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Chapter 1

Introduction

1.1 The Need for Affine Geometry

Suppose we have a particle moving in 3-space and that
we want to describe the trajectory of this particle.

If one looks up a good textbook on dynamics, such as
Greenwood [?], one finds out that the particle is mod-
eled as a point, and that the position of this point x is
determined with respect to a “frame” in R3 by a vector.

A frame is a pair

(O, (−→e1 ,−→e2 ,−→e3 ))
consisting of an origin O (which is a point) together with

a basis of three vectors (−→e1 ,−→e2 ,
−→
e3).
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For example, the standard frame in R3 has origin

O = (0, 0, 0) and the basis of three vectors −→e1 = (1, 0, 0),
−→e2 = (0, 1, 0), and −→e3 = (0, 0, 1).

The position of a point x is then defined by the “unique
vector” from O to x.

But wait a minute, this definition seems to be defining
frames and the position of a point without defining what
a point is!

Well, let us identify points with elements of R3.

If so, given any two points a = (a1, a2, a3) and

b = (b1, b2, b3), there is a unique free vector denoted
−→
ab

from a to b, the vector
−→
ab = (b1 − a1, b2 − a2, b3 − a3).
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Note that
b = a +

−→
ab,

addition being understood as addition in R3.

O

a

b

−→
ab

Figure 1.1: Points and free vectors

Then, in the standard frame, given a point x = (x1, x2, x3),

the position of x is the vector
−→
Ox = (x1, x2, x3), which

coincides with the point itself.
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What if we pick a frame with a different origin, say

Ω = (ω1, ω2, ω3), but the same basis vectors (−→e1 ,−→e2 ,
−→
e3)?

This time, the point x = (x1, x2, x3) is defined by two
position vectors:

−→
Ox = (x1, x2, x3) in the frame (O, (−→e1 ,−→e2 ,−→e3 )), and
−→
Ωx = (x1 − ω1, x2 − ω2, x3 − ω3) in the frame

(Ω, (−→e1 ,−→e2 ,−→e3 )).

This is because
−→
Ox =

−→
OΩ +

−→
Ωx and

−→
OΩ = (ω1, ω2, ω3).

We note that in the second frame (Ω, (−→e1 ,−→e2 ,−→e3 )), points
and position vectors are no longer identified.
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This gives us evidence that points are not vectors.
Inspired by physics, it is important to define points and
properties of points that are frame invariant.

An undesirable side-effect of the present approach shows
up if we attempt to define linear combinations of points.

If we consider the change of frame from the frame

(O, (−→e1 ,−→e2 ,−→e3 ))
to the frame

(Ω, (−→e1 ,−→e2 ,−→e3 )),
where −→

OΩ = (ω1, ω2, ω3),

given two points a and b of coordinates (a1, a2, a3) and

(b1, b2, b3) with respect to the frame (O, (−→e1 ,−→e2 ,−→e3 )) and
of coordinates (a′1, a

′
2, a

′
3) and (b′1, b

′
2, b

′
3) of with respect

to the frame (Ω, (−→e1 ,−→e2 ,−→e3 )), since
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(a′1, a
′
2, a

′
3) = (a1 − ω1, a2 − ω2, a3 − ω3)

and
(b′1, b

′
2, b

′
3) = (b1 − ω1, b2 − ω2, b3 − ω3),

the coordinates of λa + µb with respect to the frame

(O, (−→e1 ,−→e2 ,−→e3 )) are
(λa1 + µb1, λa2 + µb2, λa3 + µb3),

but the coordinates

(λa′1 + µb′1, λa
′
2 + µb′2, λa

′
3 + µb′3)

of λa+µb with respect to the frame (Ω, (−→e1 ,−→e2 ,−→e3 )) are
(λa1 + µb1 − (λ + µ)ω1,

λa2 + µb2 − (λ + µ)ω2,

λa3 + µb3 − (λ + µ)ω3)

which are different from

(λa1 + µb1 − ω1, λa2 + µb2 − ω2, λa3 + µb3 − ω3),

unless λ + µ = 1.
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Thus, we discovered a major difference between vectors
and points: the notion of linear combination of vectors is
basis independent, but the notion of linear combination
of points is frame dependent.

In order to salvage the notion of linear combination of
points, some restriction is needed: the scalar coefficients
must add up to 1.

A clean way to handle the problem of frame invariance
and to deal with points in a more intrinsic manner is to
make a clearer distinction between points and vectors.

We duplicate R3 into two copies, the first copy corre-
sponding to points, where we forget the vector space
structure, and the second copy corresponding to free vec-
tors, where the vector space structure is important.
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Furthermore, we make explicit the important fact that the
vector space R3 acts on the set of points R3: Given any

point a = (a1, a2, a3) and any vector −→v = (v1, v2, v3),
we obtain the point

a +−→v = (a1 + v1, a2 + v2, a3 + v3),

which can be thought of as the result of translating a to

b using the vector −→v .

This action +:R3×R3 → R3 satisfies some crucial prop-
erties. For example,

a +
−→
0 = a,

(a +−→u ) +−→v = a + (−→u +−→v ),

and for any two points a, b, there is a unique free vector−→
ab such that

b = a +
−→
ab.
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It turns out that the above properties, although trivial in
the case of R3, are all that is needed to define the abstract
notion of affine space (or affine structure).

This will be done rigorously in Chapter 5, but first, we
will take an informal look at polynomial curves.

When we want to stress that we are dealing at the same
time with points and vectors, we use the notation An for
Rn. We call An the real affine space of dimension n.

We need the concept of affine combination, or barycen-
ter . Assume for simplicity that we are in R3 (really, A3),

and that we use the standard frame (O, (−→e1 ,−→e2 ,−→e3 )).
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Given any two points a, b ∈ A3 of coordinates (a1, a2, a3)
and (b1, b2, b3), for any real number λ ∈ R, we define the
point

(1− λ)a + λb

as the point of coordinates

((1− λ)a1 + λb1, (1− λ)a2 + λb2, (1− λ)a3 + λb3).

