine spaces E and F of the same finite dimension n,
for every function f :E → F , the following properties
are equivalent:

(1) f is an affine map and ‖f(a)f(b)‖ = ‖ab‖, for all
a, b ∈ E.

(2) ‖f(a)f(b)‖ = ‖ab‖, for all a, b ∈ E.

In order to understand the structure of affine isometries,
it is important to investigate the fixed points of an affine
map.
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5.5 Fixed Points of Affine Maps

Recall that E(1,
−→
f ) denotes the eigenspace of the linear

map
−→
f associated with the scalar 1, that is, the subspace

consisting of all vectors u ∈ −→
E such that

−→
f (u) = u.

Clearly, Ker (
−→
f − id) = E(1,

−→
f ).

Given some origin Ω ∈ E, since

f(a) = f(Ω +Ωa) = f(Ω) +
−→
f (Ωa),

we get

Ωf(a)−Ωa = Ωf(Ω) +
−→
f (Ωa)−Ωa.

Using this, we show the following lemma which holds for
arbitrary affine spaces of finite dimension and for arbi-
trary affine maps.
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Lemma 5.5.1 Let E be any affine space of finite di-
mension. For every affine map f :E → E, let
Fix(f) = {a ∈ E | f(a) = a} be the set of fixed points
of f . The following properties hold.

(1) If f has some fixed point a, so that Fix(f) 6= ∅,
then Fix(f) is an affine subspace of E such that

Fix(f) = a + E(1,
−→
f ) = a + Ker (

−→
f − id),

where E(1,
−→
f ) is the eigenspace of the linear map

−→
f for the eigenvalue 1.

(2) The affine map f has a unique fixed point iff

E(1,
−→
f ) = Ker (

−→
f − id) = {0}.

Remark : The fact that E has finite dimension is only
used to prove (2), and (1) holds in general.
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If an isometry f leaves some point fixed, we can take
such a point Ω as the origin, and then f(Ω) = Ω and
we can view f as a rotation or an improper orthogonal

transformation, depending on the nature of
−→
f .

Note that it is quite possible that Fix(f) = ∅. For ex-
ample, nontrivial translations have no fixed points.

A more interesting example is provided the composition
of a plane reflection about a line composed with a a non-
trivial translation parallel to this line.

Otherwise, we will see in lemma 5.6.2 that every affine
isometry is the (commutative) composition of a transla-
tion with an isometry that always has a fixed point.
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5.6 Affine Isometries and Fixed Points

Given any two affine subspaces F,G of E such that
−→
F

and
−→
G are orthogonal subspaces of

−→
E such that

−→
E =

−→
F ⊕−→

G , for any point Ω ∈ F , we define

q:E → −→
G , such that

q(a) = p−→
G
(Ωa).

Note that q(a) is independent of the choice of Ω ∈ F .

Then, the map g:E → E such that g(a) = a− 2q(a), or
equivalently

ag(a) = −2q(a) = −2p−→
G
(Ωa)

does not depend on the choice of Ω ∈ F .
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If we identify E to
−→
E by choosing any origin Ω in F , we

note that g is identified with the symmetry with respect

to
−→
F and parallel to

−→
G .

Thus, the map g is an affine isometry, and it is called the
orthogonal symmetry about F .

Since
g(a) = Ω +Ωa− 2p−→

G
(Ωa)

for all Ω ∈ F and for all a ∈ E, we note that the linear

map −→g associated with g is the (linear) symmetry about

the subspace
−→
F (the direction of F )

The following amusing lemma shows the extra power af-
forded by affine orthogonal symmetries: Translations are
subsumed!
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Lemma 5.6.1 Given any affine space E, if f :E → E
and g:E → E are orthogonal symmetries about paral-
lel affine subspaces F1 and F2, then g ◦ f is a transla-
tion defined by the vector 2ab, where ab is any vector

perpendicular to the common direction
−→
F of F1 and

F2 such that ‖ab‖ is the distance between F1 and F2,
with a ∈ F1 and b ∈ F2. Conversely, every translation
by a vector τ is obtained as the composition of two
orthogonal symmetries about parallel affine subspaces
F1 and F2 whose common direction is orthogonal to
τ = ab, for some a ∈ F1 and some b ∈ F2 such that
the distance betwen F1 and F2 is ‖ab‖ /2.
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The following result is a generalization of Chasles’ theo-
rem about the rigid motions in R3.

Lemma 5.6.2 Let E be a Euclidean affine space of
finite dimension n. For every affine isometry
f :E → E, there is a unique isometry g:E → E and

a unique translation t = tτ , with
−→
f (τ ) = τ (i.e.,

τ ∈ Ker (
−→
f − id)), such that the set

Fix(g) = {a ∈ E | g(a) = a}
of fixed points of g is a nonempty affine subspace of
E of direction

−→
G = Ker (

−→
f − id) = E(1,

−→
f ),

and such that

f = t ◦ g and t ◦ g = g ◦ t.
Furthermore, we have the following additional prop-
erties:
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(a) f = g and τ = 0 iff f has some fixed point, i.e.,
iff Fix(f) 6= ∅.

(b) If f has no fixed points, i.e., Fix(f) = ∅, then

dim(Ker (
−→
f − id)) ≥ 1.

The proof rests on the following two key facts:

(1) If we can find some x ∈ E such that xf(x) = τ

belongs to Ker (
−→
f − id), we get the existence of g

and τ .

(2)
−→
E = Ker (

−→
f − id)⊕Im (

−→
f − id), and Ker (

−→
f − id)

and Im (
−→
f − id) are orthogonal. This implies the

uniqueness of g and τ .
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bc

bc

bc

bc bca

f(a)

τ
v

−→
f (v)

a+
−→
f (v)− v

x

f(x)

a+ Im (
−→
f − id)

f(a) + Ker (
−→
f − id)

Figure 5.5: Rigid motion as f = t ◦ g, where g has some fixed point x

Remarks . (1) Note that Ker (
−→
f − id) = {0} iff τ = 0,

iff Fix(g) consists of a single element, which is the unique
fixed point of f .

However, even if f is not a translation, f may not have
any fixed points.

(2) The fact that E has finite dimension is only used to
prove (b).
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(3) It is easily checked that Fix(g) consists of the set of
points x such that ‖xf(x)‖ is minimal.

In the affine Euclidean plane, it is easy to see that the
affine isometries are classified as follows.

An isometry f which has a fixed point is a rotation if it
is a direct isometry, else a reflection about a line.

If f has no fixed point, then either it is a nontrivial trans-
lation or the composition of a reflection about a line with
a nontrivial translation parallel to this line.



226 CHAPTER 5. THE CARTAN–DIEUDONNÉ THEOREM

In an affine space of dimension 3, it is easy to see that
the affine isometries are classified as follows.

A proper isometry with a fixed point is a rotation around
a line D (its set of fixed points), as illustrated in figure
5.6.

bc

bc

bc

a

f(a)

D

Figure 5.6: 3D proper rigid motion with line D of fixed points (rotation)

An improper isometry with a fixed point is either a re-
flection about a plane H (the set of fixed points), or the
composition of a rotation followed by a reflection about
a plane H orthogonal to the axis of rotation D, as illus-
trated in figures 5.7 and 5.8. In the second case, there is
a single fixed point O = D ∩H .
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bc

bc

a

f(a)
H

Figure 5.7: 3D improper rigid motion with a plane H of fixed points (reflection)

bc
bc

bc

bc

O a

f(a)
H

D

Figure 5.8: 3D improper rigid motion with a unique fixed point
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There are three types of isometries with no fixed point.
The first kind is a nontrivial translation. The second kind
is the composition of a rotation followed by a nontrivial
translation parallel to the axis of rotationD. Such a rigid
motion is proper, and is called a screw motion . A screw
motion is illustrated in figure 5.9.

bc

bc

bc

bc

bc

a

a + τ
g(a)

f(a)

τ

D

Figure 5.9: 3D proper rigid motion with no fixed point (screw motion)

The third kind is the composition of a reflection about
a plane followed by a nontrivial translation by a vector
parallel to the direction of the plane of the reflection, as
illustrated in figure 5.10. It is an improper isometry.
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bc bc

bc bc

a a + τ

τg(a) f(a)
H

Figure 5.10: 3D improper rigid motion with no fixed points

The Cartan-Dieudonné also holds for affine isometries,
with a small twist due to translations.
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5.7 The Cartan–Dieudonné Theorem for Affine Isome-

tries

Theorem 5.7.1 Let E be an affine Euclidean space
of dimension n ≥ 1. Every isometry f ∈ Is(E)
which has a fixed point and is not the identity is the
composition of at most n reflections. Every isometry
f ∈ Is(E) which has no fixed point is the composition
of at most n + 2 reflections. For n ≥ 2, the identity
is the composition of any reflection with itself.

When n ≥ 3, we can also characterize the affine isome-
tries in SE(n) in terms of flips.

Remarkably, not only we can do without translations, but
we can even bound the number of flips by n.
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Theorem 5.7.2 Let E be a Euclidean affine space of
dimension n ≥ 3. Every rigid motion f ∈ SE(E) is
the composition of an even number of flips
f = f2k ◦ · · · ◦ f1, where 2k ≤ n.

Remark . It is easy to prove that if f is a screw motion
in SE(3), if D is its axis, θ is its angle of rotation, and τ
is the translation along the direction of D, then f is the
composition of two flips about linesD1 andD2 orthogonal
to D, at a distance ‖τ‖ /2, and making an angle θ/2.

There is one more topic that we would like to cover since
it is often useful in practice, the concept of cross-product
of vectors , also called vector-product. But first, we need
to discuss the question of orientation of bases.
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5.8 Orientations of a Euclidean Space, Angles

In order to deal with the notion of orientation correctly,
it is important to assume that every family (u1, . . . , un)
of vectors is ordered (by the natural ordering on
{1, 2, . . . , n}).

We will assume that all families (u1, . . . , un) of vectors,
in particular, bases and orthonormal bases are ordered.

Let E be a vector space of finite dimension n over R, and
let (u1, . . . , un) and (v1, . . . , vn) be any two bases for E.

Recall that the change of basis matrix from (u1, . . . , un)
to (v1, . . . , vn) is the matrix P whose columns are the
coordinates of the vectors vj over the basis (u1, . . . , un).

It is immediately verified that the set of alternating n-
linear forms on E is a vector space that we denote as
Λ(E) (see Lang [?]).
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It is easy to show that Λ(E) has dimension 1.

We now define an equivalence relation on Λ(E) − {0}
(where we let 0 denote the null alternating n-linear form):

ϕ and ψ are equivalent iff ψ = λϕ for some λ > 0.

It is immediately verified that the above relation is an
equivalence relation. Furthermore, it has exactly two
equivalence classes O1 and O2.

The first way of defining an orientation of E is to pick
one of these two equivalence classes, sayO (O ∈ {O1, O2}).

Given such a choice of a class O, we say that a basis
(w1, . . . , wn) has positive orientation iff

ϕ(w1, . . . , wn) > 0

for any alternating n-linear form ϕ ∈ O.
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Note that this makes sense, since for any other ψ ∈ O,
ϕ = λψ for some λ > 0.

According to the previous definition, two bases (u1, . . . , un)
and (v1, . . . , vn) have the same orientation iff ϕ(u1, . . . , un)
and ϕ(v1, . . . , vn) have the same sign for all
ϕ ∈ Λ(E)− {0}.

From

ϕ(v1, . . . , vn) = det(P )ϕ(u1, . . . , un),

we must have det(P ) > 0.

Conversely, if det(P ) > 0, the same argument shows that
(u1, . . . , un) and (v1, . . . , vn) have the same orientation.

This leads us to an equivalent and slightly less contorted
definition of the notion of orientation. We define a rela-
tion between bases of E as follows:
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Two bases (u1, . . . , un) and (v1, . . . , vn) are related iff
det(P ) > 0, where P is the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn).

Since det(PQ) = det(P ) det(Q), and since change of ba-
sis matrices are invertible, the relation just defined is in-
deed an equivalence relation, and it has two equivalence
classes.

Furthermore, from the discussion above, any nonnull al-
ternating n-linear form ϕ will have the same sign on any
two equivalent bases.

The above discussion motivates the following definition.



236 CHAPTER 5. THE CARTAN–DIEUDONNÉ THEOREM

Definition 5.8.1 Given any vector space E of finite
dimension over R, we define an orientation of E as
the choice of one of the two equivalence classes of the
equivalence relation on the set of bases defined such that
(u1, . . . , un) and (v1, . . . , vn) have the same orientation
iff det(P ) > 0, where P is the change of basis matrix
from (u1, . . . , un) to (v1, . . . , vn). A basis in the chosen
class is said to have positive orientation, or to be posi-
tive. An orientation of a Euclidean affine space E is

an orientation of its underlying vector space
−→
E

In practice, to give an orientation, one simply picks a
fixed basis considered as having positive orientation. The
orientation of every other basis is determined by the sign
of the determinant of the change of basis matrix.
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Having the notation of orientation at hand, we wish to
go back briefly to the concept of (oriented) angle.

Let E be a Euclidean space of dimension n = 2, and
assume a given orientation. In any given positive or-
thonormal basis for E, every rotation r is represented
by a matrix

R =

(
cos θ − sin θ
sin θ cos θ

)

Actually, we claim that the matrix R representing the
rotation r is the same in all orthonormal positive bases.

This is because the change of basis matrix from one pos-
itive orthonormal basis to another positive orthonormal
basis is a rotation represented by some matrix of the form

P =

(
cosψ − sinψ
sinψ cosψ

)
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and that we have

P−1 =

(
cos(−ψ) − sin(−ψ)
sin(−ψ) cos(−ψ)

)

and after calculations, we find that PRP−1 is the rotation
matrix associated with ψ + θ − ψ = θ.

We can choose θ ∈ [0, 2π[, and we call θ the measure of
the angle of rotation of r (and R). If the orientation is
changed, the measure changes to 2π − θ.

We now let E be a Euclidean space of dimension n = 2,
but we do not assume any orientation.

It is easy to see that given any two unit vectors u1, u2 ∈ E
(unit means that ‖u1‖ = ‖u2‖ = 1), there is a unique
rotation r such that

r(u1) = u2.
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It is also possible to define an equivalence relation of pairs
of unit vectors, such that

〈u1, u2〉 ≡ 〈u3, u4〉
iff there is some rotation r such that r(u1) = u3 and
r(u2) = u4.

Then, the equivalence class of 〈u1, u2〉 can be taken as
the definition of the (oriented) angle of 〈u1, u2〉, which is
denoted as û1u2.

Furthermore, it can be shown that there is a rotation
mapping the pair 〈u1, u2〉 to the pair 〈u3, u4〉, iff there is
a rotation mapping the pair 〈u1, u3〉 to the pair 〈u2, u4〉
(all vectors being unit vectors).

bc

u1

u2

u4

u3

Figure 5.11: Defining Angles
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As a consequence of all this, since for any pair 〈u1, u2〉 of
unit vectors, there is a unique rotation r mapping u1 to
u2, the angle û1u2 of 〈u1, u2〉 corresponds bijectively to
the rotation r, and there is a bijection between the set of
angles of pairs of unit vectors and the set of rotations in
the plane.

As a matter of fact, the set of angles forms an abelian
groups isomorphic to the (abelian) group of rotations in
the plane.

Thus, even though we can consider angles as oriented,
note that the notion of orientation is not necessary to
define angles.

However, to define the measure of an angle, the notion
of orientation is needed.
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If we now assume that an orientation of E (still a Eu-
clidean plane) is given, the unique rotation r associated
with an angle û1u2 corresponds to a unique matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
.

The number θ is defined up to 2kπ (with k ∈ Z) and is
called a measure of the angle û1u2.

There is a unique θ ∈ [0, 2π[ which is a measure of the
angle û1u2.

It is also immediately seen that

cos θ = u1 · u2.
In fact, since cos θ = cos(2π−θ) = cos(−θ), the quantity
cos θ does not depend on the orientation.
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Now still considering a Euclidean plane, given any pair
〈u1, u2〉 of nonnull vectors, we define their angle as the
angle of the unit vectors u1

‖u1‖ and
u2
‖u2‖, and ifE is oriented,

we define the measure θ of this angle as the measure of
the angle of these unit vectors.

Note that
cos θ =

u1 · u2
‖u1‖ ‖u2‖

,

and this independently of the orientation.

Finally if E is a Euclidean space of dimension n ≥ 2, we
define the angle of a pair 〈u1, u2〉 of nonnull vectors as
the angle of this pair in the Euclidean plane spanned by
〈u1, u2〉 if they are linearly independent, or any Euclidean
plane containing u1 if their are collinear.
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If E is an affine Euclidean space of dimension n ≥ 2, for
any two pairs 〈a1, b1〉 and 〈a2, b2〉 of points in E, where
a1 6= b1 and a2 6= b2, we define the angle of the pair
〈〈a1, b1〉, 〈a2, b2〉〉 as the angle of the pair 〈a1b1, a2b2〉.

As for the issue of measure of an angle when n ≥ 3, all
we can do is to define the measure of the angle û1u2 as
either θ or 2π − θ, where θ ∈ [0, 2π[.

In particular, when n = 3, one should note that it is not
enough to give a line D through the origin (the axis of
rotation) and an angle θ to specify a rotation!

The problem is that depending on the orientation of the
plane H (through the origin) orthogonal to D, we get
two different rotations: one of angle θ, the other of angle
2π − θ.
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Thus, to specify a rotation, we also need to give an ori-
entation of the plane orthogonal to the axis of rotation.

This can be done by specifying an orientation of the axis
of rotation by some unit vector ω, and chosing the basis
(e1, e2, ω) (where (e1, e2) is a basis of H) such that it has
positive orientation w.r.t. the chosen orientation of E.

We now return to alternating multilinear forms on a Eu-
clidean space.

When E is a Euclidean space, we have an interesting situ-
ation regarding the value of determinants over orthornor-
mal bases described by the following lemma.

Given any basis B = (u1, . . . , un) for E, for any sequence
(w1, . . . , wn) of n vectors, we denote as detB(w1, . . . , wn)
the determinant of the matrix whose columns are the co-
ordinates of the wj over the basis B = (u1, . . . , un).
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Lemma 5.8.2 Let E be a Euclidean space of finite di-
mension n, and assume that an orientation of E has
been chosen. For any sequence (w1, . . . , wn) of n vec-
tors, for any two orthonormal bases B1 = (u1, . . . , un)
and B2 = (v1, . . . , vn) of positive orientation, we have

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

By lemma 5.8.2, the determinant detB(w1, . . . , wn) is in-
dependent of the base B, provided that B is orthonormal
and of positive orientation.

Thus, lemma 5.8.2 suggests the following definition.
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5.9 Volume Forms, Cross-Products

Definition 5.9.1 Given any Euclidean space E of finite
dimension n over R and any orientation of E, for any se-
quence (w1, . . . , wn) of n vectors in E, the common value
λE(w1, . . . , wn) of the determinant detB(w1, . . . , wn) over
all positive orthonormal bases B of E is called the mixed
product (or volume form) of (w1, . . . , wn).

The mixed product λE(w1, . . . , wn) will also be denoted
as (w1, . . . , wn), even though the notation is overloaded.

• The mixed product λE(w1, . . . , wn) changes sign when
the orientation changes.

• The mixed product λE(w1, . . . , wn) is a scalar, and
definition 5.9.1 really defines an alternating multilin-
ear form from En to R.

• λE(w1, . . . , wn) = 0 iff (w1, . . . , wn) is linearly depen-
dent.
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• A basis (u1, . . . , un) is positive or negative iff
λE(u1, . . . , un) is positive or negative.

• λE(w1, . . . , wn) is invariant under every isometry f
such that det(f) = 1.

The terminology “volume form” is justified by the fact
that λE(w1, . . . , wn) is indeed the volume of some geo-
metric object.

Indeed, viewing E as an affine space, the parallelotope
defined by (w1, . . . , wn) is the set of points

{λ1w1 + · · · + λnwn | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}.

Then, it can be shown (see Berger [?], Section 9.12) that
the volume of the parallelotope defined by (w1, . . . , wn)
is indeed λE(w1, . . . , wn).
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If (E,
−→
E ) is a Euclidean affine space of dimension n, given

any n+1 affinely independent points (a0, . . . , an), the set

{a0 + λ1a0a1 + · · · + λna0an | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n},
is called the parallelotope spanned by (a0, . . . , an).

Then, the volume of the parallelotope spanned by
(a0, . . . , an) is λ−→E (a0a1, . . . , a0an).

It can also be shown that the volume vol(a0, . . . , an) of
the n-simplex (a0, . . . , an) is

vol(a0, . . . , an) =
1

n!
λ−→
E
(a0a1, . . . , a0an).
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Now, given a sequence (w1, . . . , wn−1) of n− 1 vectors in
E, the map

x 7→ λE(w1, . . . , wn−1, x)

is a linear form.

Thus, by lemma 4.2.4, there is a unique vector u ∈ E
such that

λE(w1, . . . , wn−1, x) = u · x
for all x ∈ E.

The vector u has some interesting properties which mo-
tivate the next definition.
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Definition 5.9.2 Given any Euclidean space E of finite
dimension n over R, for any orientation of E, for any
sequence (w1, . . . , wn−1) of n−1 vectors in E, the unique
vector w1 × · · · × wn−1 such that

λE(w1, . . . , wn−1, x) = w1 × · · · × wn−1 · x
for all x ∈ E, is called the cross-product, or vector
product, of (w1, . . . , wn−1).