This is the point

a + λ
−→
ab,

which is located “λ of the way from a” on the line deter-
mined by a and b (or a itself when a = b).
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More generally, given n points a1, . . . , an ∈ A3, for any
n reals λi ∈ R such that

λ1 + λ2 + · · · + λn = 1,

the affine combination (or barycenter) of the points
a1, . . . , an w.r.t. the weights λ1, . . . , λn is the point

λ1a1 + · · · + λnan

also denoted by
n∑

i=1

λiai

of coordinates(
n∑

i=1

λia
1
i ,

n∑

i=1

λia
2
i ,

n∑

i=1

λia
3
i

)
,

where ai has the coordinates (a
1
i , a

2
i , a

3
i ).



14 CHAPTER 1. INTRODUCTION

Barycenters can be characterized more geometrically as
follows:

Assume we have n weighted points , (ai, λi), where∑n
i=1 λi = 1. For any choice of a point b ∈ A3, we can

form the point

g = b + λ1
−→
ba1 + · · · + λn

−→
ban.

It can be shown that g does not depend on the choice of
the point b.

This uniquely defined point, g, is the barycenter of the
weighted points (ai, λi).

If we set b = g, we see that g is characterized by the fact
that

λ1
−→ga1 + · · · + λn

−→gan = 0.

Intuitively , g is “balances” the forces λi
−→gai. We can

think of the λi’s as (normalized) electric charges.
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The case where λi = 1/n for i = 1, . . . , n, corresponds to
the centroid (or center of gravity) of the points a1, . . . , an.

The barycenter of n weighted points can be computed by
repeatedly computing barycenters of two points.

When λi ≥ 0 for all i (and, of course,
∑n

i=1 λi = 1), the
affine combination

∑n
i=1 λiai is called a convex combi-

nation of the points a1, . . . , an.

Given any two points a, b, the set of all convex combina-
tions (1 − λ)a + λb (recall that 0 ≤ λ ≤ 1) is the line
segment with endpoints a and b, denoted [a, b].

A subset S of A3 is convex if it contains all affine com-
binations of (finitely many) points of S.

It can be shown that this is equivalent to the fact that S
contains all affine combinations of any pair of points of S,
that is, whenever a, b ∈ S, then the entire line segment
[a, b] is contained in S.
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An affine frame in An is a pair

(a0, (
−→e1 , . . . ,−→en )),

where a0 is the origin of the frame and (−→e1 , . . . ,−→en ) is a
basis of Rn. We also say that the n + 1 points

(a0, a1, . . . , an)

form an affine basis, where

ai = a0 +
−→ei ,

for i = 1, . . . , n.

We say that m + 1 (ordered) points a0, a1, . . . , am are
affinely independent in An iff the m vectors

−−→a0a1, . . . ,
−−→a0am

are linearly independent in Rn.

Of course, this implies m ≤ n + 1.
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An affine frame in A is any pair (r, s) of distinct numbers
r, s ∈ R.

An affine frame in A2 consists of any three points forming
a nondegenerate triangle.

An affine frame in A3 consists of any four points forming
a nondegenerate tetrahedron.

Every point t ∈ A is expressed as

t = (1− t)0 + t1

in terms of the affine frame (0, 1).

In term of an arbitrary frame (r, s),

t =

(
s− t

s− r

)
r +

(
t− r

s− r

)
s.
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An affine map f :Ap → Aq is a function that preserves
affine combinations, i.e.,

f

(
n∑

i=1

λiai

)
=

n∑

i=1

λif(ai)

for any n points ai ∈ Ap and any scalars λi such that
λ1 + · · · + λn = 1.

A special case of an affine map is a translation . This is
the case of an affine map, t, for which there is a vector,
−→u , so that

t(a) = a +−→u
for all a ∈ A3.

Note that affine maps are more general than linear maps,

because translations are not linear (unless −→u = 0).

It is easily shown that every affine map can be written as
the composition of a translation and of a linear map.

(Strictly speaking, instead of linear map, we should say
an affine map that has a fixed point , i.e., a point a so
that f(a) = a.)
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Polynomial Curves and Spline Curves
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Chapter 2

Introduction to the Algorithmic
Geometry of Polynomial Curves

2.1 Parameterized Polynomial Curves

Recall that every point t ∈ A is expressed as

t = (1− t)0 + t1

in terms of the affine frame (0, 1).

A parameterized polynomial curve is defined as follows.

21
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Definition 2.1.1 A (parameterized) polynomial curve,
F , of degree at most m is a map F :A → E (where
E = R2 or R3) such that there exists real polynomials
P1, P2 (resp. P1, P2, P3), of degree at most m, so that for
every t ∈ A,

F1(t) = P1(t)

F2(t) = P2(t)

F3(t) = P3(t)

(dropping F3 and P3 when defining a curve in A2).

Given any affine frame (r, s) for A with r < s, a (parame-
terized) polynomial curve segment F [r, s] of degree (at
most) m is the restriction F : [r, s] → E of a polynomial
curve F :A → E of degree at most m.

The set of points F (A) in E is called the trace of the poly-
nomial curve F , and similarly, the set of points F ([r, s])
in E is called the trace of the polynomial curve segment
F [r, s].
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The definition can easily be extended to higher dimen-
sional spaces (if E = An, use n polynomials P1, . . . , Pn

of degree at most m).

Intuitively, a polynomial curve is obtained by bending
and twisting the affine line A using a polynomial map.

It should be noted that the maximum degree d of the
polynomials P1, . . . , Pn defining a polynomial curve F of
degreem is not necessarily equal tom, and that it is only
required that d ≤ m.

For notational simplicity, we also denote the polynomials
Pi by Fi.

We will now try to gain some insight into polynomial
curves by determining the shape of the traces of plane
polynomial curves (curves living in E = A2) of degree
m ≤ 3. On the way, we will introduce a major technique
of CAGD, blossoming .
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We begin with m = 1. A polynomial curve F of degree
≤ 1 is of the form

x(t) = F1(t) = a1t + a0,

y(t) = F2(t) = b1t + b0.