The following properties hold.

• The cross-product w1×· · ·×wn−1 changes sign when
the orientation changes.

• The cross-product w1×· · ·×wn−1 is a vector, and def-
inition 5.9.2 really defines an alternating multilinear
map from En−1 to E.
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• w1 × · · · × wn−1 = 0 iff (w1, . . . , wn−1) is linearly
dependent. This is because,

w1 × · · · × wn−1 = 0

iff
λE(w1, . . . , wn−1, x) = 0

for all x ∈ E, and thus, if (w1, . . . , wn−1) was linearly
independent, we could find a vector x ∈ E to com-
plete (w1, . . . , wn−1) into a basis of E, and we would
have

λE(w1, . . . , wn−1, x) 6= 0.

• The cross-product w1 × · · · × wn−1 is orthogonal to
each of the wj.

• If (w1, . . . , wn−1) is linearly independent, then the se-
quence

(w1, . . . , wn−1, w1 × · · · × wn−1)

is a positive basis of E.
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We now show how to compute the coordinates of
u1 × · · · × un−1 over an orthonormal basis.

Given an orthonormal basis (e1, . . . , en), for any sequence
(u1, . . . , un−1) of n− 1 vectors in E, if

uj =

n∑

i=1

ui,jei,

where 1 ≤ j ≤ n − 1, for any x = x1e1 + · · · + xnen,
consider the determinant

λE(u1, . . . , un−1, x) =

∣∣∣∣∣∣∣∣

u1 1 . . . u1n−1 x1
u2 1 . . . u2n−1 x2
... ... . . . ...
un 1 . . . unn−1 xn

∣∣∣∣∣∣∣∣
.

Calling the underlying matrix above as A, we can expand
det(A) according to the last column, using the Laplace
formula (see Strang [?]), whereAi j is the (n−1)×(n−1)-
matrix obtained from A by deleting row i and column j,
and we get:
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∣∣∣∣∣∣∣∣

u1 1 . . . u1n−1 x1
u2 1 . . . u2n−1 x2
... ... . . . ...
un 1 . . . unn−1 xn

∣∣∣∣∣∣∣∣
=

(−1)n+1x1 det(A1n) + · · · + (−1)n+nxn det(Ann).

Each (−1)i+n det(Ai n) is called the cofactor of xi.

We note that det(A) is in fact the inner product

det(A) =

((−1)n+1 det(A1n)e1 + · · · + (−1)n+n det(Ann)en) · x.

Since the cross-product u1 × · · · × un−1 is the unique
vector u such that

u · x = λE(u1, . . . , un−1, x),

for all x ∈ E, the coordinates of the cross-product
u1 × · · · × un−1 must be

((−1)n+1 det(A1n), . . . , (−1)n+n det(Ann)),

the sequence of cofactors of the xi in the determinant
det(A).
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For example, when n = 3, the coordinates of the cross-
product u× v are given by the cofactors of x1, x2, x3, in
the determinant

∣∣∣∣∣∣

u1 v1 x1
u2 v2 x2
u3 v3 x3

∣∣∣∣∣∣

or more explicitly, by

(−1)3+1

∣∣∣∣
u2 v2
u3 v3

∣∣∣∣ , (−1)3+2

∣∣∣∣
u1 v1
u3 v3

∣∣∣∣ , (−1)3+3

∣∣∣∣
u1 v1
u2 v2

∣∣∣∣ ,

that is,

(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

It is also useful to observe that if we let U be the matrix

U =




0 −u3 u2
u3 0 −u1
−u2 u1 0
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then the coordinates of the cross-product u× v are given
by




0 −u3 u2
u3 0 −u1
−u2 u1 0





v1
v2
v3


 =



u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1




We finish our discussion of cross-products by mentioning
without proof a few more of their properties, in the case
n = 3.

Firstly, the following so-called Lagrange identity holds:

(u · v)2 + ‖u× v‖2 = ‖u‖2 ‖v‖2 .

If u and v are linearly independent, and if θ (or 2π − θ)
is a measure of the angle ûv, then

| sin θ| = ‖u× v‖
‖u‖ ‖v‖.
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Chapter 6

Polar Duality, Polyhedra and
Polytopes

6.1 Polarity and Duality

In this section, we apply the intrinsic duality afforded by
a Euclidean structure to the study of convex sets and, in
particular, polytopes.

Let E = En be a Euclidean space of dimension n. Pick
any origin, O, in En (we may assume O = (0, . . . , 0)).

We know that the inner product on E = En induces a
duality between E and its dual E∗, namely, u 7→ ϕu,
where ϕu is the linear form defined by ϕu(v) = u · v, for
all v ∈ E.

257
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For geometric purposes, it is more convenient to recast
this duality as a correspondence between points and hy-
perplanes, using the notion of polarity with respect to the
unit sphere, Sn−1 = {a ∈ En | ‖Oa‖ = 1}.

First, we need the following simple fact: For every hy-
perplane, H , not passing through O, there is a unique
point, h, so that

H = {a ∈ En | Oh ·Oa = 1}.

Using the above, we make the following definition:

Definition 6.1.1 Given any point, a 6= O, the polar
hyperplane of a (w.r.t. Sn−1) or dual of a is the hyper-
plane, a†, given by

a† = {b ∈ En | Oa ·Ob = 1}.
Given a hyperplane, H , not containing O, the pole of H
(w.r.t Sn−1) or dual of H is the (unique) point, H†, so
that

H = {a ∈ En | OH† ·Oa = 1}.
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We often abbreviate polar hyperplane to polar.

We immediately check that a†† = a and H†† = H , so, we
obtain a bijective correspondence between En−{O} and
the set of hyperplanes not passing through O.

When a is outside the sphere Sn−1, there is a nice geo-
metric interpetation for the polar hyperplane, H = a†.
Indeed, in this case, since

H = a† = {b ∈ En | Oa ·Ob = 1}
and ‖Oa‖ > 1, the hyperplane H intersects Sn−1 (along
an (n − 2)-dimensional sphere) and if b is any point on
H ∩ Sn−1, we claim that Ob and ba are orthogonal.

This means that H ∩ Sn−1 is the set of points on Sn−1

where the lines through a and tangent to Sn−1 touch Sn−1

(they form a cone tangent to Sn−1 with apex a).
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a

a†

O

b

Figure 6.1: The polar, a†, of a point, a, outside the sphere Sn−1

Also, observe that for any point, a 6= O, and any hy-
perplane, H , not passing through O, if a ∈ H , then,
H† ∈ a†, i.e, the pole, H†, of H belongs to the polar, a†,
of a.

If a = (a1, . . . , an), the equation of the polar hyperplane,
a†, is

a1X1 + · · · + anXn = 1.

Now, we would like to extend this correspondence to sub-
sets of En, in particular, to convex sets.
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Given a hyperplane, H , not containing O, we denote by
H− the closed half-space containing O.

Definition 6.1.2 Given any subset, A, of En, the set

A∗ = {b ∈ En | Oa·Ob ≤ 1, for all a ∈ A} =
⋂

a∈A
a6=O

(a†)−,

is called the polar dual or reciprocal of A.

To simplify notation we write a†− for (a†)−. Note that

{O}∗ = En, so it is convenient to set O†
− = En, even

though O† is undefined.

� We use a different notation, a† and H†, for polar hy-
perplanes and poles, as opposed to A∗, for polar duals,

to avoid confusion. Indeed, H† and H∗, where H is a
hyperplane (resp. a† and {a}∗, where a is a point) are
very different things!
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v1

v2

v3

v4

v5

Figure 6.2: The polar dual of a polygon

In Figure 6.2, the polar dual of the polygon (v1, v2, v3, v4, v5)
is the polygon shown in green.

This polygon is cut out by the half-planes determined by
the polars of the vertices (v1, v2, v3, v4, v5) and containing
the center of the circle.

By definition, A∗ is convex even if A is not.
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Furthermore, note that

(1) A ⊆ A∗∗.

(2) If A ⊆ B, then B∗ ⊆ A∗.

(3) If A is convex and closed, then A∗ = (∂A)∗.

It follows immediately from (1) and (2) that A∗∗∗ = A∗.
Also, if Bn(r) is the (closed) ball of radius r > 0 and cen-
ter O, it is obvious by definition that Bn(r)∗ = Bn(1/r).

We would like to investigate the duality induced by the
operation A 7→ A∗.

Unfortunately, it is not always the case that A∗∗ = A,
but this is true when A is closed and convex, as shown in
the following proposition:
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Proposition 6.1.3 Let A be any subset of En (with
origin O).

(i) If A is bounded, then O ∈
◦
A∗; if O ∈

◦
A, then A∗

is bounded.

(ii) If A is a closed and convex subset containing O,
then A∗∗ = A.

Note that

A∗∗ = {c ∈ En | Od ·Oc ≤ 1 for all d ∈ A∗}
= {c ∈ En | (∀d ∈ En)(if Od ·Oa ≤ 1

for all a ∈ A, then Od ·Oc ≤ 1)}.
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Remark: For an arbitrary subset, A ⊆ En, it can be

shown that A∗∗ = conv(A ∪ {O}), the topological clo-
sure of the convex hull of A ∪ {O}.

Proposition 6.1.3 will play a key role in studying poly-
topes, but before doing this, we need one more proposi-
tion.

Proposition 6.1.4 Let A be any closed convex sub-

set of En such that O ∈
◦
A. The polar hyperplanes of

the points of the boundary of A constitute the set of
supporting hyperplanes of A∗. Furthermore, for any
a ∈ ∂A, the points of A∗ where H = a† is a sup-
porting hyperplane of A∗ are the poles of supporting
hyperplanes of A at a.
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6.2 Polyhedra, H-Polytopes and V-Polytopes

There are two natural ways to define a convex polyhedron,
A:

(1) As the convex hull of a finite set of points.

(2) As a subset of En cut out by a finite number of hyper-
planes, more precisely, as the intersection of a finite
number of (closed) half-spaces.

As stated, these two definitions are not equivalent because
(1) implies that a polyhedron is bounded, whereas (2)
allows unbounded subsets.

Now, if we require in (2) that the convex setA is bounded,
it is quite clear for n = 2 that the two definitions (1) and
(2) are equivalent; for n = 3, it is intuitively clear that
definitions (1) and (2) are still equivalent, but proving this
equivalence rigorously does not appear to be that easy.

What about the equivalence when n ≥ 4?
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It turns out that definitions (1) and (2) are equivalent for
all n, but this is a nontrivial theorem and a rigorous proof
does not come by so cheaply.

Fortunately, since we have Krein and Milman’s theorem
at our disposal and polar duality, we can give a rather
short proof.

The hard direction of the equivalence consists in proving
that definition (1) implies definition (2).

This is where the duality induced by polarity becomes
handy, especially, the fact that A∗∗ = A! (under the
right hypotheses).

First, we give precise definitions (following Ziegler [?]).
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(a) (b)

Figure 6.3: (a) An H-polyhedron. (b) A V-polytope

Definition 6.2.1 Let E be any affine Euclidean space
of finite dimension, n.1 An H-polyhedron in E , for short,
a polyhedron , is any subset, P =

⋂p
i=1Ci, of E defined as

the intersection of a finite number of closed half-spaces,
Ci; an H-polytope in E is a bounded polyhedron and a
V-polytope is the convex hull, P = conv(S), of a finite
set of points, S ⊆ E .

Examples of an H-polyhedron and of a V-polytope are
shown in Figure 6.3.

1This means that the vector space,
−→E , associated with E is a Euclidean space.
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Obviously, polyhedra and polytopes are convex and closed
(in E). Since the notions of H-polytope and V-polytope
are equivalent (see Theorem 6.3.1), we often use the sim-
pler locution polytope.

Note that Definition 6.2.1 allows H-polytopes and V-
polytopes to have an empty interior, which is sometimes
an inconvenience.

This is not a problem. In fact, we can prove that we
may always assume to E = En and restrict ourselves to
the affine hull of A (some copy of Ed, for d ≤ n, where
d = dim(A), as in Definition 3.2.3).
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Since the boundary of a closed half-space, Ci, is a hy-
perplane, Hi, and since hyperplanes are defined by affine
forms, a closed half-space is defined by the locus of points
satisfying a “linear” inequality of the form ai · x ≤ bi or
ai · x ≥ bi, for some vector ai ∈ Rn and some bi ∈ R.

Since ai · x ≥ bi is equivalent to (−ai) · x ≤ −bi, we may
restrict our attention to inequalities with a ≤ sign.

Thus, if A is the d× p matrix whose ith row is ai, we see
that the H-polyhedron, P , is defined by the system of
linear inequalities, Ax ≤ b, where b = (b1, . . . , bp) ∈ Rp.

We write

P = P (A, b), with P (A, b) = {x ∈ Rn | Ax ≤ b}.

An equation, ai · x = bi, may be handled as the conjunc-
tion of the two inequalities ai ·x ≤ bi and (−ai)·x ≤ −bi.
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Also, if 0 ∈ P , observe that we must have bi ≥ 0 for
i = 1, . . . , p. In this case, every inequality for which
bi > 0 can be normalized by dividing both sides by bi, so
we may assume that bi = 1 or bi = 0.

Remark: Some authors call “convex” polyhedra and
“convex” polytopes what we have simply called polyhedra
and polytopes.

Since Definition 6.2.1 implies that these objects are con-
vex and since we are not going to consider non-convex
polyhedra in this chapter, we stick to the simpler termi-
nology.

One should consult Ziegler [?], Berger [?], Grunbaum [?]
and especially Cromwell [?], for pictures of polyhedra and
polytopes.

Even better, take a look at the web sites listed in the web
page for CIS610!
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Figure 6.4: Example of a polytope (a dodecahedron)

Figure 6.4 shows the picture a polytope whose faces are
all pentagons. This polytope is called a dodecahedron .
The dodecahedron has 12 faces, 30 edges and 20 vertices.

Obviously, an n-simplex is a V-polytope. The standard
n-cube is the set

{(x1, . . . , xn) ∈ En | |xi| ≤ 1, 1 ≤ i ≤ n}.
The standard cube is a V-polytope. The standard n-
cross-polytope (or n-co-cube) is the set

{(x1, . . . , xn) ∈ En |
n∑

i=1

|xi| ≤ 1}.

It is also a V-polytope.
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What happens if we take the dual of a V-polytope (resp.
an H-polytope)? The following proposition, although
very simple, is an important step in answering the above
question.

Proposition 6.2.2 Let S = {ai}pi=1 be a finite set of
points in En and let A = conv(S) be its convex hull. If
S 6= {O}, then, the dual, A∗, of A w.r.t. the center O

is an H-polyhedron; furthermore, if O ∈
◦
A, then A∗

is an H-polytope, i.e., the dual of a V-polytope with
nonempty interior is an H-polytope. If A = S = {O},
then A∗ = Ed.

Thus, the dual of the convex hull of a finite set of points,
{a1, . . . , ap}, is the intersection of the half-spaces contain-
ing O determined by the polar hyperplanes of the points
ai. (Recall that (ai)

†
− = En if ai = O.)
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It is convenient to restate Proposition 6.2.2 using matri-
ces.

First, observe that the proof of Proposition 6.2.2 shows
that

conv({a1, . . . , ap})∗ = conv({a1, . . . , ap} ∪ {O})∗.

Therefore, we may assume that not all ai = 0
(1 ≤ i ≤ p). If we pickO as an origin, then every point aj
can be identified with a vector in En and O corresponds
to the zero vector, 0.

Observe that any set of p points, aj ∈ En, corresponds
to the n× p matrix, A, whose jth column is aj.

Then, the equation of the the polar hyperplane, a†j, of
any aj ( 6= 0) is aj · x = 1, that is

a⊤j x = 1.
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Consequently, the system of inequalities defining
conv({a1, . . . , ap})∗ can be written in matrix form as

conv({a1, . . . , ap})∗ = {x ∈ Rn | A⊤x ≤ 1},
where 1 denotes the vector of Rp with all coordinates
equal to 1. We write
P (A⊤,1) = {x ∈ Rn | A⊤x ≤ 1}.

Proposition 6.2.3 Given any set of p points,
{a1, . . . , ap}, in Rn with {a1, . . . , ap} 6= {0}, if A is the
n× p matrix whose jth column is aj, then

conv({a1, . . . , ap})∗ = P (A⊤, 1),

with P (A⊤, 1) = {x ∈ Rn | A⊤x ≤ 1}.
Conversely, given any p×n matrix, A, not equal to

the zero matrix, we have

P (A, 1)∗ = conv({a1, . . . , ap} ∪ {0}),
where ai ∈ Rn is the ith row of A or, equivalently,

P (A, 1)∗ = {x ∈ Rn | x = A⊤t, t ∈ Rp, t ≥ 0, It = 1},
where I is the row vector of length p whose coordinates
are all equal to 1.
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Using the above, the reader should check that the dual of
a simplex is a simplex and that the dual of an n-cube is
an n-cross polytope.

We will see shortly that if A is an H-polytope and if

O ∈
◦
A, then A∗ is also an H-polytope.

For this, we will prove first that an H-polytope is a V-
polytope. This requires taking a closer look at polyhedra.

Note that some of the hyperplanes cutting out a polyhe-
dron may be redundant.

If A =
⋂t
i=1Ci is a polyhedron (where each closed half-

space, Ci, is associated with a hyperplane, Hi, so that
∂Ci = Hi), we say that

⋂t
i=1Ci is an irredundant de-

composition of A if A cannot be expressed as
A =

⋂m
i=1C

′
i with m < t (for some closed half-spaces,

C ′
i).
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Proposition 6.2.4 Let A be a polyhedron with
nonempty interior and assume that A =

⋂t
i=1Ci is an

irredundant decomposition of A. Then,

(i) Up to order, the Ci’s are uniquely determined by
A.

(ii) If Hi = ∂Ci is the boundary of Ci, then Hi∩A is a
polyhedron with nonempty interior in Hi, denoted
FacetiA, and called a facet of A.

(iii) We have ∂A =
⋃t
i=1 FacetiA, where the union is

irredundant, i.e., FacetiA is not a subset of Facetj A,
for all i 6= j.

As a consequence, if A is a polyhedron, then so are its
facets and the same holds for H-polytopes.

If A is an H-polytope and H is a hyperplane with

H ∩
◦
A 6= ∅, then H ∩ A is an H-polytope whose facets

are of the form H ∩ F , where F is a facet of A.
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We can use induction and define k-faces, for
0 ≤ k ≤ n− 1.

Definition 6.2.5 Let A ⊆ En be a polyhedron with
nonempty interior. We define a k-face of A to be a facet
of a (k + 1)-face of A, for k = 0, . . . , n − 2, where an
(n − 1)-face is just a facet of A. The 1-faces are called
edges . Two k-faces are adjacent if their intersection is a
(k − 1)-face.

The polyhedron A itself is also called a face (of itself) or
n-face and the k-faces of A with k ≤ n − 1 are called
proper faces of A.

If A =
⋂t
i=1Ci is an irredundant decomposition of A

and Hi is the boundary of Ci, then the hyperplane, Hi,
is called the supporting hyperplane of the facet Hi ∩A.
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We suspect that the 0-faces of a polyhedron are vertices
in the sense of Definition 3.4.1.

This is true and, in fact, the vertices of a polyhedron
coincide with its extreme points (see Definition 3.4.3).

Proposition 6.2.6 Let A ⊆ En be a polyhedron with
nonempty interior.

(1) For any point, a ∈ ∂A, on the boundary of A, the
intersection of all the supporting hyperplanes to A
at a coincides with the intersection of all the faces
that contain a. In particular, points of order k of
A are those points in the relative interior of the k-
faces of A2; thus, 0-faces coincide with the vertices
of A.

(2) The vertices of A coincide with the extreme points
of A.

We are now ready for the theorem showing the equiva-
lence of V-polytopes and H-polytopes.

2Given a convex set, S, in An, its relative interior is its interior in the affine hull of S (which might be
of dimension strictly less than n).



280 CHAPTER 6. POLAR DUALITY, POLYHEDRA AND POLYTOPES

6.3 The Equivalence of H-Polytopes and V-Polytopes

The next result is a nontrivial theorem usually attributed
to Weyl and Minkowski (see Barvinok [?]).

Theorem 6.3.1 (Weyl-Minkowski) If A is an
H-polytope, then A has a finite number of extreme
points (equal to its vertices) and A is the convex hull
of its set of vertices; thus, an H-polytope is a V-
polytope. Moreover, A has a finite number of k-faces
(for k = 0, . . . , d − 2, where d = dim(A)). Con-
versely, the convex hull of a finite set of points is an
H-polytope. As a consequence, a V-polytope is an H-
polytope.

In view of Theorem 6.3.1, we are justified in dropping the
V or H in front of polytope, and will do so from now on.
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Theorem 6.3.1 has some interesting corollaries regarding
the dual of a polytope.

Corollary 6.3.2 If A is any polytope in En such that
the interior of A contains the origin, O, then the dual,
A∗, of A is also a polytope whose interior contains O
and A∗∗ = A.