If both a1 = b1 = 0, the trace of F reduces to the single
point (a0, b0). Otherwise, a1 6= 0 or b1 6= 0, and we can
eliminate t between x and y, getting the implicit equation

a1y − b1x + a0b1 − a1b0 = 0,

which is the equation of a straight line.
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Let us now consider m = 2, that is, quadratic curves. A
polynomial curve F of degree ≤ 2 is of the form

x(t) = F1(t) = a2t
2 + a1t + a0,

y(t) = F2(t) = b2t
2 + b1t + b0.

Since we already considered the case where a2 = b2 = 0,
let us assume that a2 6= 0 or b2 6= 0.

We first show that by a change of coordinates (amounting
to a rotation), we can always assume that either a2 = 0
or b2 = 0. If a2 6= 0 and b2 6= 0, after a rotation and a
translations of the axes, and a change of parameter, we
get a parametric representation of the form

X(u) = au,

Y (u) = bu2,

with b > 0. The corresponding implicit equation is

Y =
b

a2
X2.
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This is a parabola, passing through the origin, and hav-
ing the Y -axis as axis of symmetry. The diagram below
shows the parabola defined by the following parametric
equations

F1(t) = 2t,

F2(t) = t2.

Figure 2.1: A parabola

Intuitively, the previous degenerate case (of a straight
line) corresponds to b

a2
= ∞.
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Conversely, since by an appropriate change of coordi-
nates, every parabola is defined by the implicit equation
Y = aX2, every parabola can be defined as the paramet-
ric polynomial curve

X(u) = u,

Y (u) = au2.
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We now show that there is another way of specifying
quadratic polynomial curves which yields a very nice geo-
metric algorithm for constructing points on these curves.
The general philosophy is to linearize (or more exactly,
multilinearize) polynomials. As a warm up, let us begin
with straight lines.

In the case of an affine map F :A → A3, given any affine
frame (r, s) for A, where r 6= s, every point F (t) on the
line defined by F is obtained by a single interpolation
step

F (t) =

(
s− t

s− r

)
F (r) +

(
t− r

s− r

)
F (s),

as illustrated in the following diagram, where t−r
s−r =

1
3

F (r)

F (s)

F (t)

Figure 2.2: Linear Interpolation
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We would like to generalize the idea of determining the
point F (t) on the the line defined by F (r) and F (s) by
an interpolation step, to determining the point F (t) on a
polynomial curve F , by several interpolation steps from
some (finite) set of given points related to the curve F .

For this, it is first necessary to turn the polynomials in-
volved in the definition of F into multiaffine maps, that is,
maps that are affine in each of their arguments. We now
show how to turn a quadratic polynomial into a biaffine
map.
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As an example, consider the polynomial

F (X) = X2 + 2X − 3.

Observe that the function of two variables

f1(x1, x2) = x1x2 + 2x1 − 3

gives us back the polynomial F (X) on the diagonal, in
the sense that F (X) = f1(X,X), for all X ∈ R, but f1
is also affine in each of x1 and x2. Note that

f2(x1, x2) = x1x2 + 2x2 − 3

is also biaffine, and F (X) = f2(X,X), for all X ∈ R.
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It would be nicer if we could find a unique biaffine func-
tion f such that F (X) = f(X,X), for all X ∈ R, and
of course, such a function should satisfy some additional
property.

It turns out that requiring f to be symmetric is just
what’s needed. We say that a function f of two argu-
ments is symmetric iff

f(x1, x2) = f(x2, x1),

for all x1, x2. To make f1 (and f2) symmetric, simply
form

f(x1, x2) =
f1(x1, x2) + f1(x2, x1)

2
= x1x2+x1+x2− 3.

The symmetric biaffine function

f(x1, x2) = x1x2 + x1 + x2 − 3

is called the (affine) blossom, or polar form, of F .
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For an arbitrary polynomial

F (X) = aX2 + bX + c

of degree ≤ 2, we obtain a unique symmetric, biaffine
map

f(x1, x2) = ax1x2 + b
x1 + x2

2
+ c

such that F (X) = f(X,X), for all X ∈ R, called the
polar form, or blossom, of F .
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Note that the fact that f is symmetric allows us to view
the arguments of f as a multiset (the order of the argu-
ments x1, x2 is irrelevant).

Every t ∈ A can be expressed uniquely as a barycentric
combination of r and s, say t = (1 − λ)r + λs, where
λ ∈ R.

Let us compute

f(t1, t2) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s).

Since λi =
ti−r
s−r

, for i = 1, 2, we get

f(t1, t2) =

(
s− t1
s− r

)(
s− t2
s− r

)
f(r, r)

+

[(
s− t1
s− r

)(
t2 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)]
f(r, s)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)
f(s, s).
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The coefficients of f(r, r), f(r, s) and f(s, s) are obvi-
ously symmetric biaffine functions, and they add up to 1,
as it is easily verified by expanding the product

(
s− t1
s− r

+
t1 − r

s− r

)(
s− t2
s− r

+
t2 − r

s− r

)
= 1.

Thus, we showed that every symmetric biaffine map
f :A2 → A3 is completely determined by the sequence
of three points f(r, r), f(r, s) and f(s, s) in A3, where
r 6= s are elements of A.
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Conversely, it is clear that given any sequence of three
points a, b, c ∈ A3, the map

(t1, t2) 7→
(
s− t1
s− r

)(
s− t2
s− r

)
a

+

[(
s− t1
s− r

)(
t2 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)]
b

+

(
t1 − r

s− r

)(
t2 − r

s− r

)
c

is symmetric biaffine, and that f(r, r) = a, f(r, s) = b,
f(s, s) = c.
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The points f(r, r), f(r, s) and f(s, s), are called control
points , or Bézier control points , and as we shall see,
they play a major role in the de Casteljau algorithm and
its extensions.

If we let r = 0 and s = 1, then t1 = λ1 and t2 = λ2, and
thus, the polynomial function corresponding to f(t1, t2)
beeing obtained by letting t1 = t2 = t, we get

F (t) = f(t, t) =

(1− t)2 f(0, 0) + 2(1− t)t f(0, 1) + t2 f(1, 1).