Corollary 6.3.3 If A is any polytope in En whose in-
terior contains the origin, O, then the k-faces of A
are in bijection with the (n− k − 1)-faces of the dual
polytope, A∗. This correspondence is as follows: If
Y = aff(F ) is the k-dimensional subspace determining
the k-face, F , of A then the subspace, Y ∗ = aff(F ∗),
determining the corresponding face, F ∗, of A∗, is the
intersection of the polar hyperplanes of points in Y .

We also have the following proposition whose proof would
not be that simple if we only had the notion of an H-
polytope.
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Proposition 6.3.4 If A ⊆ En is a polytope and
f :En → Em is an affine map, then f(A) is a polytope
in Em.

The reader should check that the Minkowski sum of poly-
topes is a polytope.

We were able to give a short proof of Theorem 6.3.1 be-
cause we relied on a powerful theorem, namely, Krein and
Milman.

A drawback of this approach is that it bypasses the in-
teresting and important problem of designing algorithms
for finding the vertices of an H-polyhedron from the sets
of inequalities defining it.

A method for doing this is Fourier-Motzkin elimination,
see Ziegler [?] (Chapter 1). This is also a special case of
linear programming .

It is also possible to generalize the notion of V-polytope
to polyhedra using the notion of cone.
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6.4 The Equivalence of H-Polyhedra and V-Polyhedra

The equivalence of H-polytopes and V-polytopes can be
generalized to polyhedral sets, i.e., finite intersections of
half-spaces that are not necessarily bounded. This equiv-
alence was first proved by Motzkin in the early 1930’s.

Definition 6.4.1 Let E be any affine Euclidean space

of finite dimension, d (with associated vector space,
−→E ).

A subset, C ⊆ −→E , is a cone if C is closed under linear
combinations involving only nonnnegative scalars. Given

a subset, V ⊆ −→E , the conical hull or positive hull of V
is the set

cone(V ) = {
∑

I

λivi | {vi}i∈I ⊆ V, λi ≥ 0 for all i ∈ I}.

A V-polyhedron or polyhedral set is a subset, A ⊆ E ,
such that

A = conv(Y ) + cone(V )

= {a + v | a ∈ conv(Y ), v ∈ cone(V )},

where V ⊆ −→E is a finite set of vectors and Y ⊆ E is a
finite set of points.
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A set, C ⊆ −→E , is a V-cone or polyhedral cone if C is
the positive hull of a finite set of vectors, that is,

C = cone({u1, . . . , up}),

for some vectors, u1, . . . , up ∈ −→E . An H-cone is any

subset of
−→E given by a finite intersection of closed half-

spaces cut out by hyperplanes through 0.

The positive hull, cone(V ), of V is also denoted pos(V ).

Observe that a V-cone can be viewed as a polyhedral set
for which Y = {O}, a single point.

However, if we take the point O as the origin, we may
view a V-polyhedron, A, for which Y = {O}, as a V-
cone.

We will switch back and forth between these two views
of cones as we find it convenient
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As a consequence, a (V or H)-cone always contains 0,
sometimes called an apex of the cone.

We can prove that we may always assume that E = Ed

and that our polyhedra have nonempty interior. It will
be convenient to decree that Ed is an H-polyhedron.

The generalization of Theorem 6.3.1 is that every V-
polyhedron is an H-polyhedron and conversely.

Ziegler proceeds as follows: First, he shows that the equiv-
alence of V-polyhedra and H-polyhedra reduces to the
equivalence of V-cones and H-cones using an “old trick”
of projective geometry, namely, “homogenizing” [?] (Chap-
ter 1).

Then, he uses two dual versions of Fourier-Motzkin elim-
ination to pass from V-cones to H-cones and conversely.

Since the homogenization method is an important tech-
nique we will describe it in some detail.
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However, it turns out that the double dualization tech-
nique used in the proof of Theorem 6.3.1 can be eas-
ily adapted to prove that every V-polyhedron is an H-
polyhedron.

Moreover, it can also be used to prove that every H-
polyhedron is a V-polyhedron!

So, we will not describe the version of Fourier-Motzkin
elimination used to go from V-cones to H-cones.

However, we will present the Fourier-Motzkin elimination
method used to go from H-cones to V-cones.

In order to avoid confusion between the zero vector and
the origin of Ed, we will denote the origin by O and the
center of polar duality by Ω.
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Given any nonzero vector, u ∈ Rd, let u†− be the closed
half-space

u†− = {x ∈ Rd | x · u ≤ 0}.
In other words, u†− is the closed-half space bounded by the
hyperplane through Ω normal to u and on the “opposite
side” of u.

Proposition 6.4.2 Let A = conv(Y ) + cone(V ) ⊆ Ed

be a V-polyhedron with Y = {y1, . . ., yp} and
V = {v1, . . . , vq}. Then, for any point, Ω, if
A 6= {Ω}, then the polar dual, A∗, of A w.r.t. Ω is the
H-polyhedron given by

A∗ =
p⋂

i=1

(y†i )− ∩
q⋂

j=1

(v†j)−.

Furthermore, if A has nonempty interior and Ω be-
longs to the interior of A, then A∗ is bounded, that
is, A∗ is an H-polytope. If A = {Ω}, then A∗ is the
special polyhedron, A∗ = Ed.
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It is fruitful to restate Proposition 6.4.2 in terms of ma-
trices (as we did for Proposition 6.2.2).

First, observe that

(conv(Y ) + cone(V ))∗ = (conv(Y ∪ {Ω}) + cone(V ))∗.

If we pick Ω as an origin then we can represent the points
in Y as vectors. The old origin is still denoted O and Ω
is now denoted 0. The zero vector is denoted 0.

If Y is the d× p matrix whose ith column is yi and V is
the d× q matrix whose jth column is vj, then A

∗ is given
by:

A∗ = {x ∈ Rd | Y ⊤x ≤ 1, V ⊤x ≤ 0}.
We write
P (Y ⊤, 1;V ⊤, 0) = {x ∈ Rd | Y ⊤x ≤ 1, V ⊤x ≤ 0}.
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Proposition 6.4.3 Let {y1, . . . , yp} be any set of points
in Ed and let {v1, . . . , vq} be any set of nonzero vec-
tors in Rd. If Y is the d× p matrix whose ith column
is yi and V is the d × q matrix whose jth column is
vj, then

(conv({y1, . . . , yp}) ∪ cone({v1, . . . , vq}))∗ =
P (Y ⊤,1;V ⊤,0),

with

P (Y ⊤,1;V ⊤,0) = {x ∈ Rd | Y ⊤x ≤ 1, V ⊤x ≤ 0}.

Conversely, given any p× d matrix, Y , and any q× d
matrix, V , we have

P (Y, 1;V, 0)∗ =

conv({y1, . . . , yp} ∪ {0}) ∪ cone({v1, . . . , vq}),
where yi ∈ Rn is the ith row of Y and vj ∈ Rn is the
jth row of V or, equivalently,

P (Y, 1;V, 0)∗ = {x ∈ Rd | x = Y ⊤u + V ⊤t,

u ∈ Rp, t ∈ Rq, u, t ≥ 0, Iu = 1},
where I is the row vector of length p whose coordinates
are all equal to 1.
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We can now use Proposition 6.4.2, Proposition 6.1.3 and
Krein and Millman’s Theorem to prove that every V-
polyhedron is an H-polyhedron.

Proposition 6.4.4 Every V-polyhedron, A, is an H-
polyhedron. Furthermore, if A 6= Ed, then A is of the
form A = P (Y, 1).

Interestingly, we can now prove easily that every
H-polyhedron is a V-polyhedron.

Proposition 6.4.5 Every H-polyhedron is a
V-polyhedron.

Putting together Propositions 6.4.4 and 6.4.5 we obtain
our main theorem:

Theorem 6.4.6 (Equivalence of H-polyhedra and V-
polyhedra) Every H-polyhedron is a V-polyhedron and
conversely.
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Even though we proved the main result of this section,
it is instructive to consider a more computational proof
making use of cones and an elimination method known
as Fourier-Motzkin elimination .

The problem with the converse of Proposition 6.4.4 when
A is unbounded (i.e., not compact) is that Krein and
Millman’s Theorem does not apply.

We need to take into account “points at infinity” corre-
sponding to certain vectors.

The trick we used in Proposition 6.4.4 is that the polar
dual of a V-polyhedron with nonempty interior is an H-
polytope.

This reduction to polytopes allowed us to use Krein and
Millman to convert an H-polytope to a V-polytope and
then again we took the polar dual.
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Another trick is to switch to cones by “homogenizing”.

Given any subset, S ⊆ Ed, we can form the cone,
C(S) ⊆ Ed+1, by “placing” a copy of S in the hyperplane,
Hd+1 ⊆ Ed+1, of equation xd+1 = 1, and drawing all the
half lines from the origin through any point of S.

Let P ⊆ Ed be an H-polyhedron. Then, P is cut out by
m hyperplanes, Hi, and for each Hi, there is a nonzero
vector, ai, and some bi ∈ R so that

Hi = {x ∈ Ed | ai · x = bi}
and P is given by

P =
m⋂

i=1

{x ∈ Ed | ai · x ≤ bi}.

If A denotes the m × d matrix whose i-th row is ai and
b is the vector b = (b1, . . . , bm), then we can write

P = P (A, b) = {x ∈ Ed | Ax ≤ b}.
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We “homogenize” P (A, b) as follows: Let C(P ) be the
subset of Ed+1 defined by

C(P ) =

{(
x
xd+1

)
∈ Rd+1 | Ax ≤ xd+1b, xd+1 ≥ 0

}

=

{(
x
xd+1

)
| Ax− xd+1b ≤ 0, −xd+1 ≤ 0

}
.

Thus, we see that C(P ) is theH-cone given by the system
of inequalities

(
A −b
0 −1

)(
x
xd+1

)
≤
(
0
0

)

and that
P = C(P ) ∩Hd+1.

Conversely, if Q is any H-cone in Ed+1 (in fact, any H-
polyhedron), it is clear that P = Q ∩Hd+1 is an
H-polyhedron in Ed.
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Let us now assume that
P ⊆ Ed is a V-polyhedron, P = conv(Y ) + cone(V ),
where Y = {y1, . . . , yp} and V = {v1, . . . , vq}.

Define Ŷ = {ŷ1, . . . , ŷp} ⊆ Ed+1, and

V̂ = {v̂1, . . . , v̂q} ⊆ Ed+1, by

ŷi =

(
yi
1

)
, v̂j =

(
vj
0

)
.

We check immediately that

C(P ) = cone({Ŷ ∪ V̂ })
is a V-cone in Ed+1 such that

C = C(P ) ∩Hd+1,

where Hd+1 is the hyperplane of equation xd+1 = 1.

Conversely, if C = cone(W ) is a V-cone in Ed+1, with
wid+1 ≥ 0 for every wi ∈W , we prove next that
P = C ∩Hd+1 is a V-polyhedron.
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Proposition 6.4.7 (Polyhedron–Cone Correspondence)
We have the following correspondence between polyhe-
dra in Ed and cones in Ed+1:

(1) For any H-polyhedron, P ⊆ Ed, if
P = P (A, b) = {x ∈ Ed | Ax ≤ b}, where A is an
m× d-matrix and b ∈ Rm, then C(P ) given by

(
A −b
0 −1

)(
x
xd+1

)
≤
(
0
0

)

is an H-cone in Ed+1 and P = C(P )∩Hd+1, where
Hd+1 is the hyperplane of equation xd+1 = 1. Con-
versely, if Q is any H-cone in Ed+1 (in fact, any
H-polyhedron), then P = Q ∩Hd+1 is an
H-polyhedron in Ed.



296 CHAPTER 6. POLAR DUALITY, POLYHEDRA AND POLYTOPES

(2) Let P ⊆ Ed be any V-polyhedron, where
P = conv(Y ) + cone(V ) with Y = {y1, . . . , yp} and

V = {v1, . . . , vq}. Define Ŷ = {ŷ1, . . . , ŷp} ⊆ Ed+1,

and V̂ = {v̂1, . . . , v̂q} ⊆ Ed+1, by

ŷi =

(
yi
1

)
, v̂j =

(
vj
0

)
.

Then,
C(P ) = cone({Ŷ ∪ V̂ })

is a V-cone in Ed+1 such that

C = C(P ) ∩Hd+1,

Conversely, if C = cone(W ) is a V-cone in Ed+1,
with wi d+1 ≥ 0 for every wi ∈W , then
P = C ∩Hd+1 is a V-polyhedron in Ed.
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By Proposition 6.4.7, if P is anH-polyhedron, then C(P )
is an H-cone. If we can prove that every H-cone is a V-
cone, then again, Proposition 6.4.7 shows that
P = C(P ) ∩Hd+1 is a V-polyhedron.

Therefore, in order to prove that every H-polyhedron is
a V-polyhedron it suffices to show that every H-cone is a
V-cone.

By a similar argument, Proposition 6.4.7 show that in or-
der to prove that every V-polyhedron is anH-polyhedron
it suffices to show that every V-cone is an H-cone.

We will not prove this direction again since we already
have it by Proposition 6.4.4.

It remains to prove that every H-cone is a V-cone.

Let C ⊆ Ed be an H-cone. Then, C is cut out by m
hyperplanes, Hi, through 0.
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For each Hi, there is a nonzero vector, ui, so that

Hi = {x ∈ Ed | ui · x = 0}
and C is given by

C =

m⋂

i=1

{x ∈ Ed | ui · x ≤ 0}.

If A denotes the m× d matrix whose i-th row is ui, then
we can write

C = P (A, 0) = {x ∈ Ed | Ax ≤ 0}.
Observe that C = C0(A) ∩Hw, where

C0(A) =

{(
x
w

)
∈ Rd+m | Ax ≤ w

}

is an H-cone in Ed+m and

Hw =

{(
x
w

)
∈ Rd+m | w = 0

}

is a hyperplane in Ed+m.
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We claim that C0(A) is a V-cone.

This follows by observing that for every

(
x
w

)
satisfying

Ax ≤ w, we can write
(
x
w

)
=

d∑

i=1

|xi|(sign(xi))
(
ei
Aei

)

+
m∑

j=1

(wj − (Ax)j)

(
0
ej

)
,

and then

C0(A) = cone

({
±
(
ei
Aei

)
| 1 ≤ i ≤ d

}

∪
{(

0
ej

)
| 1 ≤ j ≤ m

})
.

Since C = C0(A) ∩ Hw is now the intersection of a V-
cone with a hyperplane, to prove that C is a V-cone it is
enough to prove that the intersection of a V-cone with a
hyperplane is also a V-cone.
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For this, we use Fourier-Motzkin elimination . It suf-
fices to prove the result for a hyperplane, Hk, in Ed+m of
equation yk = 0 (1 ≤ k ≤ d +m).

Proposition 6.4.8 (Fourier-Motzkin Elimination) Say
C = cone(Y ) ⊆ Ed is a V-cone. Then, the intersec-
tion C ∩Hk (where Hk is the hyperplane of equation
yk = 0) is a V-cone, C ∩Hk = cone(Y /k), with

Y /k = {yi | yik = 0}∪{yikyj−yjkyi | yik > 0, yjk < 0},
the set of vectors obtained from Y by “eliminating the
k-th coordinate”. Here, each yi is a vector in Rd.

As discussed above, Proposition 6.4.8 implies (again!)

Corollary 6.4.9 Every H-polyhedron is a
V-polyhedron.

Another way of proving that every V-polyhedron is an
H-polyhedron is to use cones.
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Let P = conv(Y ) + cone(V ) ⊆ Ed be a V-polyhedron.

We can view Y as a d×p matrix whose ith column is the
ith vector in Y and V as d× q matrix whose jth column
is the jth vector in V .

Then, we can write

P = {x ∈ Rd | (∃u ∈ Rp)(∃t ∈ Rd)

(x = Y u + V t, u ≥ 0, Iu = 1, t ≥ 0)},
where I is the row vector

I = (1, . . . , 1)︸ ︷︷ ︸
p

.

Now, observe that P can be interpreted as the projection
of the H-polyhedron, P̃ ⊆ Ed+p+q, given by

P̃ = {(x, u, t) ∈ Rd+p+q | x = Y u + V t,

u ≥ 0, Iu = 1, t ≥ 0}
onto Rd.
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Consequently, if we can prove that the projection of an
H-polyhedron is also anH-polyhedron, then we will have
proved that every V-polyhedron is an H-polyhedron.

In view of Proposition 6.4.7 and the discussion that fol-
lowed, it is enough to prove that the projection of any
H-cone is an H-cone.

This can be done by using a type of Fourier-Motzkin elim-
ination dual to the method used in Proposition 6.4.8.

We state the result without proof and refer the interested
reader to Ziegler [?], Section 1.2–1.3, for full details.
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Proposition 6.4.10 If C = P (A, 0) ⊆ Ed is an H-
cone, then the projection, projk(C), onto the hyper-
plane, Hk, of equation yk = 0 is given by
projk(C) = elimk(C) ∩Hk, with

elimk(C) = {x ∈ Rd | (∃t ∈ R)(x + tek ∈ P )}
= {z − tek | z ∈ P, t ∈ R} = P (A/k, 0)

and where the rows of A/k are given by

A/k = {ai | ai k = 0}∪{ai kaj−aj kai | ai k > 0, aj k < 0}.

It should be noted that both Fourier-Motzkin elimination
methods generate a quadratic number of new vectors or
inequalities at each step and thus they lead to a combi-
natorial explosion.

Therefore, these methods become intractable rather quickly.

The problem is that many of the new vectors or inequali-
ties are redundant. Thereore, it is important to find ways
of detecting redundancies and there are various methods
for doing so.
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Again, the interested reader should consult Ziegler [?],
Chapter 1.

We conclude this section with a version of Farkas Lemma
for polyhedral sets.

Lemma 6.4.11 (Farkas Lemma, Version IV) Let Y
be any d× p matrix and V be any d× q matrix. For
every z ∈ Rd, exactly one of the following alternatives
occurs:

(a) There exist u ∈ Rp and t ∈ Rq, with u ≥ 0, t ≥ 0,
Iu = 1 and z = Y u + V t.

(b) There is some vector, (α, c) ∈ Rd+1, such that
c⊤yi ≥ α for all i with 1 ≤ i ≤ p, c⊤vj ≥ 0 for
all j with 1 ≤ j ≤ q, and c⊤z < α.

Observe that Farkas IV can be viewed as a separation
criterion for polyhedral sets.



Chapter 7

Basics of Combinatorial Topology

7.1 Simplicial and Polyhedral Complexes

In order to study and manipulate complex shapes it is
convenient to discretize these shapes and to view them
as the union of simple building blocks glued together in
a “clean fashion”.

The building blocks should be simple geometric objects,
for example, points, lines segments, triangles, tehrahedra
and more generally simplices, or even convex polytopes.

Definition 7.1.1 Let E be any normed affine space, say
E = Em with its usual Euclidean norm. Given any n+ 1
affinely independent points a0, . . . , an in E , the n-simplex
(or simplex) σ defined by a0, . . . , an is the convex hull
of the points a0, . . . , an, that is, the set of all convex
combinations λ0a0+ · · ·+λnan, where λ0+ · · ·+λn = 1
and λi ≥ 0 for all i, 0 ≤ i ≤ n.

305
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We call n the dimension of the n-simplex σ, and the
points a0, . . . , an are the vertices of σ.

Given any subset {ai0, . . . , aik} of {a0, . . . , an} (where
0 ≤ k ≤ n), the k-simplex generated by ai0, . . . , aik is
called a k-face or simply a face of σ.

A face s of σ is a proper face if s 6= σ (we agree that
the empty set is a face of any simplex). For any vertex
ai, the face generated by a0, . . . , ai−1, ai+1, . . . , an (i.e.,
omitting ai) is called the face opposite ai.

Every face that is an (n−1)-simplex is called a boundary
face or facet . The union of the boundary faces is the
boundary of σ, denoted by ∂σ, and the complement of
∂σ in σ is the interior Intσ = σ−∂σ of σ. The interior
Int σ of σ is sometimes called an open simplex .
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It should be noted that for a 0-simplex consisting of a
single point {a0}, ∂{a0} = ∅, and Int {a0} = {a0}.

Of course, a 0-simplex is a single point, a 1-simplex is the
line segment (a0, a1), a 2-simplex is a triangle (a0, a1, a2)
(with its interior), and a 3-simplex is a tetrahedron
(a0, a1, a2, a3) (with its interior).

The inclusion relation between any two faces σ and τ of
some simplex, s, is written σ � τ .

Clearly, a point x belongs to the boundary ∂σ of σ iff
at least one of its barycentric coordinates (λ0, . . . , λn) is
zero, and a point x belongs to the interior Intσ of σ iff
all of its barycentric coordinates (λ0, . . . , λn) are positive,
i.e., λi > 0 for all i, 0 ≤ i ≤ n.

Then, for every x ∈ σ, there is a unique face s such
that x ∈ Int s, the face generated by those points ai
for which λi > 0, where (λ0, . . . , λn) are the barycentric
coordinates of x.
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A simplex σ is convex, arcwise connected, compact, and
closed. The interior Int σ of a simplex is convex, arcwise
connected, open, and σ is the closure of Intσ.

We now put simplices together to form more complex
shapes. The intuition behind the next definition is that
the building blocks should be “glued cleanly”.

Definition 7.1.2 A simplicial complex in Em (for short,
a complex in Em) is a set K consisting of a (finite or
infinite) set of simplices in Em satisfying the following
conditions:

(1) Every face of a simplex in K also belongs to K.

(2) For any two simplices σ1 and σ2 in K, if σ1 ∩ σ2 6= ∅,
then σ1 ∩ σ2 is a common face of both σ1 and σ2.
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Every k-simplex, σ ∈ K, is called a k-face (or face) of
K. A 0-face {v} is called a vertex and a 1-face is called
an edge. The dimension of the simplicial complex K is
the maximum of the dimensions of all simplices in K.

If dimK = d, then every face of dimension d is called a
cell and every face of dimension d− 1 is called a facet .

Condition (2) guarantees that the various simplices form-
ing a complex intersect nicely. It is easily shown that the
following condition is equivalent to condition (2):

(2′) For any two distinct simplices σ1, σ2,
Intσ1 ∩ Int σ2 = ∅.

Remarks:

1. A simplicial complex, K, is a combinatorial object,
namely, a set of simplices satisfying certain conditions
but not a subset of Em. However, every complex, K,
yields a subset of Em called the geometric realization
of K and denoted |K|. This object will be defined
shortly and should not be confused with the complex.
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v1

v2

v3 v3

v2

v4

Figure 7.1: A set of simplices forming a complex

Figure 7.1 illustrates this aspect of the definition of a
complex. For clarity, the two triangles (2-simplices)
are drawn as disjoint objects even though they share
the common edge, (v2, v3) (a 1-simplex) and similarly
for the edges that meet at some common vertex.

2. Some authors define a facet of a complex, K, of di-
mension d to be a d-simplex in K, as opposed to a
(d − 1)-simplex, as we did. This practice is not con-
sistent with the notion of facet of a polyhedron and
this is why we prefer the terminology cell for the d-
simplices in K.
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Figure 7.2: Collections of simplices not forming a complex

3. It is important to note that in order for a complex,
K, of dimension d to be realized in Em, the dimension
of the “ambient space”, m, must be big enough. For
example, there are 2-complexes that can’t be realized
in E3 or even in E4. There has to be enough room in
order for condition (2) to be satisfied. It is not hard to
prove thatm = 2d+1 is always sufficient. Sometimes,
2d works, for example in the case of surfaces (where
d = 2).

Some collections of simplices violating some of the con-
ditions of Definition 7.1.2 are shown in Figure 7.2.

On the left, the intersection of the two 2-simplices is nei-
ther an edge nor a vertex of either triangle.

In the middle case, two simplices meet along an edge
which is not an edge of either triangle.

On the right, there is a missing edge and a missing vertex.
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v1

v2

v3

v4

Figure 7.3: The geometric realization of the complex of Figure 7.1

The union |K| of all the simplices in K is a subset of Em.
We can define a topology on |K| by defining a subset F
of |K| to be closed iff F ∩ σ is closed in σ for every face
σ ∈ K.

It is immediately verified that the axioms of a topological
space are indeed satisfied.

The resulting topological space |K| is called the geomet-
ric realization of K.

The geometric realization of the complex from Figure 7.1
is show in Figure 7.1.
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Some “legal” simplicial complexes are shown in Figure
7.4.

Obviously, |σ| = σ for every simplex, σ. Also, note that
distinct complexes may have the same geometric realiza-
tion. In fact, all the complexes obtained by subdividing
the simplices of a given complex yield the same geometric
realization.

Figure 7.4: Examples of simplicial complexes
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A polytope is the geometric realization of some simplicial
complex. A polytope of dimension 1 is usually called a
polygon , and a polytope of dimension 2 is usually called
a polyhedron .

When K consists of infinitely many simplices we usually
require that K be locally finite, which means that every
vertex belongs to finitely many faces. IfK is locally finite,
then its geometric realization, |K|, is locally compact.

In the sequel, we will consider only finite simplicial com-
plexes, that is, complexes K consisting of a finite number
of simplices.

In this case, the topology of |K| defined above is identical
to the topology induced from Em. For any simplex σ in

K, Int σ coincides with the interior
◦
σ of σ in the topo-

logical sense, and ∂σ coincides with the boundary of σ in
the topological sense.
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Definition 7.1.3 Given any complex, K2, a subset
K1 ⊆ K2 of K2 is a subcomplex of K2 iff it is also a
complex. For any complex, K, of dimension d, for any i
with 0 ≤ i ≤ d, the subset

K(i) = {σ ∈ K | dim σ ≤ i}
is called the i-skeleton of K. Clearly, K(i) is a subcom-
plex of K. We also let

Ki = {σ ∈ K | dim σ = i}.
Observe that K0 is the set of vertices of K and Ki is not
a complex.

A simplicial complex, K1 is a subdivision of a complex
K2 iff |K1| = |K2| and if every face of K1 is a subset of
some face of K2.

A complexK of dimension d is pure (or homogeneous) iff
every face ofK is a face of some d-simplex ofK (i.e., some
cell of K). A complex is connected iff |K| is connected.
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(a) (b)

v

Figure 7.5: (a) A complex that is not pure. (b) A pure complex

It is is easy to see that a complex is connected iff its
1-skeleton is connected.

The intuition behind the notion of a pure complex, K, of
dimension d is that a pure complex is the result of gluing
pieces all having the same dimension, namely, d-simplices.

For example, in Figure 7.5, the complex on the left is not
pure but the complex on the right is pure of dimension 2.

Most of the shapes that we will be interested in are well
approximated by pure complexes, in particular, surfaces
or solids.

However, pure complexes may still have undesirable “sin-
gularities” such as the vertex, v, in Figure 7.5(b).
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The notion of link of a vertex provides a technical way to
deal with singularities.

Definition 7.1.4 Let K be any complex and let σ be
any face of K. The star , St(σ) (or if we need to be very
precise, St(σ,K)), of σ is the subcomplex ofK consisting
of all faces, τ , containing σ and of all faces of τ , i.e.,

St(σ) = {s ∈ K | (∃τ ∈ K)(σ � τ and s � τ )}.

The link , Lk(σ) (or Lk(σ,K)) of σ is the subcomplex of
K consisting of all faces in St(σ) that do not intersect σ,
i.e.,

Lk(σ) = {τ ∈ K | τ ∈ St(σ) and σ ∩ τ = ∅}.

To simplify notation, if σ = {v} is a vertex we write St(v)
for St({v}) and Lk(v) for Lk({v}).
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(a)

v

(b)

v

Figure 7.6: (a) A complex. (b) Star and Link of v

Figure 7.6 shows:

(a) A complex (on the left).

(b) The star of the vertex v, indicated in gray and the
link of v, showed as thicker lines.

If K is pure and of dimension d, then St(σ) is also pure
of dimension d and if dim σ = k, then Lk(σ) is pure of
dimension d− k − 1.

For technical reasons, followingMunkres [?], besides defin-
ing the complex, St(σ), it is useful to introduce the open
star of σ, denoted st(σ), defined as the subspace of |K|
consisting of the union of the interiors, Int(τ ) = τ − ∂ τ ,
of all the faces, τ , containing, σ.
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According to this definition, the open star of σ is not a
complex but instead a subset of |K|.

Note that
st(σ) = |St(σ)|,

that is, the closure of st(σ) is the geometric realization of
the complex St(σ).

Then, lk(σ) = |Lk(σ)| is the union of the simplices in
St(σ) that are disjoint from σ.

If σ is a vertex, v, we have

lk(v) = st(v)− st(v).

However, beware that if σ is not a vertex, then lk(σ) is
properly contained in st(σ)− st(σ)!

One of the nice properties of the open star, st(σ), of σ is
that it is open. This follows from the fact that the open
star, st(v), of a vertex, v is open.
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Furthermore, for every point, a ∈ |K|, there is a unique
smallest simplex, σ, so that a ∈ Int(σ) = σ − ∂ σ.

As a consequence, for any k-face, σ, ofK, if σ = (v0, . . . , vk),
then

st(σ) = st(v0) ∩ · · · ∩ st(vk).

Consequently, st(σ) is open and path connected.

� Unfortunately, the “nice” equation

St(σ) = St(v0) ∩ · · · ∩ St(vk)

is false! (and anagolously for Lk(σ).)

For a counter-example, consider the boundary of a tetra-
hedron with one face removed.

Recall that in Ed, the (open) unit ball, Bd, is defined by

Bd = {x ∈ Ed | ‖x‖ < 1},

the closed unit ball, B
d
, is defined by

B
d
= {x ∈ Ed | ‖x‖ ≤ 1},

and the (d− 1)-sphere, Sd−1, by

Sd−1 = {x ∈ Ed | ‖x‖ = 1}.
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Obviously, Sd−1 is the boundary of B
d
(and Bd).

Definition 7.1.5 Let K be a pure complex of dimen-
sion d and let σ be any k-face of K, with 0 ≤ k ≤ d− 1.
We say that σ is nonsingular iff the geometric realiza-
tion, lk(σ), of the link of σ is homeomorphic to either

Sd−k−1 or to B
d−k−1

; this is written as lk(σ) ≈ Sd−k−1

or lk(σ) ≈ B
d−k−1

, where ≈ means homeomorphic.

In Figure 7.6, note that the link of v is not homeomorphic
to S1 or B1, so v is singular.

It will also be useful to express St(v) in terms of Lk(v),
where v is a vertex, and for this, we define the notion of
cone.
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Definition 7.1.6 Given any complex, K, in En, if
dimK = d < n, for any point, v ∈ En, such that v does
not belong to the affine hull of |K|, the cone on K with
vertex v, denoted, v ∗ K, is the complex consisting of
all simplices of the form (v, a0, . . . , ak) and their faces,
where (a0, . . . , ak) is any k-face of K. If K = ∅, we set
v ∗K = v.

It is not hard to check that v ∗K is indeed a complex of
dimension d + 1 containing K as a subcomplex.

Proposition 7.1.7 For any complex, K, of dimen-
sion d and any vertex, v ∈ K, we have

St(v) = v ∗ Lk(v).
More generally, for any face, σ, of K, we have

st(σ) = |St(σ)| ≈ σ × |v ∗ Lk(σ)|,
for every v ∈ σ and

st(σ)− st(σ) = ∂ σ × |v ∗ Lk(σ)|,
for every v ∈ ∂ σ.
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v1

v2

v3

v4v5

v6

v7

Figure 7.7: More examples of links and stars

Figure 7.7 shows a 3-dimensional complex. The link of the
edge (v6, v7) is the pentagon P = (v1, v2, v3, v4, v5) ≈ S1.
The link of the vertex v7 is the cone v6 ∗ P ≈ B2. The
link of (v1, v2) is (v6, v7) ≈ B1 and the link of v1 is the
union of the triangles (v2, v6, v7) and (v5, v6, v7), which is
homeomorphic to B2.

Remark: Unfortunately, the word “cone” is overloaded.
It might have been better to use the term pyramid as
some authors do (including Ziegler).

Given a pure complex, it is necessary to distinguish be-
tween two kinds of faces.
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Definition 7.1.8 LetK be any pure complex of dimen-
sion d. A k-face, σ, of K is a boundary or external face
iff it belongs to a single cell (i.e., a d-simplex) of K and
otherwise it is called an internal face (0 ≤ k ≤ d − 1).
The boundary of K, denoted bd(K), is the subcomplex
of K consisting of all boundary facets of K together with
their faces.

It is clear by definition that bd(K) is a pure complex of
dimension d− 1.

Even if K is connected, bd(K) is not connected, in gen-
eral.

For example, ifK is a 2-complex in the plane, the bound-
ary ofK usually consists of several simple closed polygons
(i.e, 1 dimensional complexes homeomorphic to the circle,
S1).
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Proposition 7.1.9 Let K be any pure complex of di-
mension d. For any k-face, σ, of K the boundary
complex, bd(Lk(σ)), is nonempty iff σ is a boundary
face of K (0 ≤ k ≤ d− 2). Furthermore,

Lkbd(K)(σ) = bd(Lk(σ))

for every face, σ, of bd(K), where Lkbd(K)(σ) denotes
the link of σ in bd(K).

Proposition 7.1.9 shows that if every face of K is non-
singular, then the link of every internal face is a sphere
whereas the link of every external face is a ball.

Proposition 7.1.10 Let K be any pure complex of
dimension d. If every vertex of K is nonsingular, then
st(σ) ≈ Bd for every k-face, σ, of K (1 ≤ k ≤ d− 1).

Here are more useful propositions about pure complexes
without singularities.
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Proposition 7.1.11 Let K be any pure complex of
dimension d. If every vertex of K is nonsingular,
then for every point, a ∈ |K|, there is an open subset,
U ⊆ |K|, containing a such that U ≈ Bd or
U ≈ Bd ∩Hd, where
Hd = {(x1, . . . , xd) ∈ Rd | xd ≥ 0}.

Proposition 7.1.12 Let K be any pure complex of
dimension d. If every facet of K is nonsingular, then
every facet of K, is contained in at most two cells
(d-simplices).

Proposition 7.1.13 Let K be any pure and connected
complex of dimension d. If every face of K is non-
singular, then for every pair of cells (d-simplices), σ
and σ′, there is a sequence of cells, σ0, . . . , σp, with
σ0 = σ and σp = σ′, and such that σi and σi+1 have a
common facet, for i = 0, . . . , p− 1.
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Proposition 7.1.14 Let K be any pure complex of
dimension d. If every facet of K is nonsingular, then
the boundary, bd(K), of K is a pure complex of di-
mension d−1 with an empty boundary. Furthermore,
if every face of K is nonsingular, then every face of
bd(K) is also nonsingular.

The building blocks of simplicial complexes, namely, sim-
plicies, are in some sense mathematically ideal. However,
in practice, it may be desirable to use a more flexible set
of building blocks.

We can indeed do this and use convex polytopes as our
building blocks.

Definition 7.1.15 A polyhedral complex in Em (for
short, a complex in Em) is a set, K, consisting of a (finite
or infinite) set of convex polytopes in Em satisfying the
following conditions:

(1) Every face of a polytope in K also belongs to K.

(2) For any two polytopes σ1 and σ2 in K, if σ1∩σ2 6= ∅,
then σ1 ∩ σ2 is a common face of both σ1 and σ2.
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Every polytope, σ ∈ K, of dimension k, is called a k-
face (or face) of K. A 0-face {v} is called a vertex
and a 1-face is called an edge. The dimension of the
polyhedral complexK is the maximum of the dimensions
of all polytopes in K. If dimK = d, then every face of
dimension d is called a cell and every face of dimension
d− 1 is called a facet .

Every Polytope, P , yields two natural polyhedral com-
plexes:

(i) The polyhedral complex, K(P ), consisting of P to-
gether with all of its faces. This complex has a single
cell, namely, P itself.

(ii) The boundary complex ,K(∂P ), consisting of all faces
of P other than P itself. The cells of K(∂P ) are the
facets of P .

The notions of k-skeleton and pureness are defined just
as in the simplicial case.
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The notions of star and link are defined for polyhedral
complexes just as they are defined for simplicial com-
plexes except that the word “face” now means face of
a polytope.

Now, by Theorem 6.3.1, every polytope, σ, is the convex
hull of its vertices. Let vert(σ) denote the set of vertices
of σ.

We have the following crucial observation: Given any poy-
hedral complex, K, for every point, x ∈ |K|, there is a
unique polytope, σx ∈ K, such that
x ∈ Int(σx) = σx − ∂ σx.

Now, just as in the simplicial case, the open star, st(σ),
of σ is given by

st(σ) =
⋂

v∈vert(σ)
st(v).

and st(σ) is open in |K|.
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The next proposition is another result that seems quite
obvious, yet a rigorous proof is more involved that we
might think.

This proposition states that a convex polytope can always
be cut up into simplices, that is, it can be subdivided into
a simplicial complex.

In other words, every convex polytope can be triangu-
lated. This implies that simplicial complexes are as gen-
eral as polyhedral complexes.

Proposition 7.1.16 Every convex d-polytope, P , can
be subdivided into a simplicial complex without adding
any new vertices, i.e., every convex polytope can be
triangulated.

With all this preparation, it is now quite natural to define
combinatorial manifolds.
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7.2 Combinatorial and Topological Manifolds

The notion of pure complex without singular faces turns
out to be a very good “discrete” approximation of the
notion of (topological) manifold because it of its highly
to computational nature.

Definition 7.2.1 A combinatorial d-manifold is any
space, X , homeomorphic to the geometric realization,
|K| ⊆ En, of some pure (simplicial or polyhedral) com-
plex, K, of dimension d whose faces are all nonsingular.
If the link of every k-face of K is homeomorphic to the
sphere Sd−k−1, we say that X is a combinatorial mani-
fold without boundary , else it is a combinatorial manifold
with boundary .

Other authors use the term triangulation for what we
call a computational manifold.

It is easy to see that the connected components of a com-
binatorial 1-manifold are either simple closed polygons or
simple chains (simple, means that the interiors of distinct
edges are disjoint).
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A combinatorial 2-manifold which is connected is also
called a combinatorial surface (with or without bound-
ary). Proposition 7.1.14 immediately yields the following
result:

Proposition 7.2.2 If X is a combinatorial d-manifold
with boundary, then bd(X) is a combinatorial (d−1)-
manifold without boundary.

Now, because we are assuming that X sits in some Eu-
clidean space, En, the space X is Hausdorff and second-
countable.

(Recall that a topological space is second-countable iff
there is a countable family of open sets of X , {Ui}i≥0,
such that every open subset of X is the union of open
sets from this family.)
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Since it is desirable to have a good match between man-
ifolds and combinatorial manifolds, we are led to the fol-
lowing definition:

Recall that

Hd = {(x1, . . . , xd) ∈ Rd | xd ≥ 0}.

Definition 7.2.3 For any d ≥ 1, a (topological) d-
manifold with boundary is a second-countable, topolog-
ical Hausdorff space M , together with an open cover,
(Ui)i∈I, of open sets inM and a family, (ϕi)i∈I , of home-
omorphisms, ϕi:Ui → Ωi, where each Ωi is some open
subset of Hd in the subset topology.

Each pair (U,ϕ) is called a coordinate system , or chart ,
of M , each homeomorphism ϕi:Ui → Ωi is called a co-
ordinate map, and its inverse ϕ−1

i : Ωi → Ui is called a
parameterization of Ui. The family (Ui, ϕi)i∈I is often
called an atlas for M .
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A (topological) bordered surface is a connected 2-manifold
with boundary. If for every homeomorphism,
ϕi:Ui → Ωi, the open set Ωi ⊆ Hd is actually an open set
in Rd (which means that xd > 0 for every (x1, . . . , xd) ∈
Ωi), then we say that M is a d-manifold .

Note that a d-manifold is also a d-manifold with bound-
ary.

Letting ∂Hd = Rd−1×{0}, it can be shown using homol-
ogy, that if some coordinate map, ϕ, defined on p maps
p into ∂Hd, then every coordinate map, ψ, defined on p
maps p into ∂Hd.

Thus,M is the disjoint union of two sets ∂M and IntM ,
where ∂M is the subset consisting of all points p ∈ M
that are mapped by some (in fact, all) coordinate map,
ϕ, defined on p into ∂Hd, and where IntM =M − ∂M .

The set ∂M is called the boundary of M , and the set
IntM is called the interior of M , even though this ter-
minology clashes with some prior topological definitions.
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A good example of a bordered surface is the Möbius strip.
The boundary of the Möbius strip is a circle.

The boundary ∂M of M may be empty, but IntM is
nonempty. Also, it can be shown using homology, that
the integer d is unique.

It is clear that IntM is open, and an d-manifold, and
that ∂M is closed.

It is easy to see that ∂M is an (d− 1)-manifold.

Proposition 7.2.4 Every combinatorial d-manifold is
a d-manifold with boundary.

Proof . This is an immediate consequence of Proposition
7.1.11.

Is the converse of Proposition 7.2.4 true?
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It turns out that answer is yes for d = 1, 2, 3 but no for
d ≥ 4. This is not hard to prove for d = 1.

For d = 2 and d = 3, this is quite hard to prove; among
other things, it is necessary to prove that triangulations
exist and this is very technical.

For d ≥ 4, not every manifold can be triangulated (in
fact, this is undecidable!).

What if we assume that M is a triangulated manifold,
which means thatM ≈ |K|, for some pure d-dimensional
complex, K?

Surprinsingly, for d ≥ 5, there are triangulated manifolds
whose links are not spherical (i.e., not homeomorphic to

B
d−k−1

or Sd−k−1).

Fortunately, we will only have to deal with d = 2, 3!
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Another issue that must be addressed is orientability.

Assume that fix a total ordering of the vertices of a com-
plex, K. Let σ = (v0, . . . , vk) be any simplex.

Recall that every permutation (of {0, . . . , k}) is a prod-
uct of transpositions , where a transposition swaps two
distinct elements, say i and j, and leaves every other el-
ement fixed.

Furthermore, for any permutation, π, the parity of the
number of transpositions needed to obtain π only depends
on π and it called the signature of π.

We say that two permutations are equivalent iff they have
the same signature. Consequently, there are two equiv-
alence classes of permutations: Those of even signature
and those of odd signature.