The polynomials

(1− t)2, 2(1− t)t, t2

are known as the Bernstein polynomials of degree 2.
Thus, F (t) is also determined by the control points f(0, 0),
f(0, 1), and f(1, 1), and the Bernstein polynomials.



2.1. PARAMETERIZED POLYNOMIAL CURVES 37

Observe that the computation of

f(t1, t2) = f((1− λ1)r + λ1s, (1− λ2)r + λ2s),

that we performed above, can be turned into an algo-
rithm, known as the de Casteljau algorithm .

Given any t ∈ A, we will show how to construct geomet-
rically the point F (t) = f(t, t) on the polynomial curve
F . Let t = (1 − λ)r + λs. Then, f(t, t) is computed as
follows:

1 2
f(r, r)

f(r, t)
f(r, s) f(t, t)

f(t, s)
f(s, s)

The algorithm consists of two stages.
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Geometrically, the algorithm consists of a diagram con-
sisting of two polylines, the first one consisting of the two
line segments

(f(r, r), f(r, s)) and (f(r, s), f(s, s)),

and the second one of the single line segment

(f(t, r), f(t, s)),

with the desired point f(t, t) determined by λ. Each
polyline given by the algorithm is called a shell , and the
resulting diagram is called a de Casteljau diagram .

f(r, r) f(s, s)

f(r, s)

f(t, r) f(t, s)

f(t, t)

Figure 2.3: A de Casteljau diagram
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The first polyline is also called a control polygon of the
curve. Note that the shells are nested nicely. Actually,
when t is outside [r, s], we still obtain two polylines and a
de Casteljau diagram, but the shells are not nicely nested.
The following diagram illustrates the de Casteljau algo-
rithm.

F (r) = f(r, r) F (s) = f(s, s)

f(r, s)

f(r, t) f(t, s)

f(t, t)

Figure 2.4: The de Casteljau algorithm
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The above example shows the construction of the point
F (t) corresponding to t = 1/2, on the curve F , for r = 0,
s = 1. It also shows the construction of another point on
the curve, assuming different control points.

The parabola of the previous example is actually given
by the parametric equations

F1(t) = 2t,

F2(t) = −t2.

The polar forms are

f1(t1, t2) = t1 + t2,

f2(t1, t2) = −t1t2.
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The de Casteljau algorithm can also applied to compute
any polar value f(t1, t2):

1 2
f(r, r)

f(r, t1)
f(r, s) f(t1, t2)

f(t1, s)
f(s, s)

The only difference is that we use different λ’s during each
of the two stages.

A nice geometric interpretation of the polar value f(t1, t2)
can be obtained. For this, we need to look closely at the
intersection of two tangents to a parabola. Let us consider
the parabola given by

x(t) = at

y(t) = bt2.
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The equation of the tangent to the parabola at (x(t), y(t))
is

x′(t)(y − y(t))− y′(t)(x− x(t)) = 0,

that is,
ay − 2btx + abt2 = 0.

To find the intersection of the two tangents to the parabola
corresponding to t = t1 and t = t2, we solve the system
of linear equations

ay − 2bt1x + abt21 = 0

ay − 2bt2x + abt22 = 0,

and we easily find that

x = a
t1 + t2

2
,

y = bt1t2.

Thus, the polar form f(t1, t2) of the polynomial function
defining a parabola gives precisely the intersection point
of the two tangents at F (t1) and F (t2) to the parabola.
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Let us now consider m = 3, that is, cubic curves.

A polynomial curve F of degree ≤ 3 is of the form

x(t) = F1(t) = a3t
3 + a2t

2 + a1t + a0,

y(t) = F2(t) = b3t
3 + b2t

2 + b1t + b0.

Since we already considered the case where a3 = b3 = 0,
let us assume that a3 6= 0 or b3 6= 0. If a3 6= 0 and
b3 6= 0, let ρ =

√
a23 + b23, and consider the matrix R

given below:

R =

( b3
ρ −a3

ρ
a3
ρ

b3
ρ

)
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Under the change of coordinates

(
x1
y1

)
= R

(
x
y

)
,

we get

x1(t) =
a2b3 − a3b2

ρ
t2 +

a1b3 − a3b1
ρ

t +
a0b3 − a3b0

ρ
,

y1(t) = ρt3 +
a2a3 + b2b3

ρ
t2 +

a1a3 + b1b3
ρ

t +
a0a3 + b0b3

ρ
.

The effect of this rotation is that the curve now “stands
straight up” (since ρ > 0).
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Case 1. a2b3 = a3b2.

Then we have a degenerate case where x1(t) is equal to
a linear function. If a1b3 = a3b1 also holds, then x1(t)
is a constant and y1(t) can be arbitrary, since its leading
term is ρt3, and we get the straight line

X =
a0b3 − a3b0

ρ
.

If a1b3 − a3b1 6= 0, let us assume that a1b3 − a3b1 > 0,
the other case being similar. Then, we can eliminate t
between x1(t) and y1(t), and we get an implicit equation
of the form

y = a′x3 + b′x2 + c′x + d′,

with a′ > 0. Using some change of coordinates, we get
the implicit equation

Y = aX3 + bX,

with a > 0. This curve is symmetric with respect to the
Y -axis.
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Its shape will depend on the variations of sign of its deriva-
tive

Y ′ = 3aX2 + b.

Also, since Y ′′ = 6aX , and Y ′′(0) = 0, the origin is an
inflexion point.

If b > 0, then Y ′(X) is always strictly positive, and Y (X)
is strictly increasing with X . It has a flat S-shape, the
slope b of the tangent at the origin beeing positive.

If b = 0, then Y ′(0) = 0, and 0 is a double root of Y ′,
which means that the origin is an inflexion point. The
curve still has a flat S-shape, and the tangent at the
origin is the X-axis.
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If b < 0, then Y ′(X) has two roots,

X1 = +

√
−b

3a
, X2 = −

√
−b

3a
.

Then, Y (X) is increasing whenX varies from−∞ toX1,
decreasing when X varies from X1 to X2, and increasing
again when X varies from X2 to +∞. The curve has an
S-shape, the slope b of the tangent at the origin beeing
negative.
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The following diagram shows the cubic of implicit equa-
tion

y = 3x3 − 3x.