338 CHAPTER 7. BASICS OF COMBINATORIAL TOPOLOGY

Then, an orientation of σ is the choice of one of the two
equivalence classes of permutations of its vertices. If σ
has been given an orientation, then we denote by −σ the
result of assigning the other orientation to it (we call it
the opposite orientation).

For example, (0, 1, 2) has the two orientation classes:

{(0, 1, 2), (1, 2, 0), (2, 0, 1)}
and

{(2, 1, 0), (1, 0, 2), (0, 2, 1)}.

Definition 7.2.5 Let X ≈ |K| be a combinatorial d-
manifold. We say that X is orientable if it is possible to
assign an orientation to all of its cells (d-simplices) so that
whenever two cells σ1 and σ2 have a common facet, σ, the
two orientations induced by σ1 and σ2 on σ are opposite.
A combinatorial d-manifold together with a specific ori-
entation of its cells is called an oriented manifold . If X
is not orientable we say that it is non-orientable.
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There are non-orientable (combinatorial) surfaces, for ex-
ample, the Möbius strip which can be realized in E3. The
Möbius strip is a surface with boundary, its boundary
being a circle.

There are also non-orientable (combinatorial) surfaces such
as the Klein bottle or the projective plane but they can
only be realized in E4 (in E3, they must have singularities
such as self-intersection).

We will only be dealing with orientable manifolds, and
most of the time, surfaces.

One of the most important invariants of combinatorial
(and topological) manifolds is their Euler characteristic.

In the next chapter, we prove a famous formula due to
Poincaré giving the Euler characteristic of a convex poly-
tope. For this, we will introduce a technique of indepen-
dent interest called shelling .
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Chapter 8

Shellings, the Euler-Poincaré Formula
for Polytopes, Dehn-Sommerville
Equations, the Upper Bound Theorem

8.1 Shellings

The notion of shellability is motivated by the desire to
give an inductive proof of the Euler-Poincaré formula in
any dimension.

Historically, this formula was discovered by Euler for three
dimensional polytopes in 1752 (but it was already known
to Descartes around 1640).

If f0, f1 and f2 denote the number of vertices, edges and
triangles of the three dimensional polytope, P , (i.e., the
number of i-faces of P for i = 0, 1, 2), then the Euler
formula states that

f0 − f1 + f2 = 2.

341
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The proof of Euler’s formula is not very difficult but one
still has to exercise caution.

Euler’s formula was generalized to arbitrary d-dimensional
polytopes by Schläfli (1852) but the first correct proof was
given by Poincaré (1893, 1899).

If fi denotes the number of i-faces of the d-dimensional
polytope, P , (with f−1 = 1 and fd = 1), the Euler-
Poincaré formula states that:

d−1∑

i=0

(−1)ifi = 1− (−1)d,

which can also be written as
d∑

i=0

(−1)ifi = 1,

by incorporating fd = 1 in the first formula or as

d∑

i=−1

(−1)ifi = 0,

by incorporating both f−1 = 1 and fd = 1 in the first
formula.
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Earlier inductive “proofs” of the above formula were pro-
posed, notably a proof by Schläfli in 1852, but it was later
observed that all these proofs assume that the boundary
of every polytope can be built up inductively in a nice
way, what we call shellability .

Actually, counter-examples of shellability for various sim-
plicial complexes suggested that polytopes were perhaps
not shellable.

However, the fact that polytopes are shellable was finally
proved in 1970 by Bruggesser and Mani [?] and soon after
that (also in 1970) a striking application of shellability
was made by McMullen [?] who gave the first proof of
the so-called “upper bound theorem”.

As shellability of polytopes is an important tool and as
it yields one of the cleanest inductive proof of the Euler-
Poincaré formula, we will sketch its proof in some details.
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Definition 8.1.1 Let K be a pure polyhedral complex
of dimension d. A shelling of K is a list, F1, . . . , Fs, of
the cells (i.e., d-faces) of K such that either d = 0 (and
thus, all Fi are points) or the following conditions hold:

(i) The boundary complex, K(∂F1), of the first cell, F1,
of K has a shelling.

(ii) For any j, 1 < j ≤ s, the intersection of the cell
Fj with the previous cells is nonempty and is an ini-
tial segment of a shelling of the (d − 1)-dimensional
boundary complex of Fj, that is

Fj ∩
(
j−1⋃

i=1

Fi

)
= G1 ∪G2 ∪ · · · ∪Gr,

for some shelling G1, G2, . . . , Gr, . . . , Gt of K(∂Fj),
with 1 ≤ r ≤ t. As the intersection should be the
initial segment of a shelling for the (d−1)-dimensional
complex, ∂Fj, it has to be pure (d − 1)-dimensional
and connected for d > 1.

A polyhedral complex is shellable if it is pure and has a
shelling.
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Note that shellabiliy is only defined for pure complexes.

Here are some examples of shellable complexes:

(1) Every 0-dimensional complex, that is, evey set of points,
is shellable, by definition.

(2) A 1-dimensional complex is a graph without loops and
parallel edges. A 1-dimensional complex is shellable
iff it is connected, which implies that it has no iso-
lated vertices. Any ordering of the edges, e1, . . . , es,
such that {e1, . . . , ei} induces a connected subgraph
for every i will do. Such an ordering can be defined
inductively, due to the connectivity of the graph.

(3) Every simplex is shellable. In fact, any ordering of
its facets yields a shelling. This is easily shown by
induction on the dimension, since the intersection of
any two facets Fi and Fj is a facet of both Fi and Fj.

(4) The d-cubes are shellable. By induction on the di-
mension, it can be shown that every ordering of the
2d facets F1, . . . , F2d such that F1 and F2d are oppo-
site (that is, F2d = −F1) yields a shelling.
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34 5

Figure 8.1: Non shellable and Shellable 2-complexes

However, already for 2-complexes, problems arise. For ex-
ample, in Figure 8.1, the left and the middle 2-complexes
are not shellable but the right complex is shellable.

The problem with the left complex is that cells 1 and
2 intersect at a vertex, which is not 1-dimensional, and
in the middle complex, the intersection of cell 8 with its
predecessors is not connected.

In contrast, the ordering of the right complex is a shelling.

However, observe that the reverse ordering is not a shelling
because cell 4 has an empty intersection with cell 5!
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Remarks:

1. Condition (i) in Definition 8.1.1 is redundant because,
as we shall prove shortly, every polytope is shellable.
However, if we want to use this definition for more
general complexes, then condition (i) is necessary.

2. When K is a simplicial complex, condition (i) is of
course redundant, as every simplex is shellable but
condition (ii) can also be simplified to:

(ii’) For any j, with 1 < j ≤ s, the intersection of
Fj with the previous cells is nonempty and pure
(d − 1)-dimensional. This means that for every
i < j there is some l < j such that Fi ∩ Fj ⊆
Fl ∩ Fj and Fl ∩ Fj is a facet of Fj.

The following proposition yields an important piece of in-
formation about the local structure of shellable simplicial
complexes:
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Proposition 8.1.2 Let K be a shellable simplicial com-
plex and say F1, . . . , Fs is a shelling for K. Then, for
every vertex, v, the restriction of the above sequence
to the link, Lk(v), and to the star, St(v), are shellings.

Since the complex, K(P ), associated with a polytope, P ,
has a single cell, namely P itself, note that by condition
(i) in the definition of a shelling, K(P ) is shellable iff the
complex, K(∂P ), is shellable.

We will say simply say that “P is shellable” instead of
“K(∂P ) is shellable”.

Proposition 8.1.3 Given any polytope, P , if F1, . . . , Fs
is a shelling of P , then the reverse sequence Fs, . . . , F1

is also a shelling of P .

� Proposition 8.1.3 generally fails for complexes that are
not polytopes, see the right 2-complex in Figure 8.1.
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We will now present the proof that every polytope is
shellable, using a technique invented by Bruggesser and
Mani (1970) known as line shelling [?].

We begin by explaining this idea in the 2-dimensional
case, a convex polygon, since it is particularly simple.

Consider the 2-polytope, P , shown in Figure 8.2 (a poly-
gon) whose faces are labeled F1, F2, F3, F4, F5.

Pick any line, ℓ, intersecting the interior of P and inter-
secting the supporting lines of the facets of P (i.e., the
edges of P ) in distinct points labeled z1, z2, z3, z4, z5 (such
a line can always be found, as will be shown shortly).

Orient the line, ℓ, (say, upward) and travel on ℓ starting
from the point of P where ℓ leaves P , namely, z1.
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F1

F2

F3

F5

F4

z1

z2

z3

z4

z5

ℓ

Figure 8.2: Shelling a polygon by travelling along a line
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For a while we only see F1 but then F2 become visble
when we cross z2. We imagine that we travel very fast
and when we reach “+∞” in the upward direction on ℓ,
we instantly come back on ℓ from below at “−∞”.

At this point, we only see the face of P corresponding
to the lowest supporting line of faces of P , i.e., the line
corresponding to the smallest zi, in our case, z3.

Our trip stops when we reach z5, the intersection of F5

and ℓ. During the second phase of our trip, we saw
F3, F4 and F5 and the entire trip yields the sequence
F1, F2, F3, F4, F5, which is easily seen to be a shelling
of P .

This is the crux of the Bruggesser-Mani method for shelling
a polytope: We travel along a suitably chosen line and
record the order in which the faces become visible dur-
ing this trip. This is why such shellings are called line
shellings .
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In order to prove that polytopes are shellable we need the
notion of points and lines in “general position”.

Recall from the equivalence of V-polytopes andH-polytopes
that a polytope, P , in Ed with nonempty interior is cut
out by t irredundant hyperplanes, Hi, and by picking the
origin in the interior of P the equations of the Hi may be
assumed to be of the form

ai · z = 1

where ai and aj are not proportional for all i 6= j, so that

P = {z ∈ Ed | ai · z ≤ 1, 1 ≤ i ≤ t}.
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Definition 8.1.4 Let P be any polytope in Ed with
nonempty interior and assume that P is cut out by the
irredudant hyperplanes, Hi, of equations ai · z = 1, for
i = 1, . . . , t. A point, c ∈ Ed, is said to be in general
position w.r.t. P is c does not belong to any of the Hi,
that is, if ai · c 6= 1 for i = 1, . . . , t. A line, ℓ, is said to
be in general position w.r.t. P if ℓ is not parallel to any
of the Hi and if ℓ intersects the Hi in distinct points.

The following proposition showing the existence of lines
in general position w.r.t. a polytope illustrates a very
useful technique, the “perturbation method”.

Proposition 8.1.5 Let P be any polytope in Ed with
nonempty interior. For any two points, x and y in
Ed, with x outside of P ; y in the interior of P ; and x
in general position w.r.t. P , for λ ∈ R small enough,
the line, ℓλ, through x and yλ with

yλ = y + (λ, λ2, . . . , λd),

intersects P in its interior and is in general position
w.r.t. P .
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It should be noted that the perturbation method involv-
ing Λ = (λ, λ2, . . . , λd) is quite flexible.

For example, by adapting the proof of Proposition 8.1.5
we can prove that for any two distinct facets, Fi and Fj of
P , there is a line in general position w.r.t. P intersecting
Fi and Fj. Start with x outside P and very close to Fi
and y in the interior of P and very close to Fj.

Given any point, x, strictly outside a polytope, P , we say
that a facet, F , of P is visible from x iff for every y ∈ F
the line through x and y intersects F only in y (equiv-
alently, x and the interior of P are strictly separared by
the supporting hyperplane of F ).

We now prove the following fundamental theorem due to
Bruggesser and Mani [?] (1970):
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ℓ

z1

z2

z3

F1

F2

F3F4

Figure 8.3: Shelling a polytope by travelling along a line, ℓ

Theorem 8.1.6 (Existence of Line Shellings for Poly-
topes) Let P be any polytope in Ed of dimension d.
For every point, x, outside P and in general position
w.r.t. P , there is a shelling of P in which the facets
of P that are visible from x come first.

Remark: The trip along the line ℓ is often described as
a rocket flight starting from the surface of P viewed as
a little planet (for instance, this is the description given
by Ziegler [?] (Chapter 8)).
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Observe that if we reverse the direction of ℓ, we obtain the
reversal of the original line shelling. Thus, the reversal of
a line shelling is not only a shelling but a line shelling as
well.

We can easily prove the following corollary:

Corollary 8.1.7 Given any polytope, P , the follow-
ing facts hold:

(1) For any two facets F and F ′, there is a shelling of
P in which F comes first and F ′ comes last.

(2) For any vertex, v, of P , there is a shelling of P
in which the facets containing v form an initial
segment of the shelling.

Remark: A plane triangulation , K, is a pure two-
dimensional complex in the plane such that |K| is home-
omorphic to a closed disk.
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Edelsbrunner proves that every plane triangulation has a
shelling and from this, that χ(K) = 1, where χ(K) =
f0 − f1 + f2 is the Euler-Poincaré characteristic of K,
where f0 is the number of vertices, f1 is the number of
edges and f2 is the number of triangles in K (see Edels-
brunner [?], Chapter 3).

This result is an immediate consequence of Corollary 8.1.7
if one knows about the stereographic projection map,
which will be discussed in the next Chapter.

We now have all the tools needed to prove the famous
Euler-Poincaré Formula for Polytopes.
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8.2 The Euler-Poincaré Formula for Polytopes

We begin by defining a very important topological con-
cept, the Euler-Poincaré characteristic of a complex.

Definition 8.2.1 Let K be a d-dimensional complex.
For every i, with 0 ≤ i ≤ d, we let fi denote the number
of i-faces of K and we let

f(K) = (f0, · · · , fd) ∈ Nd+1

be the f-vector associated with K (if necessary we write
fi(K) instead of fi). The Euler-Poincaré characteris-
tic, χ(K), of K is defined by

χ(K) = f0 − f1 + f2 + · · · + (−1)dfd =
d∑

i=0

(−1)ifi.
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Given any d-dimensional polytope, P , the f-vector asso-
ciated with P is the f -vector associated with K(P ), that
is,

f(P ) = (f0, · · · , fd) ∈ Nd+1,

where fi, is the number of i-faces of P (= the number of i-
faces of K(P ) and thus, fd = 1), and the Euler-Poincaré
characteristic, χ(P ), of P is defined by

χ(P ) = f0 − f1 + f2 + · · · + (−1)dfd =

d∑

i=0

(−1)ifi.

Moreover, the f-vector associated with the boundary,
∂P , of P is the f -vector associated with K(∂P ), that is,

f(∂P ) = (f0, · · · , fd−1) ∈ Nd

where fi, is the number of i-faces of ∂P (with 0 ≤ i ≤
d − 1), and the Euler-Poincaré characteristic, χ(∂P ),
of ∂P is defined by

χ(∂P ) = f0− f1+ f2+ · · ·+(−1)d−1fd−1 =
d−1∑

i=0

(−1)ifi.
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Observe that χ(P ) = χ(∂P ) + (−1)d, since fd = 1.

Remark: It is convenient to set f−1 = 1. Then, some
authors, including Ziegler [?] (Chapter 8), define the re-
duced Euler-Poincaré characteristic, χ′(K), of a com-
plex (or a polytope), K, as

χ′(K) = −f−1 + f0 − f1 + f2 + · · · + (−1)dfd

=

d∑

i=−1

(−1)ifi = −1 + χ(K),

i.e., they incorporate f−1 = 1 into the formula.

A crucial observation for proving the Euler-Poincaré for-
mula is that the Euler-Poincaré characteristic is additive.

This means that if K1 and K2 are any two complexes
such that K1 ∪K2 is also a complex, which implies that
K1∩K2 is also a complex (because we must have F1∩F2 ∈
K1∩K2 for every face F1 ofK1 and every face F2 of K2),
then

χ(K1 ∪K2) = χ(K1) + χ(K2)− χ(K1 ∩K2).
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This follows immediately because for any two sets A and
B

|A ∪B| = |A| + |B| − |A ∩B|.

To prove our next theorem we will use complete induction
on N× N ordered by the lexicographic ordering.

Recall that the lexicographic ordering on N×N is defined
as follows:

(m,n) < (m′, n′) iff




m = m′ and n < n′

or
m < m′.

Theorem 8.2.2 (Euler-Poincaré Formula) For every
polytope, P , we have

χ(P ) =
d∑

i=0

(−1)ifi = 1 (d ≥ 0),

and so,

χ(∂P ) =

d−1∑

i=0

(−1)ifi = 1− (−1)d (d ≥ 1).
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Proof . We prove the following statement: For every d-
dimensional polytope, P , if d = 0 then

χ(P ) = 1,

else if d ≥ 1 then for every shelling F1, . . . , Ffd−1
, of P ,

for every j, with 1 ≤ j ≤ fd−1, we have

χ(F1 ∪ · · · ∪ Fj) =
{
1 if 1 ≤ j < fd−1

1− (−1)d if j = fd−1.

We proceed by complete induction on (d, j) ≥ (0, 1).

Remark: Other combinatorial proofs of the Euler-Poincaré
formula are given in Grünbaum [?] (Chapter 8), Boisson-
nat and Yvinec [?] (Chapter 7) and Ewald [?] (Chapter
3).

Coxeter gives a proof very close to Poincaré’s own proof
using notions of homology theory [?] (Chapter IX).

We feel that the proof based on shellings is the most direct
and one of the most elegant.
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Incidently, the above proof of the Euler-Poincaré formula
is very close to Schläfli proof from 1852 but Schläfli did
not have shellings at his disposal so his “proof” had a gap.
The Bruggesser-Mani proof that polytopes are shellable
fills this gap!
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8.3 Dehn-Sommerville Equations for Simplicial

Polytopes and h-Vectors

If a d-polytope, P , has the property that its faces are all
simplices, then it is called a simplicial polytope.

It is easily shown that a polytope is simplicial iff its facets
are simplices, in which case, every facet has d vertices.

The polar dual of a simplicial polytope is called a sim-
ple polytope. We see immediately that every vertex of a
simple polytope belongs to d facets.

For simplicial (and simple) polytopes it turns out that
other remarkable equations besides the Euler-Poincaré
formula hold among the number of i-faces.

These equations were discovered by Dehn for d = 4, 5
(1905) and by Sommerville in the general case (1927).
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Although it is possible (and not difficult) to prove the
Dehn-Sommerville equations by “double counting”, as
in Grünbaum [?] (Chapter 9) or Boissonnat and Yvinec
(Chapter 7, but beware, these are the dual formulae for
simple polytopes), it turns out that instead of using the
f -vector associated with a polytope it is preferable to
use what’s known as the h-vector because for simplicial
polytopes the h-numbers have a natural interpretation in
terms of shellings.

Furthermore, the statement of the Dehn-Sommerville equa-
tions in terms of h-vectors is transparent:

hi = hd−i,

and the proof is very simple in terms of shellings.

In the rest of this section, we restrict our attention to
simplicial complexes.

In order to motivate h-vectors, we begin by examining
more closely the structure of the new faces that are cre-
ated during a shelling when the cell Fj is added to the
partial shelling F1, . . . , Fj−1.
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If K is a simplicial polytope and V is the set of vertices
of K, then every i-face of K can be identified with an
(i + 1)-subset of V (that is, a subset of V of cardinality
i + 1).

Definition 8.3.1 For any shelling, F1, . . . , Fs, of a sim-
plicial complex, K, of dimension d, for every j, with
1 ≤ j ≤ s, the restriction , Rj, of the facet, Fj, is the set
of “obligatory” vertices

Rj = {v ∈ Fj | Fj − {v} ⊆ Fi, for some i, 1 ≤ i < j}.

The crucial property of the Rj is that the new faces, G,
added at step j (when Fj is added to the shelling) are
precisely the faces in the set

Ij = {G ⊆ V | Rj ⊆ G ⊆ Fj}.

But then, we obtain a partition, {I1, . . . , Is}, of the set
of faces of the simplicial complex (other that K itself).
Note that the empty face is allowed.
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Now, if we define

hi = |{j | |Rj| = i, 1 ≤ j ≤ s}|,
for i = 0, . . . , d, then it turns out that we can recover the
fk in terms of the hi as follows:

fk−1 =
s∑

j=1

(
d− |Rj|
k − |Rj|

)
=

k∑

i=0

hi

(
d− i
k − i

)
,

with 1 ≤ k ≤ d.

But more is true: The above equations are invertible and
the hk can be expressed in terms of the fi as follows:

hk =
k∑

i=0

(−1)k−i
(
d− i
d− k

)
fi−1,

with 0 ≤ k ≤ d (remember, f−1 = 1).

Let us explain all this in more detail. Consider the exam-
ple of a connected graph shown in Figure 8.4:
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1

2 3

4 5

6

Figure 8.4: A connected 1-dimensional complex, G

∅

1 2 3 4 5 6

12 13 34 35 45 36 56

Figure 8.5: the partition associated with a shelling of G

A shelling order of its 7 edges is given by the sequence

12, 13, 34, 35, 45, 36, 56.

The partial order of the faces of G together with the
blocks of the partition {I1, . . . , I7} associated with the
seven edges of G are shown in Figure 8.5, with the blocks
Ij shown in red:

The “minimal” new faces (corresponding to the Rj’s)
added at every stage of the shelling are

∅, 3, 4, 5, 45, 6, 56.
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Again, if hi is the number of blocks, Ij, such that the
corresponding restriction set, Rj, has size i, that is,

hi = |{j | |Rj| = i, 1 ≤ j ≤ s}|,
for i = 0, . . . , d, where the simplicial polytope, K, has
dimension d− 1, we define the h-vector associated with
K as

h(K) = (h0, . . . , hd).

Then, in the above example, as R1 = {∅}, R2 = {3},
R3 = {4}, R4 = {5}, R5 = {4, 5}, R6 = {6} and
R7 = {5, 6}, we get h0 = 1, h1 = 4 and h2 = 2, that is,

h(G) = (1, 4, 2).

Now, let us show that if K is a shellable simplicial com-
plex, then the f -vector can be recovered from the h-
vector.
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Indeed, if |Rj| = i, then each (k− 1)-face in the block Ij
must use all i nodes in Rj, so that there are only d − i
nodes available and, among those, k − i must be chosen.
Therefore,

fk−1 =
s∑

j=1

(
d− |Rj|
k − |Rj|

)

and, by definition of hi, we get

fk−1 =
k∑

i=0

hi

(
d− i
k − i

)

= hk +

(
d− k + 1

1

)
hk−1 + · · · +

(
d
k

)
h0,

where 1 ≤ k ≤ d.

Moreover, the formulae are invertible, that is, the hi can
be expressed in terms of the fk. For this, form the two
polynomials

f(x) =
d∑

i=0

fi−1x
d−i = fd−1+fd−2x+· · ·+f0xd−1+f−1x

d

with f−1 = 1 and

h(x) =
d∑

i=0

hix
d−i = hd + hd−1x + · · · + h1x

d−1 + h0x
d.
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Then, it is easy to see that

f(x) =
d∑

i=0

hi(x + 1)d−i = h(x + 1).

Consequently, h(x) = f(x − 1) and by comparing the
coefficients of xd−k on both sides of the above equation,
we get

hk =
k∑

i=0

(−1)k−i
(
d− i
d− k

)
fi−1.

In particular, h0 = 1, h1 = f0 − d, and

hd = fd−1 − fd−2 + fd−3 + · · · + (−1)d−1f0 + (−1)d.

It is also easy to check that

h0 + h1 + · · · + hd = fd−1.

Now, we just showed that if K is shellable, then its f -
vector and its h-vector are related as above.
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But even ifK is not shellable, the above suggests defining
the h-vector from the f -vector as above. Thus, we make
the definition:

Definition 8.3.2 For any (d−1)-dimensional simplicial
complex,K, the h-vector associated withK is the vector

h(K) = (h0, . . . , hd) ∈ Zd+1,

given by

hk =

k∑

i=0

(−1)k−i
(
d− i
d− k

)
fi−1.

Note that if K is shellable, then the interpretation of hi
as the number of cells, Fj, such that the corresponding
restriction set, Rj, has size i shows that hi ≥ 0.

However, for an arbitrary simplicial complex, some of the
hi can be strictly negative. Such an example is given in
Ziegler [?] (Section 8.3).

We summarize below most of what we just showed:
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Proposition 8.3.3 Let K be a (d − 1)-dimensional
pure simplicial complex. If K is shellable, then its h-
vector is nonnegative and hi counts the number of cells
in a shelling whose restriction set has size i. More-
over, the hi do not depend on the particular shelling
of K.

We are now ready to prove the Dehn-Sommerville equa-
tions.

For d = 3, these are easily obtained by double counting.
Indeed, for a simplicial polytope, every edge belongs to
two facets and every facet has three edges. It follows that

2f1 = 3f2.

Together with Euler’s formula

f0 − f1 + f2 = 2,

we see that

f1 = 3f0 − 6 and f2 = 2f0 − 4,

namely, that the number of vertices of a simplicial 3-
polytope determines its number of edges and faces, these
being linear functions of the number of vertices.
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For arbitrary dimension d, we have

Theorem 8.3.4 (Dehn-Sommerville Equations) If K
is any simplicial d-polytope, then the components of
the h-vector satisfy

hk = hd−k k = 0, 1, . . . , d.

Equivalently

fk−1 =
d∑

i=k

(−1)d−i
(
i
k

)
fi−1 k = 0, . . . , d.

Furthermore, the equation h0 = hd is equivalent to the
Euler-Poincaré formula.

Clearly, the Dehn-Sommerville equations, hk = hd−k, are
linearly independent for
0 ≤ k < ⌊d+1

2 ⌋.
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For example, for d = 3, we have the two independent
equations

h0 = h3, h1 = h2,

and for d = 4, we also have two independent equations

h0 = h4, h1 = h3,

since h2 = h2 is trivial.

When d = 3, we know that h1 = h2 is equivalent to
2f1 = 3f2 and when d = 4, if one unravels h1 = h3 in
terms of the fi’ one finds

2f2 = 4f3,

that is f2 = 2f3.

More generally, it is easy to check that

2fd−2 = dfd−1

for all d. For d = 5, we find three independent equations

h0 = h5, h1 = h4, h2 = h3,

and so on.



376 CHAPTER 8. SHELLINGS AND THE EULER-POINCARÉ FORMULA

It can be shown that for general d-polytopes, the Euler-
Poincaré formula is the only equation satisfied by all h-
vectors and for simplicial d-polytopes, the ⌊d+1

2 ⌋ Dehn-
Sommerville equations, hk = hd−k, are the only equations
satisfied by all h-vectors (see Grünbaum [?], Chapter 9).

As we saw for 3-dimensional simplicial polytopes, the
number of vertices, n = f0, determines the number of
edges and the number of faces, and these are linear in f0.

For d ≥ 4, this is no longer true and the number of facets
is no longer linear in n but in fact quadratic.

It is then natural to ask which d-polytopes with a pre-
scribed number of vertices have the maximum number of
k-faces.

This question which remained an open problem for some
twenty years was eventually settled by McMullen in 1970
[?].
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8.4 The Upper Bound Theorem and Cyclic Polytopes

Given a d-polytope with n vertices, what is an upper
bound on the number of its i-faces?

This question is not only important from a theoretical
point of view but also from a computational point of view
because of its implications for algorithms in combinatorial
optimization and in computational geometry.

The answer to the above problem is that there is a class
of polytopes called cyclic polytopes such that the cyclic
d-polytope, Cd(n), has the maximum number of i-faces
among all d-polytopes with n vertices.

This result stated by Motzkin in 1957 became known as
the upper bound conjecture until it was proved by Mc-
Mullen in 1970, using shellings [?] (just after Bruggesser
and Mani’s proof that polytopes are shellable). It is now
known as the upper bound theorem .
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Another proof of the upper bound theorem was given later
by Alon and Kalai [?] (1985). A version of this proof can
also be found in Ewald [?] (Chapter 3).

First, consider the cases d = 2 and d = 3. When d = 2,
our polytope is a polygon in which case n = f0 = f1.
Thus, this case is trivial.

For d = 3, we claim that 2f1 ≥ 3f2. Indeed, every edge
belongs to exactly two faces so if we add up the number
of sides for all faces, we get 2f1. Since every face has at
least three sides, we get 2f1 ≥ 3f2. Then, using Euler’s
relation, it is easy to show that

f1 ≤ 6n− 3 f2 ≤ 2n− 4

and we know that equality is achieved for simplicial poly-
topes.

Let us now consider the general case. The rational curve,
c:R → Rd, given parametrically by

c(t) = (t, t2, . . . , td)

is at the heart of the story.
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This curve if often called the moment curve or rational
normal curve of degree d. For d = 3, it is known as
the twisted cubic. Here is the definition of the cyclic
polytope, Cd(n).

Definition 8.4.1 For any sequence, t1 < . . . < tn, of
distinct real number, ti ∈ R, with n > d, the convex hull,

Cd(n) = conv(c(t1), . . . , c(tn))

of the n points, c(t1), . . . , c(tn), on the moment curve of
degree d is called a cyclic polytope.

The first interesting fact about the cyclic polytope is that
it is simplicial.

Proposition 8.4.2 Every d+1 of the points c(t1), . . .,
c(tn) are affinely independent. Consequently, Cd(n) is
a simplicial polytope and the c(ti) are vertices.
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Proposition 8.4.3 For any k with 2 ≤ 2k ≤ d, every
subset of k vertices of Cd(n) is a (k−1)-face of Cd(n).
Hence

fk(Cd(n)) =

(
n

k + 1

)
if 0 ≤ k <

⌊
d

2

⌋
.

Observe that Proposition 8.4.3 shows that any subset of
⌊d2⌋ vertices of Cd(n) forms a face of Cd(n).

When a d-polytope has this property it is called a neigh-
borly polytope. Therefore, cyclic polytopes are neigh-
borly.

Proposition 8.4.3 also shows a phenomenon that only
manifests itself in dimension at least 4: For d ≥ 4, the
polytope Cd(n) has n pairwise adjacent vertices. For
n >> d, this is counter-intuitive.

Finally, the combinatorial structure of cyclic polytopes is
completely determined as follows:
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Proposition 8.4.4 (Gale evenness condition, Gale
(1963)). Let n and d be integers with 2 ≤ d < n. For
any sequence t1 < t2 < · · · < tn, consider the cyclic
polytope

Cd(n) = conv(c(t1), . . . , c(tn)).

A subset, S ⊆ {1, . . . , n} with |S| = d determines
a facet of Cd(n) iff for all i < j not in S, then the
number of k ∈ S between i and j is even:

|{k ∈ S | i < k < j}| ≡ 0 (mod 2) for i, j /∈ S

In particular, Proposition 8.4.4 shows that the combina-
torial structure of Cd(n) does not depend on the specific
choice of the sequence t1 < . . . < tn. This justifies our
notation Cd(n).

Here is the celebrated upper bound theorem first proved
by McMullen [?].
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Theorem 8.4.5 (Upper Bound Theorem, McMullen
(1970)) Let P be any d-polytope with n vertices. Then,
for every k, with 1 ≤ k ≤ d, the polytope P has
at most as many (k − 1)-faces as the cyclic polytope,
Cd(n), that is

fk−1(P ) ≤ fk−1(Cd(n)).

Moreover, equality for some k with ⌊d
2
⌋ ≤ k ≤ d im-

plies that P is neighborly.

The first step in the proof of Theorem 8.4.5 is to prove
that among all d-polytopes with a given number, n, of
vertices, the maximum number of i-faces is achieved by
simplicial d-polytopes.
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Proposition 8.4.6 Given any d-polytope, P , with n-
vertices, it is possible to form a simplicial polytope,
P ′, by perturbing the vertices of P such that P ′ also
has n vertices and

fk−1(P ) ≤ fk−1(P
′) for 1 ≤ k ≤ d.

Furthermore, equality for k > ⌊d2⌋ can occur only if P
is simplicial.

Proposition 8.4.6 allows us to restict our attention to sim-
plicial polytopes. Now, it is obvious that

fk−1 ≤
(
n
k

)

for any polytope P (simplicial or not) and we also know
that equality holds if k ≤ ⌊d2⌋ for neighborly polytopes

such as the cyclic polytopes. For k > ⌊d2⌋, it turns out
that equality can only be achieved for simplices.
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However, for a simplicial polytope, the Dehn-Sommerville
equations hk = hd−k together with the equations giving
fk in terms of the hi’s show that f0, f1, . . . , f⌊d2⌋

already

determine the whole f -vector.

Thus, it is possible to express the fk−1 in terms of h0, h1,
. . . , h⌊d2⌋

for k ≥ ⌊d2⌋. It turns out that we get

fk−1 =

⌊d2⌋∑

i=0

∗((
d− i
k − i

)
+

(
i

k − d + i

))
hi,

where the meaning of the superscript ∗ is that when d
is even we only take half of the last term for i = d

2 and

when d is odd we take the whole last term for i = d−1
2

(for details, see Ziegler [?], Chapter 8).

As a consequence if we can show that the neighborly
polytopes maximize not only fk−1 but also hk−1 when
k ≤ ⌊d2⌋, the upper bound theorem will be proved.
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Indeed, McMullen proved the following theorem which is
“more than enough” to yield the desired result ([?]):

Theorem 8.4.7 (McMullen (1970)) For every sim-
plicial d-polytope with f0 = n vertices, we have

hk(P ) ≤
(
n− d− 1 + k

k

)
for 0 ≤ k ≤ d.

Furthermore, equality holds for all l and all k with
0 ≤ k ≤ l iff l ≤ ⌊d2⌋ and P is l-neighborly. (a poly-
tope is l-neighborly iff any subset of l or less vertices
determine a face of P .)

Since cyclic d-polytopes are neighborly (which means that
they are ⌊d

2
⌋-neighborly), Theorem 8.4.5 follows from Propo-

sition 8.4.6, and Theorem 8.4.7.
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Corollary 8.4.8 For every simplicial neighborly d-
polytope with n vertices, we have

fk−1 =

⌊d2⌋∑

i=0

∗((
d− i
k − i

)
+

(
i

k − d + i

))

(
n− d− 1 + i

i

)
,

for 1 ≤ k ≤ d. This gives the maximum number of
(k−1)-faces for any d-polytope with n-vertices, for all
k with 1 ≤ k ≤ d. In particular, the number of facets
of the cyclic polytope, Cd(n), is

fd−1 =

⌊d2⌋∑

i=0

∗

2

(
n− d− 1 + i

i

)

and, more explicitly,

fd−1 =

(
n− ⌊d+1

2 ⌋
n− d

)
+

(
n− ⌊d+2

2 ⌋
n− d

)
.
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Corollary 8.4.8 implies that the number of facets of any

d-polytope is O(n⌊
d
2⌋).

An unfortunate consequence of this upper bound is that
the complexity of any convex hull algorithms for n points

in Ed is O(n⌊
d
2⌋).

The O(n⌊
d
2⌋) upper bound can be obtained more directly

using a pretty argument using shellings due to R. Seidel
[?].

Remark: There is also a lower bound theorem due to
Barnette (1971, 1973) which gives a lower bound on the
f -vectors all d-polytopes with n vertices.

In this case, there is an analog of the cyclic polytopes
called stacked polytopes .
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These polytopes, Pd(n), are simplicial polytopes obtained
from a simplex by building shallow pyramids over the
facets of the simplex. Then, it turns out that if d ≥ 2,
then

fk ≥





(
d
k

)
n−

(
d + 1
k + 1

)
k if 0 ≤ k ≤ d− 2

(d− 1)n− (d + 1)(d− 2) if k = d− 1.

There has been a lot of progress on the combinatorics of f -
vectors and h-vectors since 1971, especially by R. Stanley,
G. Kalai and L. Billera and K. Lee, among others. We
recommend two excellent surveys:

1. Bayer and Lee [?] summarizes progress in this area up
to 1993.

2. Billera and Björner [?] is a more advanced survey
which reports on results up to 1997.

In fact, many of the chapters in Goodman and O’Rourke
[?] should be of interest to the reader.



Chapter 9

Dirichlet–Voronoi Diagrams and
Delaunay Triangulations

9.1 Dirichlet–Voronoi Diagrams

In this chapter we present very briefly the concepts of a
Voronoi diagram and of a Delaunay triangulation.

These are important tools in computational geometry,
and Delaunay triangulations are important in problems
where it is necessary to fit 3D data using surface splines.

It is usually useful to compute a good mesh for the pro-
jection of this set of data points onto the xy-plane, and
a Delaunay triangulation is a good candidate.

Our presentation will be rather sketchy. We are primar-
ily interested in defining these concepts and stating their
most important properties without proofs.
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For a comprehensive exposition of Voronoi diagrams, De-
launay triangulations, and more topics in computational
geometry, consult O’Rourke [?], Preparata and Shamos
[?], Boissonnat and Yvinec [?], de Berg, Van Kreveld,
Overmars, and Schwarzkopf [?], or Risler [?].

The survey by Graham and Yao [?] contains a very gentle
and lucid introduction to computational geometry.

For concreteness, one may safely assume that we work in
the affine space E = Em, although what follows applies
to any Euclidean space of finite dimension.

Given a set P = {p1, . . . , pn} of n points in E , it is
often useful to find a partition of the space E into regions
each containing a single point of P and having some nice
properties.
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It is also often useful to find triangulations of the convex
hull of P having some nice properties.

We shall see that this can be done and that the two
problems are closely related. In order to solve the first
problem, we need to introduce bisector lines and bisector
planes.

For simplicity, let us first assume that E is a plane i.e.,
has dimension 2.

Given any two distinct points a, b ∈ E , the line orthog-
onal to the line segment (a, b) and passing through the
midpoint of this segment is the locus of all points having
equal distance to a and b.

It is called the bisector line of a and b. The bisector line
of two points is illustrated in Figure 9.1.
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b

bL

a

b

Figure 9.1: The bisector line L of a and b

If h = 1
2 a+

1
2 b is the midpoint of the line segment (a, b),

letting m be an arbitrary point on the bisector line, the
equation of this line can be found by writing that hm is
orthogonal to ab.

In any orthogonal frame, lettingm = (x, y), a = (a1, a2),
b = (b1, b2), the equation of this line can be written as

(b1 − a1)x + (b2 − a2)y = (b21 + b22)/2− (a21 + a22)/2.



9.1. DIRICHLET–VORONOI DIAGRAMS 393

The closed half-planeH(a, b) containing a and with bound-
ary the bisector line is the locus of all points such that

(b1 − a1)x + (b2 − a2)y ≤ (b21 + b22)/2− (a21 + a22)/2,

and the closed half-plane H(b, a) containing b and with
boundary the bisector line is the locus of all points such
that

(b1 − a1)x + (b2 − a2)y ≥ (b21 + b22)/2− (a21 + a22)/2.

The closed half-planeH(a, b) is the set of all points whose
distance to a is less that or equal to the distance to b,
and vice versa for H(b, a). Thus, points in the closed
half-plane H(a, b) are closer to a than they are to b.
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We now consider a problem called the post office problem
by Graham and Yao [?].

Given any set P = {p1, . . . , pn} of n points in the plane
(considered as post offices or sites), for any arbitrary
point x, find out which post office is closest to x.

Since x can be arbitrary, it seems desirable to precompute
the sets V (pi) consisting of all points that are closer to pi
than to any other point pj 6= pi.

Indeed, if the sets V (pi) are known, the answer is any
post office pi such that x ∈ V (pi).

Thus, it remains to compute the sets V (pi). For this, if
x is closer to pi than to any other point pj 6= pi, then x
is on the same side as pi with respect to the bisector line
of pi and pj for every j 6= i, and thus

V (pi) =
⋂

j 6=i
H(pi, pj).
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If E has dimension 3, the locus of all points having equal
distance to a and b is a plane. It is called the bisector
plane of a and b.

The equation of this plane is also found by writing that
hm is orthogonal to ab. The equation of this plane can
be written as

(b1 − a1)x + (b2 − a2)y + (b3 − a3)z =

(b21 + b22 + b23)/2− (a21 + a22 + a23)/2.

The closed half-spaceH(a, b) containing a and with bound-
ary the bisector plane is the locus of all points such that

(b1 − a1)x + (b2 − a2)y + (b3 − a3)z ≤
(b21 + b22 + b23)/2− (a21 + a22 + a23)/2,

and the closed half-space H(b, a) containing b and with
boundary the bisector plane is the locus of all points such
that

(b1 − a1)x + (b2 − a2)y + (b3 − a3)z ≥
(b21 + b22 + b23)/2− (a21 + a22 + a23)/2.
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The closed half-spaceH(a, b) is the set of all points whose
distance to a is less that or equal to the distance to b, and
vice versa for H(b, a). Again, points in the closed half-
space H(a, b) are closer to a than they are to b.

Given any set P = {p1, . . . , pn} of n points in E (of
dimension m = 2, 3), it is often useful to find for every
point pi the region consisting of all points that are closer
to pi than to any other point pj 6= pi, that is, the set

V (pi) = {x ∈ E | d(x, pi) ≤ d(x, pj), for all j 6= i},
where d(x, y) = (xy · xy)1/2, the Euclidean distance as-
sociated with the inner product · on E .

From the definition of the bisector line (or plane), it is
immediate that

V (pi) =
⋂

j 6=i
H(pi, pj).
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Families of sets of the form V (pi) were investigated by
Dirichlet [?] (1850) and Voronoi [?] (1908). Voronoi dia-
grams also arise in crystallography (Gilbert [?]).

Other applications, including facility location and path
planning, are discussed in O’Rourke [?]. For simplicity,
we also denote the set V (pi) by Vi, and we introduce the
following definition.

Definition 9.1.1 Let E be a Euclidean space of dimen-
sion m ≥ 1. Given any set P = {p1, . . ., pn} of n
points in E , the Dirichlet–Voronoi diagram V(P ) of
P = {p1, . . . , pn} is the family of subsets of E consist-
ing of the sets Vi =

⋂
j 6=iH(pi, pj) and of all of their

intersections.

Dirichlet–Voronoi diagrams are also called Voronoi di-
agrams , Voronoi tessellations , or Thiessen polygons .
Following common usage, we will use the terminology
Voronoi diagram .
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As intersections of convex sets (closed half-planes or closed
half-spaces), the Voronoi regions V (pi) are convex sets.
In dimension two, the boundaries of these regions are con-
vex polygons, and in dimension three, the boundaries are
convex polyhedra.

Whether a region V (pi) is bounded or not depends on
the location of pi.

If pi belongs to the boundary of the convex hull of the set
P , then V (pi) is unbounded, and otherwise bounded.