Figure 2.5: “S-shaped” Cubic

In all three cases, note that a line parallel to the Y -axis
intersects the curve in a single point. This is the reason
why we get a parametric representation.

Case 2. a2b3 − a3b2 6= 0.

In this case, we say that we have a nondegenerate cubic
(recall that ρ > 0).
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Lemma 2.1.2 Given any nondegenerate cubic poly-
nomial curve F , i.e., any polynomial curve of the
form

x(t) = F1(t) = a2t
2,

y(t) = F2(t) = b3t
3 + b2t

2 + b1t,

where b3 > 0, after the translation of the origin given
by

x = X − b1a2
b3

,

y = Y − b1b2
b3

,

the trace of F satisfies the implicit equation

a2

(
a2
b3
Y − b2

b3
X

)2

+
b1a2
b3

X2 = X3.
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Furthermore, if b1 ≤ 0, then the curve defined by the
above implicit equation is equal to the trace of the poly-
nomial curve F , and when b1 > 0, the curve defined
by the above implicit equation, excluding the origin
(X, Y ) = (0, 0), is equal to the trace of the polyno-
mial curve F . The origin (X, Y ) = (0, 0) is called
a singular point of the curve defined by the implicit
equation.

Thus, lemma 2.1.2 shows that every nondegenerate poly-
nomial cubic is defined by some implicit equation of the
form

c(aY − bX)2 + cdX2 = X3,

with the exception that when d > 0, the singular point
(X, Y ) = (0, 0) must be excluded from the trace of the
polynomial curve.

The case where d > 0 is another illustration of the mis-
match between the implicit and the explicit representa-
tion of curves. Again, this mismatch can be resolved if
we treat these curves as complex curves.
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The reason for choosing the origin at the singular point,
is that if we intersect the trace of the polynomial curve
with a line of slope m passing through the singular point,
we discover that we get a nice parametric representation
of the polynomial curve in terms of the parameter m.

Lemma 2.1.3 For every nondegenerate cubic polyno-
mial curve F , there is some parametric definition G
of the form

X(m) = c(am− b)2 + cd,

Y (m) = m(c(am− b)2 + cd),

such that F and G have the same trace, which is also
the set of points on the curve defined by the implicit
equation

c(aY − bX)2 + cdX2 = X3,

excluding the origin (X, Y ) = (0, 0), when d > 0.
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Furthermore, unless it is a tangent at the origin to the
trace of the polynomial curve F (which only happens
when d ≤ 0), every line of slope m passing through
the origin (X, Y ) = (0, 0) intersects the trace of the
polynomial curve F in a single point other than the
singular point (X, Y ) = (0, 0).

The line aY − bX = 0 is an axis of symmetry for the
curve, in the sense that for any two points (X, Y1) and
(X, Y2) such that

Y1 + Y2 =
2b

a
X,

(X, Y1) belongs to the trace of F iff (X,Y2) belongs to
the trace of F . The tangent at the point

(X, Y ) =

(
cd,

bcd

a

)

of the trace of F (also on the axis of symmetry) is
vertical.
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We can now specify more precisely what is the shape of
the trace of F , by studying the changes of sign of the
derivative of Y (m). We treat the case where c > 0, the
case c < 0 being similar.

Case 1: 3d > b2.

In this case, we must have d > 0, which means that the
singular point (X, Y ) = (0, 0) is not on the trace of the
cubic.
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Cubic of equation 3(Y −X)2 + 6X2 = X3:

Figure 2.6: “Humpy” Cubic (3d > b2)
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Case 2: b2 ≥ 3d > 0.

In this case, since d > 0, the singular point (X, Y ) =
(0, 0) is not on the trace of the cubic either.
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Cubic of equation 3(Y − 2X)2 + 3X2 = X3:

Figure 2.7: “Humpy” Cubic (b2 ≥ 3d > 0)
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Case 3: d = 0 (a cuspidal cubic).

In this case, we have b2 − 3d > 0.

Cubic of equation 3(Y −X)2 = X3:

Figure 2.8: Cuspidal Cubic (d = 0)
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Case 4: d < 0 (a nodal cubic).

In this case, b2 − 3d > 0, and Y ′(m) has two roots m1

and m2. Furthermore, since d < 0, the singular point
(X, Y ) = (0, 0) belongs to the trace of the cubic, Since
d < 0, the polynomial X(m) = c(am − b)2 + cd, has
two distinct roots, and thus, the cubic is self-intersecting
at the singular point (X, Y ) = (0, 0).



2.1. PARAMETERIZED POLYNOMIAL CURVES 59

Cubic of equation 3
4
(Y −X)2 − 3X2 = X3:

Figure 2.9: Nodal Cubic (d < 0)

One will observe the progression of the shape of the curve,
from “humpy” to “loopy”, through “cuspy”.
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Remark : The implicit equation

c(aY − bX)2 + cdX2 = X3

of a nondegenerate polynomial cubic (with the exception
of the singular point) is of the form

ϕ2(X,Y ) = X3,

where ϕ2(X,Y ) is a homogeneous polynomial in X and
Y of total degree 2 (in the case of a degenerate cubic of
equation y = aX3 + bX2 + cX + d, the singular point
is at infinity. To make this statement precise, projective
geometry is needed).

Using some algebraic geometry, it can be shown that the
(nondegenerate) cubics that can be represented by para-
metric rational curves of degree 3 (i.e., fractions of poly-
nomials of degree ≤ 3) are exactly those cubics whose
implicit equation is of the form

ϕ2(X, Y ) = ϕ3(X,Y ),

where ϕ2(X, Y ) and ϕ3(X,Y ) are homogeneous polyno-
mial in X and Y of total degree respectively 2 and 3.
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These cubics have a singular point at the origin. Thus,
the polynomial case is obtained in the special case where
ϕ3(X, Y ) = X3.