In dimension two, the convex hull is a convex polygon,
and in dimension three, the convex hull is a convex poly-
hedron.

As we will see later, there is an intimate relationship be-
tween convex hulls and Voronoi diagrams.

Generally, if E is a Euclidean space of dimensionm, given
any two distinct points a, b ∈ E , the locus of all points
having equal distance to a and b is a hyperplane.
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It is called the bisector hyperplane of a and b. The
equation of this hyperplane is still found by writing that
hm is orthogonal to ab. The equation of this hyperplane
can be written as

(b1 − a1)x1 + · · · + (bm − am)xm =

(b21 + · · · + b2m)/2− (a21 + · · · + a2m)/2.

The closed half-spaceH(a, b) containing a and with bound-
ary the bisector hyperplane is the locus of all points such
that

(b1 − a1)x1 + · · · + (bm − am)xm ≤
(b21 + · · · + b2m)/2− (a21 + · · · + a2m)/2,

and the closed half-space H(b, a) containing b and with
boundary the bisector hyperplane is the locus of all points
such that

(b1 − a1)x1 + · · · + (bm − am)xm ≥
(b21 + · · · + b2m)/2− (a21 + · · · + a2m)/2.
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Figure 9.2: A Voronoi diagram

The closed half-spaceH(a, b) is the set of all points whose
distance to a is less than or equal to the distance to b,
and vice versa for H(b, a).

Figure 9.2 shows the Voronoi diagram of a set of twelve
points.
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In the general case where E has dimension m, the defi-
nition of the Voronoi diagram V(P ) of P is the same as
Definition 9.1.1, except that H(pi, pj) is the closed half-
space containing pi and having the bisector hyperplane of
a and b as boundary.

Also, observe that the convex hull of P is a convex poly-
tope.

We will now state a lemma listing the main properties of
Voronoi diagrams.

It turns out that certain degenerate situations can be
avoided if we assume that if P is a set of points in an
affine space of dimension m, then no m + 2 points from
P belong to the same (m− 1)-sphere.

We will say that the points of P are in general position .

Thus when m = 2, no 4 points in P are cocyclic, and
when m = 3, no 5 points in P are on the same sphere.
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Lemma 9.1.2 Given a set P = {p1, . . . , pn} of n points
in some Euclidean space E of dimension m (say Em),
if the points in P are in general position and not in
a common hyperplane then the Voronoi diagram of P
satisfies the following conditions:

(1) Each region Vi is convex and contains pi in its in-
terior.

(2) Each vertex of Vi belongs to m + 1 regions Vj and
to m + 1 edges.

(3) The region Vi is unbounded iff pi belongs to the
boundary of the convex hull of P .

(4) If p is a vertex that belongs to the regions V1, . . .,
Vm+1, then p is the center of the (m − 1)-sphere
S(p) determined by p1, . . . , pm+1. Furthermore, no
point in P is inside the sphere S(p) (i.e., in the
open ball associated with the sphere S(p)).

(5) If pj is a nearest neighbor of pi, then one of the
faces of Vi is contained in the bisector hyperplane
of (pi, pj).

(6)
n⋃

i=1

Vi = E , and
◦
Vi ∩

◦
Vj= ∅, for all i, j, i 6= j,
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Figure 9.3: Another Voronoi diagram

where
◦
Vi denotes the interior of Vi.

For simplicity, let us again consider the case where E is
a plane. It should be noted that certain Voronoi regions,
although closed, may extend very far.

Figure 9.3 shows such an example.
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It is also possible for certain unbounded regions to have
parallel edges.

There are a number of methods for computing Voronoi
diagrams. A fairly simple (although not very efficient)
method is to compute each Voronoi region V (pi) by in-
tersecting the half-planes H(pi, pj).

One way to do this is to construct successive convex poly-
gons that converge to the boundary of the region.

At every step we intersect the current convex polygon
with the bisector line of pi and pj. There are at most two
intersection points. We also need a starting polygon, and
for this we can pick a square containing all the points.

A naive implementation will run in O(n3).

However, the intersection of half-planes can be done in
O(n log n), using the fact that the vertices of a convex
polygon can be sorted.
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Thus, the above method runs in O(n2 log n). Actually,
there are faster methods (see Preparata and Shamos [?]
or O’Rourke [?]), and it is possible to design algorithms
running in O(n logn).

The most direct method to obtain fast algorithms is to
use the “lifting method” discussed in Section 9.4, whereby
the original set of points is lifted onto a paraboloid, and
to use fast algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained
from the Voronoi diagram as follows: The vertices of this
graph are the points pi (each corresponding to a unique
region of V(P )), and there is an edge between pi and pj
iff the regions Vi and Vj share an edge.

The resulting graph is called aDelaunay triangulation of
the convex hull of P , after Delaunay, who invented this
concept in 1934. Such triangulations have remarkable
properties.
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Figure 9.4: Delaunay triangulation associated with a Voronoi diagram

Figure 9.4 shows the Delaunay triangulation associated
with the earlier Voronoi diagram of a set of twelve points.

One has to be careful to make sure that all the Voronoi
vertices have been computed before computing a Delau-
nay triangulation, since otherwise, some edges could be
missed.



9.1. DIRICHLET–VORONOI DIAGRAMS 407

Figure 9.5: Another Delaunay triangulation associated with a Voronoi diagram

In Figure 9.5 illustrating such a situation, if the lowest
Voronoi vertex had not been computed (not shown on the
diagram!), the lowest edge of the Delaunay triangulation
would be missing.

The concept of a triangulation can be generalized to di-
mension 3, or even to any dimension m.
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9.2 Simplicial Complexes and Triangulations

The concept of a triangulation relies on the notion of
pure simplicial complex defined in Chapter 7. The reader
should review Definition 7.1.2 and Definition 7.1.3.

Definition 9.2.1 Given a subset, S ⊆ Em (where
m ≥ 1), a triangulation of S is a pure (finite) simplicial
complex, K, of dimension m such that S = |K|, that is,
S is equal to the geometric realization of K.

Given a finite set P of n points in the plane, and given a
triangulation of the convex hull of P having P as its set
of vertices, observe that the boundary of P is a convex
polygon.
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Similarly, given a finite set P of points in 3-space, and
given a triangulation of the convex hull of P having P
as its set of vertices, observe that the boundary of P is a
convex polyhedron.

It is interesting to know how many triangulations exist
for a set of n points (in the plane or in 3-space), and it
is also interesting to know the number of edges and faces
in terms of the number of vertices in P .

These questions can be settled using the Euler–Poincaré
characteristic.

We say that a polygon in the plane is a simple polygon
iff it is a connected closed polygon such that no two edges
intersect (except at a common vertex).
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Lemma 9.2.2

(1) For any triangulation of a region of the plane whose
boundary is a simple polygon, letting v be the num-
ber of vertices, e the number of edges, and f the
number of triangles, we have the “Euler formula”

v − e + f = 1.

(2) For any region S in E3 homeomorphic to a closed
ball and for any triangulation of S, letting v be the
number of vertices, e the number of edges, f the
number of triangles, and t the number of tetrahe-
dra, we have the “Euler formula”

v − e + f − t = 1.

(3) Furthermore, for any triangulation of the combi-
natorial surface, B(S), that is the boundary of S,
letting v′ be the number of vertices, e′ the number
of edges, and f ′ the number of triangles, we have
the “Euler formula”

v′ − e′ + f ′ = 2.
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Proof . All the statements are immediate consequences
of Theorem 8.2.2.

For example, part (1) is obtained by mapping the trian-
gulation onto a sphere using inverse stereographic projec-
tion, say from the North pole.

Then, we get a polytope on the sphere with an extra facet
corresponding to the “outside” of the triangulation.

We have to deduct this facet from the Euler characteristic
of the polytope and this is why we get 1 instead of 2.

It is now easy to see that in case (1), the number of edges
and faces is a linear function of the number of vertices
and boundary edges, and that in case (3), the number
of edges and faces is a linear function of the number of
vertices.
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If there are eb edges in the boundary and ei edges not in
the boundary, we have

3f = eb + 2ei,

and togeher with

v − eb − ei + f = 1,

we get

v − eb − ei + eb/3 + 2ei/3 = 1,

2eb/3 + ei/3 = v − 1,

and thus, ei = 3v − 3− 2eb. Since f = eb/3 + 2ei/3, we
have f = 2v − 2− eb.

Similarly, since v′ − e′ + f ′ = 2 and 3f ′ = 2e′, we easily
get e = 3v − 6 and f = 2v − 4.
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Thus, given a set P of n points, the number of triangles
(and edges) for any triangulation of the convex hull of P
using the n points in P for its vertices is fixed.

Case (2) is trickier, but it can be shown that

v − 3 ≤ t ≤ (v − 1)(v − 2)/2.

Thus, there can be different numbers of tetrahedra for
different triangulations of the convex hull of P .

Remark: The numbers of the form v − e + f and
v− e+f − t are called Euler–Poincaré characteristics .

They are topological invariants, in the sense that they are
the same for all triangulations of a given polytope. This
is a fundamental fact of algebraic topology.

We shall now investigate triangulations induced by Voronoi
diagrams.
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9.3 Delaunay Triangulations

Given a set P = {p1, . . . , pn} of n points in the plane
and the Voronoi diagram V(P ) for P , we explained in
Section 9.1 how to define an (undirected) graph:

The vertices of this graph are the points pi (each corre-
sponding to a unique region of V(P )), and there is an
edge between pi and pj iff the regions Vi and Vj share an
edge.

The resulting graph turns out to be a triangulation of the
convex hull of P having P as its set of vertices. Such a
complex can be defined in general.

For any set P = {p1, . . . , pn} of n points in Em, we say
that a triangulation of the convex hull of P is associated
with P if its set of vertices is the set P .
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Definition 9.3.1 Let P = {p1, . . . , pn} be a set of n
points in Em, and let V(P ) be the Voronoi diagram of P .
We define a complex D(P ) as follows:

The complexD(P ) contains the k-simplex {p1, . . . , pk+1}
iff V1 ∩ · · · ∩ Vk+1 6= ∅, where 0 ≤ k ≤ m.

The complex D(P ) is called the Delaunay triangulation
of the convex hull of P .

Thus, {pi, pj} is an edge iff Vi ∩ Vj 6= ∅, {pi, pj, ph} is a
triangle iff Vi∩Vj∩Vh 6= ∅, {pi, pj, ph, pk} is a tetrahedron
iff Vi ∩ Vj ∩ Vh ∩ Vk 6= ∅, etc.

For simplicity, we often write D instead of D(P ). A De-
launay triangulation for a set of twelve points is shown in
Figure 9.6.

Actually, it is not obvious that D(P ) is a triangulation
of the convex hull of P , but this can be shown, as well as
the properties listed in the following lemma.
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Figure 9.6: A Delaunay triangulation
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Lemma 9.3.2 Let P = {p1, . . . , pn} be a set of n
points in Em, and assume that they are in general po-
sition. Then the Delaunay triangulation of the convex
hull of P is indeed a triangulation associated with P ,
and it satisfies the following properties:

(1) The boundary of D(P ) is the convex hull of P .

(2) A triangulation T associated with P is the Delau-
nay triangulation D(P ) iff every (m − 1)-sphere
S(σ) circumscribed about an m-simplex σ of T
contains no other point from P (i.e., the open ball
associated with S(σ) contains no point from P ).

The proof can be found in Risler [?] and O’Rourke [?].

In the case of a planar set P , it can also be shown that
the Delaunay triangulation has the property that it max-
imizes the minimum angle of the triangles involved in any
triangulation of P . However, this does not characterize
the Delaunay triangulation.
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Given a connected graph in the plane, it can also be shown
that any minimal spanning tree is contained in the Delau-
nay triangulation of the convex hull of the set of vertices
of the graph (O’Rourke [?]).

We will now explore briefly the connection between De-
launay triangulations and convex hulls.
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9.4 Delaunay Triangulations and Convex Hulls

We will see that given a set P of points in the Euclidean
space Em of dimension m, we can “lift” these points onto
a paraboloid living in the space Em+1 of dimensionm+1,
and that the Delaunay triangulation of P is the projection
of the downward-facing faces of the convex hull of the set
of lifted points.

This remarkable connection was first discovered by Brown
[?], and refined by Edelsbrunner and Seidel [?].

For simplicity, we consider the case of a set P of points
in the plane E2, and we assume that they are in general
position.

Consider the paraboloid of revolution of equation
z = x2 + y2.
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A point p = (x, y) in the plane is lifted to the point
l(p) = (X, Y, Z) in E3, where X = x, Y = y, and
Z = x2 + y2.

The first crucial observation is that a circle in the plane
is lifted into a plane curve (an ellipse).

The intersection of the cylinder of revolution consisting
of the lines parallel to the z-axis and passing through a
point of the circle C with the paraboloid z = x2 + y2 is
a planar curve (an ellipse).

We can compute the convex hull of the set of lifted points.
Let us focus on the downward-facing faces of this convex
hull.

Let (l(p1), l(p2), l(p3)) be such a face. The points p1, p2, p3
belong to the set P .
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The circle C circumscribed about p1, p2, p3 lifts to an
ellipse passing through (l(p1), l(p2), l(p3)).

We claim that no other point from P is inside the circle
C.

Therefore, we have shown that the projection of the part
of the convex hull of the lifted set l(P ) consisting of the
downward-facing faces is the Delaunay triangulation
of P .

Figure 9.7 shows the lifting of the Delaunay triangulation
shown earlier.

Another example of the lifting of a Delaunay triangulation
is shown in Figure 9.8.

The fact that a Delaunay triangulation can be obtained
by projecting a lower convex hull can be used to find effi-
cient algorithms for computing a Delaunay triangulation.
It also holds for higher dimensions.
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Figure 9.7: A Delaunay triangulation and its lifting to a paraboloid
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Figure 9.8: Another Delaunay triangulation and its lifting to a paraboloid
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The Voronoi diagram itself can also be obtained from the
lifted set l(P ).

However, this time, we need to consider tangent planes
to the paraboloid at the lifted points.

It is fairly obvious that the tangent plane at the lifted
point (a, b, a2 + b2) is

z = 2ax + 2by − (a2 + b2).

Given two distinct lifted points (a1, b1, a
2
1 + b21) and

(a2, b2, a
2
2 + b22), the intersection of the tangent planes at

these points is a line belonging to the plane of equation

(b1 − a1)x + (b2 − a2)y = (b21 + b22)/2− (a21 + a22)/2.

Now, if we project this plane onto the xy-plane, we see
that this is precisely the equation of the bisector line of
the two points (a1, b1) and (a2, b2).
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Therefore, if we look at the paraboloid from z = +∞
(with the paraboloid transparent), the projection of the
tangent planes at the lifted points is the Voronoi dia-
gram !

It should be noted that the “duality” between the Delau-
nay triangulation, which is the projection of the convex
hull of the lifted set l(P ) viewed from z = −∞, and
the Voronoi diagram, which is the projection of the tan-
gent planes at the lifted set l(P ) viewed from z = +∞, is
reminiscent of the polar duality with respect to a quadric.

The reader interested in algorithms for finding Voronoi di-
agrams and Delaunay triangulations is referred to O’Rourke
[?], Preparata and Shamos [?], Boissonnat and Yvinec
[?], de Berg, Van Kreveld, Overmars, and Schwarzkopf
[?], and Risler [?].

We conclude our brief presentation of Voronoi diagrams
and Delaunay triangulations with a short section on ap-
plications.
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9.5 Applications of Voronoi Diagrams and Delaunay

Triangulations

The examples below are taken from O’Rourke [?]. Other
examples can be found in Preparata and Shamos [?], Bois-
sonnat and Yvinec [?], and de Berg, Van Kreveld, Over-
mars, and Schwarzkopf [?].

The first example is the nearest neighbors problem. There
are actually two subproblems: Nearest neighbor queries
and all nearest neighbors .

The nearest neighbor queries problem is as follows: Given
a set P of points and a query point q, find the nearest
neighbor(s) of q in P .

This problem can be solved by computing the Voronoi
diagram of P and determining in which Voronoi region q
falls.
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This last problem, called point location , has been heavily
studied (see O’Rourke [?]).

The all neighbors problem is as follows: Given a set P of
points, find the nearest neighbor(s) to all points in P .

This problem can be solved by building a graph, the near-
est neighbor graph , for short nng . The nodes of this
undirected graph are the points in P , and there is an arc
from p to q iff p is a nearest neighbor of q or vice versa.
Then it can be shown that this graph is contained in the
Delaunay triangulation of P .

The second example is the largest empty circle.

Some practical applications of this problem are to locate
a new store (to avoid competition), or to locate a nuclear
plant as far as possible from a set of towns.
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More precisely, the problem is as follows. Given a set P
of points, find a largest empty circle whose center is in
the (closed) convex hull of P , empty in that it contains
no points from P inside it, and largest in the sense that
there is no other circle with strictly larger radius.

The Voronoi diagram of P can be used to solve this prob-
lem. It can be shown that if the center p of a largest
empty circle is strictly inside the convex hull of P , then
p coincides with a Voronoi vertex.

However, not every Voronoi vertex is a good candidate. It
can also be shown that if the center p of a largest empty
circle lies on the boundary of the convex hull of P , then
p lies on a Voronoi edge.
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The third example is the minimum spanning tree.

Given a graph G, a minimum spanning tree of G is a
subgraph of G that is a tree, contains every vertex of the
graph G, and minimizes the sum of the lengths of the tree
edges.

It can be shown that a minimum spanning tree is a sub-
graph of the Delaunay triangulation of the vertices of the
graph. This can be used to improve algorithms for find-
ing minimum spanning trees, for example Kruskal’s algo-
rithm (see O’Rourke [?]).

We conclude by mentioning that Voronoi diagrams have
applications to motion planning .

For example, consider the problem of moving a disk on a
plane while avoiding a set of polygonal obstacles. If we
“extend” the obstacles by the diameter of the disk, the
problem reduces to finding a collision–free path between
two points in the extended obstacle space.
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One needs to generalize the notion of a Voronoi diagram.
Indeed, we need to define the distance to an object, and
medial curves (consisting of points equidistant to two ob-
jects) may no longer be straight lines.

A collision–free path with maximal clearance from the
obstacles can be found by moving along the edges of the
generalized Voronoi diagram.

This is an active area of research in robotics. For more
on this topic, see O’Rourke [?].



Chapter 10

The Quaternions and the Spaces S3,
SU(2), SO(3), and RP3

10.1 The Algebra H of Quaternions

In this chapter, we discuss the representation of rotations
of R3 and R4 in terms of quaternions.

Such a representation is not only concise and elegant, it
also yields a very efficient way of handling composition of
rotations.

It also tends to be numerically more stable than the rep-
resentation in terms of orthogonal matrices.

431
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The group of rotations SO(2) is isomorphic to the group
U(1) of complex numbers eiθ = cos θ + i sin θ of unit
length. This follows imediately from the fact that the
map

eiθ 7→
(
cos θ − sin θ
sin θ cos θ

)

is a group isomorphism.

Geometrically, observe that U(1) is the unit circle S1.

We can identify the plane R2 with the complex plane C,
letting z = x + iy ∈ C represent (x, y) ∈ R2.

Then, every plane rotation ρθ by an angle θ is represented
by multiplication by the complex number eiθ ∈ U(1), in
the sense that for all z, z′ ∈ C,

z′ = ρθ(z) iff z′ = eiθz.



10.1. THE ALGEBRA H OF QUATERNIONS 433

In some sense, the quaternions generalize the complex
numbers in such a way that rotations of R3 are repre-
sented by multiplication by quaternions of unit length.
This is basically true with some twists.

For instance, quaternion multiplication is not commuta-
tive, and a rotation in SO(3) requires conjugation with
a (unit) quaternion for its representation.

Instead of the unit circle S1, we need to consider the
sphere S3 in R4, and U(1) is replaced by SU(2).

Recall that the 3-sphere S3 is the set of points
(x, y, z, t) ∈ R4 such that

x2 + y2 + z2 + t2 = 1,

and that the real projective space RP3 is the quotient of
S3 modulo the equivalence relation that identifies antipo-
dal points (where (x, y, z, t) and (−x,−y,−z,−t) are
antipodal points).



434 CHAPTER 10. THE QUATERNIONS, THE SPACES S3, SU(2), SO(3), AND RP3

The group SO(3) of rotations of R3 is intimately related
to the 3-sphere S3 and to the real projective space RP3.

The key to this relationship is the fact that rotations can
be represented by quaternions, discovered by Hamilton in
1843.

Historically, the quaternions were the first instance of a
noncommutative field. As we shall see, quaternions rep-
resent rotations in R3 very concisely.

It will be convenient to define the quaternions as certain
2× 2 complex matrices.
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We write a complex number z as z = a + ib, where
a, b ∈ R, and the conjugate z of z is z = a− ib.

Let 1, i, j, and k be the following matrices:

1 =

(
1 0
0 1

)
i =

(
i 0
0 −i

)

j =

(
0 1
−1 0

)
k =

(
0 i
i 0

)
.

Consider the set H of all matrices of the form

a1 + bi + cj + dk,

where (a, b, c, d) ∈ R4. Every matrix in H is of the form

A =

(
x y
−y x

)
,

where x = a+ ib and y = c+ id. The matrices in H are
called quaternions .
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The null quaternion is denoted as 0 (or 0, if confusions
arise).