Furthermore, there are some cubics that cannot be rep-
resented even as rational curves. For example, the cubics
defined by the implicit equation

Y 2 = X(X − 1)(X − λ),

where λ 6= 0, 1, cannot be parameterized rationally. Such
cubics are elliptic curves .
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Returning to polynomial cubics, inspired by our treat-
ment of quadratic polynomials, we would like to extend
blossoming to polynomials of degree 3. First, we need
to define the polar form (or blossom) of a polynomial of
degree 3. Given any polynomial of degree ≤ 3,

F (X) = aX3 + bX2 + cX + d,

the polar form of F is a symmetric triaffine function
f :A3 → A, that is, a function which takes the same
value for all permutations of x1, x2, x3, i.e., such that

f(x1, x2, x3) = f(x2, x1, x3) = f(x1, x3, x2) =

f(x2, x3, x1) = f(x3, x1, x2) = f(x3, x2, x1),

which is affine in each argument, and such that

F (X) = f(X,X,X),

for all X ∈ R. We easily verify that f must be given by

f(x1, x2, x3) =

ax1x2x3 + b
x1x2 + x1x3 + x2x3

3
+ c

x1 + x2 + x3
3

+ d.
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Then, given a polynomial cubic curve F :A → A3, de-
termined by three polynomials F1, F2, F3 of degree ≤ 3,
we can determine their polar forms f1, f2, f3, and we ob-
tain a symmetric triaffine map f :A3 → A3, such that
F (X) = f(X,X,X), for all X ∈ A. Again, let us pick
an affine basis (r, s) in A, with r 6= s, and let us compute

f(t1, t2, t3) =

f((1− λ1)r + λ1s, (1− λ2)r + λ2s, (1− λ3)r + λ3s).

Since λi =
ti−r
s−r

, for i = 1, 2, 3, we get

f(t1, t2, t3) =

(
s− t1
s− r

)(
s− t2
s− r

)(
s− t3
s− r

)
f(r, r, r)

+
[(s− t1

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)
+

(
s− t1
s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)

+

(
t1 − r

s− r

)(
s− t2
s− r

)(
s− t3
s− r

)]
f(r, r, s)

+
[(s− t1

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)]
f(r, s, s)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
f(s, s, s).
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The coefficients of f(r, r, r), f(r, r, s), f(r, s, s), and
f(s, s, s), are obviously symmetric triaffine functions, and
they add up to 1, as it is easily verified by expanding the
product
(
s− t1
s− r

+
t1 − r

s− r

)(
s− t2
s− r

+
t2 − r

s− r

)(
s− t3
s− r

+
t3 − r

s− r

)
= 1.

Thus, we showed that every symmetric triaffine map
f :A3 → A3 is completely determined by the sequence of
four points f(r, r, r), f(r, r, s), f(r, s, s), and f(s, s, s)
in A3, where r 6= s are elements of A.

Conversely, it is clear that given any sequence of four
points a, b, c, d ∈ A3, the map
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(t1, t2, t3) 7→
(
s− t1
s− r

)(
s− t2
s− r

)(
s− t3
s− r

)
a

+
[(s− t1

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)
+

(
s− t1
s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)

+

(
t1 − r

s− r

)(
s− t2
s− r

)(
s− t3
s− r

)]
b

+
[(s− t1

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)]
c

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
d

is symmetric triaffine, and that
f(r, r, r) = a, f(r, r, s) = b, f(r, s, s) = c,
and f(s, s, s) = d.

The points f(r, r, r), f(r, r, s), f(r, s, s), and f(s, s, s),
are called control points , or Bézier control points . They
play a major role in the de Casteljau algorithm and its
extensions.
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Note that the polynomial curve defined by f passes through
the two points f(r, r, r) and f(s, s, s), but not through
the other control points. If we let r = 0 and s = 1,
so that λ1 = t1, λ2 = t2, and λ3 = t3, the polynomial
function associated with f(t1, t2, t3) is obtained by letting
t1 = t2 = t3 = t, and we get

F (t) = f(t, t, t) = (1− t)3 f(0, 0, 0)+3(1− t)2t f(0, 0, 1)

+3(1− t)t2 f(0, 1, 1) + t3 f(1, 1, 1).

The polynomials

(1− t)3, 3(1− t)2t, 3(1− t)t2, t3,

are the Bernstein polynomials of degree 3. They form
a basis of the vector space of polynomials of degree ≤ 3.

Thus, the point F (t) on the curve can be expressed in
terms of the control points f(r, r, r), f(r, r, s), f(r, s, s),
and f(s, s, s), and the Bernstein polynomials. However,
it is more useful to extend the de Casteljau algorithm.
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Lemma 2.1.4 Given any sequence of four points a, b,
c, d in E, there is a unique polynomial curve F :A → E
of degree 3, whose polar form f :A3 → E satisfies the
conditions f(r, r, r) = a, f(r, r, s) = b, f(r, s, s) = c,
and f(s, s, s) = d (where r, s ∈ A, r 6= s). Further-
more, the polar form f of F is given by the formula

f(t1, t2, t3) =

(
s− t1
s− r

)(
s− t2
s− r

)(
s− t3
s− r

)
a

+
[(s− t1

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)
+

(
s− t1
s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)

+

(
t1 − r

s− r

)(
s− t2
s− r

)(
s− t3
s− r

)]
b

+
[(s− t1

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
+

(
t1 − r

s− r

)(
s− t2
s− r

)(
t3 − r

s− r

)

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
s− t3
s− r

)]
c

+

(
t1 − r

s− r

)(
t2 − r

s− r

)(
t3 − r

s− r

)
d.



68 CHAPTER 2. INTRODUCTION TO POLYNOMIAL CURVES

It is easy to generalize the de Casteljau algorithm to
polynomial cubic curves. Let us assume that the cubic
curve F is specified by the control points f(r, r, r) = b0,
f(r, r, s) = b1, f(r, s, s) = b2, and f(s, s, s) = b3 (where
r, s ∈ A, r < s). Given any t ∈ [r, s], the computation
of F (t) can be arranged in a triangular array, as shown
below, consisting of three stages:

1 2 3
f(r, r, r)

f(r, r, t)
f(r, r, s) f(t, t, r)

f(r, t, s) f(t, t, t)
f(r, s, s) f(t, t, s)

f(t, s, s)
f(s, s, s)

The above computation is usually performed for t ∈ [r, s],
but it works just as well for any t ∈ A, even outside
[r, s]. When t is outside [r, s], we usually say that F (t) =
f(t, t, t) is computed by extrapolation .
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In order to describe the above computation more conve-
niently as an algorithm, let us denote the control points
b0 = f(r, r, r), b1 = f(r, r, s), b2 = f(r, s, s) and b3 =
f(s, s, s), as b0,0, b1,0, b2,0, and b3,0, and the intermediate
points f(r, r, t), f(r, t, s), f(t, s, s) as b0,1, b1,1, b2,1, the
intermediate points f(t, t, r), f(t, t, s) as b0,2, b1,2, and
the point f(t, t, t) as b0,3. Note that in bi,j, the index
j denotes the stage of the computation, and F (t) = b0,3.

Then the triangle representing the computation is as fol-
lows:

1 2 3
b0 = b0,0

b0,1
b1 = b1,0 b0,2

b1,1 b0,3
b2 = b2,0 b1,2

b2,1
b3 = b3,0



70 CHAPTER 2. INTRODUCTION TO POLYNOMIAL CURVES

Then, we have the following inductive formula for com-
puting bi,j:

bi,j =

(
s− t

s− r

)
bi,j−1 +

(
t− r

s− r

)
bi+1,j−1,

where 1 ≤ j ≤ 3, and 0 ≤ i ≤ 3− j.

We have F (t) = b0,3.

As will shall see, the above formula generalizes to any
degree m. When r ≤ t ≤ s, each interpolation step com-
putes a convex combination, and bi,j lies between bi,j−1

and bi+1,j−1. In this case, geometrically, the algorithm
constructs the three polylines

(b0, b1), (b1, b2), (b2, b3)

(b0,1, b1,1), (b1,1, b2,1)

(b0,2, b1,2)

called shells , and with the point b0,3, they form a diagram
called a de Casteljau diagram .



2.1. PARAMETERIZED POLYNOMIAL CURVES 71

b0

b1

b2

b3

b0, 1

b1, 1

b2, 1

b0, 2 b1, 2b0, 3

Figure 2.10: A de Casteljau diagram

Note that the shells are nested nicely. The polyline

(b0, b1), (b1, b2), (b2, b3)

is also called a control polygon of the curve. When λ is
outside [r, s], we still obtain three shells and a de Castel-
jau diagram, but the shells are not nicely nested. The
following diagram illustrates the de Casteljau algorithm
for computing the point F (t) on a cubic, where r = 0,
and s = 6:
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F (0) = f(0, 0, 0)

f(0, 0, 6)

f(0, 6, 6)

F (6) = f(6, 6, 6)

f(0, 0, 3)

f(0, 3, 6)

f(3, 6, 6)

f(0, 3, 3) f(6, 3, 3)F (3) = f(3, 3, 3)

Figure 2.11: The de Casteljau algorithm for t = 3

The above example shows the construction of the point
F (3) corresponding to t = 3, on the curve F .
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As in the quadratic case, the de Casteljau algorithm can
also be used to compute any polar value f(t1, t2, t3) (which
is not generally on the curve). All we have to do is to use
a different ratio of interpolation λj during phase j, given
by

λj =
tj − r

s− r
.

The computation can also be represented as a triangle:

1 2 3
f(r, r, r)

f(r, r, t1)
f(r, r, s) f(t1, t2, r)

f(r, t1, s) f(t1, t2, t3)
f(r, s, s) f(t1, t2, s)

f(t1, s, s)
f(s, s, s)

This time, it is convenient to denote the intermediate
points f(r, r, t1), f(r, t1, s), f(t1, s, s) as b0,1, b1,1, b2,1, the
intermediate points f(t1, t2, r), f(t1, t2, s) as b0,2, b1,2, and
the point f(t1, t2, t3) as b0,3. Note that in bi,j, the index
j denotes the stage of the computation, and
f(t1, t2, t3) = b0,3.
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Then the triangle representing the computation is as fol-
lows:

1 2 3
b0 = b0,0

b0,1
b1 = b1,0 b0,2

b1,1 b0,3
b2 = b2,0 b1,2

b2,1
b3 = b3,0

We also have the following inductive formula for comput-
ing bi,j:

bi,j =

(
s− tj
s− r

)
bi,j−1 +

(
tj − r

s− r

)
bi+1,j−1,

where 1 ≤ j ≤ 3, and 0 ≤ i ≤ 3 − j. We have
f(t1, t2, t3) = b0,3.

Thus, there is very little difference between this more
general version of de Casteljau algorithm computing polar
values, and the version computing the point F (t) on the
curve: just use a new ratio of interpolation at each stage.
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Example 1. Consider the plane cubic defined as follows:

F1(t) = 3t,

F2(t) = 3t3 − 3t.

The polar forms of F1(t) and F2(t) are:

f1(t1, t2, t3) = t1 + t2 + t3,

f2(t1, t2, t3) = 3t1t2t3 − (t1 + t2 + t3).

With respect to the affine frame r = −1, s = 1, the
coordinates of the control points are:

b0 = (−3, 0)

b1 = (−1, 4)

b2 = (1,−4)

b3 = (3, 0).
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The curve has the following shape.

Figure 2.12: Bezier Cubic 1

The above cubic is an example of degenerate “S-shaped”
cubic.
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Example 2. Consider the plane cubic defined as follows:

F1(t) = 3(t− 1)2 + 6,

F2(t) = 3t(t− 1)2 + 6t.

Since

F1(t) = 3t2 − 6t + 9,

F2(t) = 3t3 − 6t2 + 9t,

we get the polar forms

f1(t1, t2, t3) = (t1t2 + t1t3 + t2t3)− 2(t1 + t2 + t3) + 9

f2(t1, t2, t3) = 3t1t2t3 − 2(t1t2 + t1t3 + t2t3) + 3(t1 + t2 + t3).