Quaternions of the form bi + cj + dk are called pure
quaternions . The set of pure quaternions is denoted as
Hp.

Note that the rows (and columns) of such matrices are
vectors in C2 that are orthogonal with respect to the Her-
mitian inner product of C2 given by

(x1, y1).(x2, y2) = x1x2 + y1y2.

Furthermore, their norm is
√
xx + yy =

√
a2 + b2 + c2 + d2,

and the determinant of A is a2 + b2 + c2 + d2.
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It is easily seen that the following famous identities (dis-
covered by Hamilton) hold:

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j.

Using these identities, it can be verified that H is a ring
(with multiplicative identity 1) and a real vector space of
dimension 4 with basis (1, i, j,k).

In fact,H is an associative algebra. For details, see Berger
[?], Veblen and Young [?], Dieudonné [?], Bertin [?].
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� The quaternions H are often defined as the real algebra
generated by the four elements 1, i, j,k, and satisfying

the identities just stated above.

The problem with such a definition is that it is not obvious
that the algebraic structure H actually exists.

A rigorous justification requires the notions of freely gen-
erated algebra and of quotient of an algebra by an ideal.

Our definition in terms of matrices makes the existence of
H trivial (but requires showing that the identities hold,
which is an easy matter).
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Given any two quaternions X = a1 + bi + cj + dk and
Y = a′1 + b′i + c′j + d′k, it can be verified that

XY = (aa′ − bb′ − cc′ − dd′)1 + (ab′ + ba′ + cd′ − dc′)i

+ (ac′ + ca′ + db′ − bd′)j + (ad′ + da′ + bc′ − cb′)k.

It is worth noting that these formulae were discovered
independently by Olinde Rodrigues in 1840, a few years
before Hamilton (Veblen and Young [?]).

However, Rodrigues was working with a different formal-
ism, homogeneous transformations, and he did not dis-
cover the quaternions.
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The map from R to H defined such that a 7→ a1 is an
injection which allows us to view R as a subring R1 (in
fact, a field) of H.

Similarly, the map from R3 to H defined such that
(b, c, d) 7→ bi+ cj+ dk is an injection which allows us to
view R3 as a subspace of H, in fact, the hyperplane Hp.

Given a quaternion X = a1+ bi+ cj+ dk, we define its
conjugate X as

X = a1− bi− cj− dk.

It is easily verified that

XX = (a2 + b2 + c2 + d2)1.

The quantity a2 + b2 + c2 + d2, also denoted as N(X), is
called the reduced norm of X .
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Clearly,X is nonnull iffN(X) 6= 0, in which caseX/N(X)
is the multiplicative inverse of X .

Thus, H is a noncommutative field.

Since X +X = 2a1, we also call 2a the reduced trace of
X , and we denote it as Tr(X).

A quaternion X is a pure quaternion iff X = −X iff
Tr(X) = 0. The following identities can be shown (see
Berger [?], Dieudonné [?], Bertin [?]):

XY = Y X,

Tr(XY ) = Tr(Y X),

N(XY ) = N(X)N(Y ),

T r(ZXZ−1) = Tr(X),

whenever Z 6= 0.
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If X = bi + cj + dk and Y = b′i + c′j + d′k, are pure
quaternions, identifying X and Y with the correspond-
ing vectors in R3, the inner product X · Y and the cross-
product X×Y make sense, and letting [0, X×Y ] denote
the quaternion whose first component is 0 and whose last
three components are those of X × Y , we have the re-
markable identity

XY = −(X · Y )1 + [0, X × Y ].

More generally, given a quaternionX = a1+bi+cj+dk,
we can write it as

X = [a, (b, c, d)],

where a is called the scalar part of X and (b, c, d) the
pure part of X .
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Then, if X = [a, U ] and Y = [a′, U ′], it is easily seen
that the quaternion product XY can be expressed as

XY = [aa′ − U · U ′, aU ′ + a′U + U × U ′].

The above formula for quaternion multiplication allows
us to show the following fact.

Let Z ∈ H, and assume that ZX = XZ for all X ∈ H.
Then, the pure part of Z is null, i.e., Z = a1 for some
a ∈ R.

Remark : It is easy to check that for arbitrary quaternions
X = [a, U ] and Y = [a′, U ′],

XY − Y X = [0, 2(U × U ′)],

and that for pure quaternion X, Y ∈ Hp,

2(X · Y )1 = −(XY + Y X).
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Since quaternion multiplication is bilinear, for a given X ,
the map Y 7→ XY is linear, and similarly for a given Y ,
the map X 7→ XY is linear. If the matrix of the first
map is LX and the matrix of the second map is RY , then

XY = LXY =



a −b −c −d
b a −d c
c d a −b
d −c b a






a′
b′
c′
d′




and

XY = RYX =



a′ −b′ −c′ −d′
b′ a′ d′ −c′
c′ −d′ a′ b′
d′ c′ −b′ a′






a
b
c
d


 .
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Observe that the columns (and the rows) of the above
matrices are orthogonal.

Thus, when X and Y are unit quaternions, both LX and
RY are orthogonal matrices. Furthermore, it is obvious
that LX = L⊤

X , the transpose of LX , and similarly
RY = R⊤

Y .

It is easily shown that

det(LX) = (a2 + b2 + c2 + d2)2.

This shows that when X is a unit quaternion, LX is a ro-
tation matrix, and similarly when Y is a unit quaternion,
RY is a rotation matrix (see Veblen and Young [?]).

Define the map ϕ:H×H → R as follows:

ϕ(X, Y ) =
1

2
Tr(X Y ) = aa′ + bb′ + cc′ + dd′.
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It is easily verified that ϕ is bilinear, symmetric, and
definite positive. Thus, the quaternions form a Euclidean
space under the inner product defined by ϕ (see Berger
[?], Dieudonné [?], Bertin [?]).

It is immediate that under this inner product, the norm
of a quaternion X is just

√
N(X).

It is also immediate that the set of pure quaternions is
orthogonal to the space of “real quaternions” R1.

As a Euclidean space, H is isomorphic to E4.

The subspaceHp of pure quaternions inherits a Euclidean
structure, and this subspace is isomorphic to the Eu-
clidean space E3.
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Since H and E4 are isomorphic Euclidean spaces, their
groups of rotations SO(H) and SO(4) are isomorphic,
and we will identify them.

Similarly, we will identify SO(Hp) and SO(3).
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10.2 Quaternions and Rotations in SO(3)

We just observed that for any nonnull quaternionX , both
maps Y 7→ XY and Y 7→ Y X (where Y ∈ H) are linear
maps, and that when N(X) = 1, these linear maps are
in SO(4).

This suggests looking at maps ρY,Z:H → H of the form
X 7→ Y XZ, where Y, Z ∈ H are any two fixed nonnull
quaternions such that N(Y )N(Z) = 1.

In view of the identity N(UV ) = N(U )N(V ) for all
U, V ∈ H, we see that ρY,Z is an isometry.
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In fact, since
ρY,Z = ρY,1 ◦ ρ1,Z,

ρY,Z itself is a rotation, i.e. ρY,Z ∈ SO(4).

We will prove that every rotation in SO(4) arises in this
fashion.

Also, observe that when Z = Y −1, the map ρY,Y −1, de-
noted more simply as ρY , is the identity on 1R, and maps
Hp into itself.

Thus, ρZ ∈ SO(3), i.e., ρZ is a rotation of E3.

We will prove that every rotation in SO(3) arises in this
fashion.

The quaternions of norm 1, also called unit quaternions ,
are in bijection with points of the real 3-sphere S3.
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It is easy to verify that the unit quaternions form a sub-
group of the multiplicative group H∗ of nonnull quater-
nions. In terms of complex matrices, the unit quaternions
correspond to the group of unitary complex 2×2 matrices
of determinant 1 (i.e., xx + yy = 1)

A =

(
x y
−y x

)
,

with respect to the Hermitian inner product in C2.

This group is denoted as SU(2).

The obvious bijection between SU(2) and S3 is in fact a
homeomorphism, and it can be used to transfer the group
structure on SU(2) to S3, which becomes a topological
group isomorphic to the topological group SU(2) of unit
quaternions.

It should also be noted that the fact that the shere S3

has a group structure is quite exceptional.
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As a matter of fact, the only spheres for which a contin-
uous group structure is definable are S1 and S3.

One of the most important properties of the quaternions
is that they can be used to represent rotations of R3, as
stated in the following lemma.

Lemma 10.2.1 For every quaternion Z 6= 0, the map

ρZ :X 7→ ZXZ−1

(where X ∈ H) is a rotation in SO(H) = SO(4) whose
restriction to the space Hp of pure quaternions is a
rotation in SO(Hp) = SO(3). Conversely, every rota-
tion in SO(3) is of the form

ρZ :X 7→ ZXZ−1,

for some quaternion Z 6= 0, and for all X ∈ Hp.
Furthermore, if two nonnull quaternions Z and Z ′

represent the same rotation, then Z ′ = λZ for some
λ 6= 0 in R.
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As a corollary of

ρY X = ρY ◦ ρX,
it is easy to show that the map

ρ:SU(2) → SO(3)

defined such that ρ(Z) = ρZ is a surjective and continu-
ous homomorphism whose kernel is {1,−1}.

Since SU(2) and S3 are homeomorphic as topological
spaces, this shows that SO(3) is homeomorphic to the
quotient of the sphere S3 modulo the antipodal map.

But the real projective space RP3 is defined precisely this
way in terms of the antipodal map π:S3 → RP3, and
thus SO(3) and RP3 are homeomorphic.
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This homeomorphism can then be used to transfer the
group structure on SO(3) to RP3 which becomes a topo-
logical group.

Moreover, it can be shown that SO(3) and RP3 are dif-
feomorphic manifolds (see Marsden and Ratiu [?]).

Thus, SO(3) andRP3 are at the same time, groups, topo-
logical spaces, and manifolds, and in fact they are Lie
groups (see Marsden and Ratiu [?] or Bryant [?]).

The axis and the angle of a rotation can also be extracted
from a quaternion representing that rotation.
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Lemma 10.2.2 For every quaternion Z = a1+t where
t is a nonnull pure quaternion, the axis of the rota-
tion ρZ associated with Z is determined by the vector
in R3 corresponding to t, and the angle of rotation θ
is equal to π when a = 0, or when a 6= 0, given a suit-
able orientation of the plane orthogonal to the axis of
rotation, by

tan
θ

2
=

√
N(t)

|a| ,

with 0 < θ ≤ π.

We can write the unit quaternion Z as

Z =

[
cos

θ

2
, sin

θ

2
V

]
,

where V is the unit vector t√
N(t)

(with −π ≤ θ ≤ π).
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Also note that V V = −1, and thus, formally, every unit
quaternion looks like a complex number cosϕ + i sinϕ,
except that i is replaced by a unit vector, and multipli-
cation is quaternion multiplication.

In order to explain the homomorphism ρ:SU(2) → SO(3)
more concretely, we now derive the formula for the rota-
tion matrix of a rotation ρ whose axis D is determined
by the nonnull vector w and whose angle of rotation is θ.

For simplicity, we may assume that w is a unit vector.

Letting W = (b, c, d) be the column vector representing
w and H be the plane orthogonal to w, recall that the
matrices representing the projections pD and pH are

WW⊤ and I −WW⊤.
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Given any vector u ∈ R3, the vector ρ(u) can be ex-
pressed in terms of the vectors pD(u), pH(u), and
w × pH(u), as

ρ(u) = pD(u) + cos θ pH(u) + sin θ w × pH(u).

However, it is obvious that

w × pH(u) = w × u,

so that

ρ(u) = pD(u) + cos θ pH(u) + sin θ w × u,

and we know from Section 5.9 that the cross-product
w× u can be expressed in terms of the multiplication on
the left by the matrix

A =




0 −d c
d 0 −b
−c b 0


 .
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Then, letting

B =WW⊤ =



b2 bc bd
bc c2 cd
bd cd d2


 ,

the matrix R representing the rotation ρ is

R =WW⊤ + cos θ(I −WW⊤) + sin θA,

= cos θ I + sin θA + (1− cos θ)WW⊤,

= cos θ I + sin θA + (1− cos θ)B.

Thus,

R = cos θ I + sin θA + (1− cos θ)B.

with

A =




0 −d c
d 0 −b
−c b 0


 .
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It is immediately verified that

A2 = B − I,

and thus, R is also given by

R = I + sin θA+ (1− cos θ)A2,

with

A =




0 −d c
d 0 −b
−c b 0


 .
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Then, the nonnull unit quaternion

Z =

[
cos

θ

2
, sin

θ

2
V

]
,

where V = (b, c, d) is a unit vector, corresponds to the
rotation ρZ of matrix

R = I + sin θA+ (1− cos θ)A2.

with

A =




0 −d c
d 0 −b
−c b 0


 .
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Remark : A related formula known as Rodrigues’ formula
(1840) gives an expression for a rotation matrix in terms
of the exponential of a matrix (the exponential map).

Indeed, given (b, c, d) ∈ R3, letting θ =
√
b2 + c2 + d2,

we have

eA = cos θ I +
sin θ

θ
A +

(1− cos θ)

θ2
B,

with A and B as above, but (b, c, d) not necessarily a unit
vector. We will study exponential maps later on.
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Using the matrices LX and RY introduced earlier, since
XY = LXY = RYX , from Y = ZXZ−1 = ZXZ/N(Z),
we get

Y =
1

N(Z)
LZRZX.

Thus, if we want to see the effect of the rotation specified
by the quaternion Z in terms of matrices, we simply have
to compute the matrix

1

N(Z)
LZRZ

=
1

N(Z)



a −b −c −d
b a −d c
c d a −b
d −c b a







a b c d
−b a −d c
−c d a −b
−d −c b a




which yields
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1

N(Z)



N(Z) 0 0 0
0 a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
0 2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
0 −2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2




where N(Z) = a2 + b2 + c2 + d2.

But since every pure quaternion X is a vector whose first
component is 0, we see that the rotation matrix R(Z)
associated with the quaternion Z is

R(Z) =

1

N(Z)

(
a2 + b2 − c2 − d2 2bc− 2ad 2ac + 2bd

2bc + 2ad a2 − b2 + c2 − d2 −2ab + 2cd
−2ac + 2bd 2ab + 2cd a2 − b2 − c2 + d2

)

This expression for a rotation matrix is due to Euler (see
Veblen and Young [?]).
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It is remarkable that this matrix only contains quadratic
polynomials in a, b, c, d. This makes it possible to com-
pute easily a quaternion from a rotation matrix.

From a computational point of view, it is worth noting
that computing the composition of two rotations ρY and
ρZ specified by two quaternions Y, Z using quaternion
multiplication (i.e. ρY ◦ ρZ = ρY Z) is cheaper than using
rotation matrices and matrix multiplication.

On the other hand, computing the image of a point X
under a rotation ρZ is more expensive in terms of quater-
nions (it requires computing ZXZ−1) than it is in terms
of rotation matrices (where only AX needs to be com-
puted, where A is a rotation matrix).

Thus, if many points need to be rotated and the rota-
tion is specified by a quaternion, it is advantageous to
precompute the Euler matrix.
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10.3 Quaternions and Rotations in SO(4)

For every nonnull quaternion Z, the map X 7→ ZXZ−1

(where X is a pure quaternion) defines a rotation of Hp,
and conversely every rotation of Hp is of the above form.

What happens if we consider a map of the form

X 7→ Y XZ,

where X ∈ H, and N(Y )N(Z) = 1?

Remarkably, it turns out that we get all the rotations of
H.
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Lemma 10.3.1 For every pair (Y, Z) of quaternions
such that N(Y )N(Z) = 1, the map

ρY,Z:X 7→ Y XZ

(where X ∈ H) is a rotation in SO(H) = SO(4).
Conversely, every rotation in SO(4) is of the form

ρY,Z:X 7→ Y XZ,

for some quaternions Y, Z, such that
N(Y )N(Z) = 1. Furthermore, if two nonnull pairs
of quaternions (Y, Z) and (Y ′, Z ′) represent the same
rotation, then Y ′ = λY and Z ′ = λ−1Z, for some
λ 6= 0 in R.

It is easily seen that

ρ(Y ′Y,ZZ ′) = ρY ′,Z ′ ◦ ρY,Z,
and as a corollary, it is it easy to show that the map

η:S3 × S3 → SO(4)

defined such that η(Y, Z) = ρY,Z is a surjective homo-
morphism whose kernel is {(1,1), (−1,−1)}.
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We conclude this Section with a mention of the expo-
nential map, since it has applications to quaternion in-
terpolation, which, in turn, has applications to motion
interpolation.

Observe that the quaternions i, j,k can also be written
as

i =

(
i 0
0 −i

)
= i

(
1 0
0 −1

)
,

j =

(
0 1
−1 0

)
= i

(
0 −i
i 0

)
,

k =

(
0 i
i 0

)
= i

(
0 1
1 0

)
,

so that, if we define the matrices σ1, σ2, σ3 such that

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
,

we can write

Z = a1 + bi + cj + dk = a1 + i(dσ1 + cσ2 + bσ3).
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The matrices σ1, σ2, σ3 are called the Pauli spin matri-
ces .

Note that their traces are null and that they are Hermi-
tian (recall that a complex matrix is Hermitian iff it is
equal to the transpose of its conjugate, i.e., A∗ = A).

The somewhat unfortunate order reversal of b, c, d has to
do with the traditional convention for listing the Pauli
matrices.

If we let e0 = a, e1 = d, e2 = c and e3 = b, then Z can
be written as

Z = e01 + i(e1σ1 + e2σ2 + e3σ3),

and e0, e1, e2, e3 are called the Euler parameters of the
rotation specified by Z.
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If N(Z) = 1, then we can also write

Z = cos
θ

2
1 + i sin

θ

2
(βσ3 + γσ2 + δσ1),

where

(β, γ, δ) =
1

sin θ
2

(b, c, d).

Letting A = βσ3 + γσ2 + δσ1, it can be shown that

eiθA = cos θ 1 + i sin θ A,

where the exponential is the usual exponential of matri-
ces, i.e., for a square n× n matrix M ,

exp(M) = In +
∑

k≥1

Mk

k!
.

Note that since A is Hermitian of null trace, iA is skew
Hermitian of null trace.
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The above formula turns out to define the exponential
map from the Lie Algebra of SU(2) to SU(2). The Lie
algebra of SU(2) is a real vector space having iσ1, iσ2,
and iσ3, as a basis.

Now, the vector space R3 is a Lie algebra if we define the
Lie bracket on R3 as the usual cross-product u × v of
vectors.

Then, the Lie algebra of SU(2) is isomorphic to (R3,×),
and the exponential map can be viewed as a map

exp: (R3,×) → SU(2)

given by the formula

exp(θv) =

[
cos

θ

2
, sin

θ

2
v

]
,

for every vector θv, where v is a unit vector in R3, and
θ ∈ R.
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10.4 Applications of Euclidean Geometry to Motion

Interpolation

The exponential map can be used for quaternion interpo-
lation.

Given two unit quaternions X, Y , suppose we want to
find a quaternion Z “interpolating” between X and Y .

We have to clarify what this means.

Since SU(2) is topologically the same as the sphere S3,
we define an interpolant of X and Y as a quaternion Z
on the great circle (on the sphere S3) determined by the
intersection of S3 with the (2-)plane defined by the two
points X and Y (viewed as points on S3) and the orgin
(0, 0, 0, 0).

Then, the points (quaternions) on this great circle can
be defined by first rotating X and Y so that X goes to
1 and Y goes to X−1Y , by multiplying (on the left) by
X−1.
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Letting

X−1Y = [cos Ω, sin Ωw] ,

where −π < Ω ≤ π, the points on the great circle from
1 to X−1Y are given by the quaternions

(X−1Y )λ = [cosλΩ, sinλΩw] ,

where λ ∈ R.

This is because X−1Y = exp(2Ωw), and since an in-
terpolant between (0, 0, 0) and 2Ωw is 2λΩw in the Lie
algebra of SU(2), the corresponding quaternion is indeed

exp(2λΩ) = [cosλΩ, sinλΩw] .

We can’t justify all this here, but it is indeed correct.
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If Ω 6= π, then the shortest arc between X and Y is
unique, and it corresponds to those λ such that 0 ≤ λ ≤ 1
(it is a geodesic arc).

However, if Ω = π, then X and Y are antipodal, and
there are infinitely many half circles from X to Y . In
this case, w can be chosen arbitrarily.

Finally, having the arc of great circle between 1 and
X−1Y (assuming Ω 6= π), we get the arc of interpolants
Z(λ) between X and Y by performing the inverse rota-
tion from 1 to X and from X−1Y to Y , i.e., by multiply-
ing (on the left) by X , and we get

Z(λ) = X(X−1Y )λ.
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It is remarkable that a closed-form formula for Z(λ) can
be given, as shown by Shoemake [?, ?].

If X = [cos θ, sin θ u], and Y = [cosϕ, sinϕ v] (where u
and v are unit vectors in R3), letting

cos Ω = cos θ cosϕ + sin θ sinϕ (u · v)
be the inner product of X and Y viewed as vectors in R4,
it is a bit laborious to show that

Z(λ) =
sin(1− λ)Ω

sinΩ
X +

sinλΩ

sin Ω
Y.