With respect to the affine frame r = 0, s = 1, the coor-
dinates of the control points are:

b0 = (9, 0)

b1 = (7, 3)

b2 = (6, 4)

b3 = (6, 6).
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The curve has the following shape.

Figure 2.13: Bezier Cubic 2

We leave as an exercise to verify that this cubic corre-
sponds to case 1, where 3d > b2. The axis of symmetry
is y = x.
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Example 3. Consider the plane cubic defined as follows:

F1(t) = 3(t− 2)2 + 3,

F2(t) = 3t(t− 2)2 + 3t.

Since

F1(t) = 3t2 − 12t + 15,

F2(t) = 3t3 − 12t2 + 15t,

we get the polar forms

f1(t1, t2, t3) = (t1t2 + t1t3 + t2t3)− 4(t1 + t2 + t3) + 15

f2(t1, t2, t3) = 3t1t2t3 − 4(t1t2 + t1t3 + t2t3) + 5(t1 + t2 + t3).

With respect to the affine frame r = 0, s = 2, the coor-
dinates of the control points are:

b0 = (15, 0)

b1 = (7, 10)

b2 = (3, 4)

b3 = (3, 6).
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The curve has the following shape.

Figure 2.14: Bezier Cubic 3

We leave as an exercise to verify that this cubic corre-
sponds to case 2, where b2 ≥ 3d > 0. The axis of sym-
metry is y = 2x.
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It is interesting to see which control points are obtained
with respect to the affine frame r = 0, s = 1:

b′0 = (15, 0)

b′1 = (11, 5)

b′2 = (8, 6)

b′3 = (6, 6).

The second “hump” of the curve is outside the convex
hull of this new control polygon. This shows that it is
far from obvious, just by looking at some of the control
points, to predict what the shape of the entire curve will
be!
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Example 4. Consider the plane cubic defined as follows:

F1(t) = 3(t− 1)2,

F2(t) = 3t(t− 1)2.

Since

F1(t) = 3t2 − 6t + 3,

F2(t) = 3t3 − 6t2 + 3t,

we get the polar forms

f1(t1, t2, t3) = (t1t2 + t1t3 + t2t3)− 2(t1 + t2 + t3) + 3

f2(t1, t2, t3) = 3t1t2t3 − 2(t1t2 + t1t3 + t2t3) + (t1 + t2 + t3).

With respect to the affine frame r = 0, s = 2, the coor-
dinates of the control points are:

b0 = (3, 0)

b1 = (−1, 2)

b2 = (−1,−4)

b3 = (3, 6).
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The curve has the following shape.

Figure 2.15: Bezier Cubic 4

We leave as an exercise to verify that this cubic corre-
sponds to case 3, where d = 0, a cubic with a cusp at the
origin. The axis of symmetry is y = x.
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It is interesting to see which control points are obtained
with respect to the affine frame r = 0, s = 1:

b′0 = (3, 0)

b′1 = (1, 1)

b′2 = (0, 0)

b′3 = (0, 0).

Thus, b′2 = b′3. This indicates that there is a cusp at the
origin.
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Example 5. Consider the plane cubic defined as follows:

F1(t) =
3

4
(t− 1)2 − 3,

F2(t) =
3

4
t(t− 1)2 − 3t.

Since

F1(t) =
3

4
t2 − 3

2
t− 9

4
,

F2(t) =
3

4
t3 − 3

2
t2 − 9

4
t,

we get the polar forms

f1(t1, t2, t3) =
1

4
(t1t2 + t1t3 + t2t3)−

1

2
(t1 + t2 + t3)−

9

4

f2(t1, t2, t3) =
3

4
t1t2t3 −

1

2
(t1t2 + t1t3 + t2t3)−

3

4
(t1 + t2 + t3).
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With respect to the affine frame r = −1, s = 3, the
coordinates of the control points are:

b0 = (0, 0)

b1 = (−4, 4)

b2 = (−4,−12)

b3 = (0, 0).
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The curve has the following shape.

Figure 2.16: Bezier Cubic 5

Note that b0 = b3.
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We leave as an exercise to verify that this cubic corre-
sponds to case 4, where d < 0, a cubic with a node at the
origin. The axis of symmetry is y = x. The two tangents
at the origin are y = −x, and y = 3x (this explains the
choice of r = −1, and s = 3). Here is a more global view
of the same cubic:

Figure 2.17: Nodal Cubic (d < 0)
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The above examples suggest that it may be interesting,
and even fun, to investigate which properties of the shape
of the control polygon (b0, b1, b2, b3) determine the nature
of the plane cubic that it defines. Try it!

Challenge: Given a planar control polygon
(b0, b1, b2, b3), is it possible to find the singular point ge-
ometrically? Is it possible to find the axis of symmetry
geometrically?
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Chapter 3

Polynomial Curves and Control Points

3.1 Polar Forms and Control Points

The purpose of this short chapter is to show how poly-
nomial curves of arbitrary degree are handled in terms of
control points.

As we observed in the case of polynomial curves of de-
gree ≤ 3, the key to the treatment of polynomial curves
in terms of control points is that polynomials can be mul-
tilinearized.1

To be more precise, say that a map
f :Ad × · · · × Ad︸ ︷︷ ︸

m

→ An is multiaffine if it is affine in

each of its arguments.

1The term “multilinearized” is technicaly incorrect, we should say “multiaffinized”!
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A map f :Ad × · · · × Ad︸ ︷︷ ︸
m

→ An is symmetric if it does

not depend on the order of its arguments, i.e.,

f(aπ(1), . . . , aπ(m)) = f(a1, . . . , am)

for all a1, . . . , am, and all permutations π.

Then, for every polynomial F (t) of degree m, there is a
unique symmetric and multiaffine map
f :A× · · · × A︸ ︷︷ ︸

m

→ A such that

F (t) = f(t, . . . , t︸ ︷︷ ︸
m

), for all t ∈ A.

This is an old “folk theorem”, probably already known to
Newton. The proof is easy.

By linearity, it is enough to consider a monomial of the
form xk, where k ≤ m.
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The unique symmetric multiaffine map corresponding to
xk is

σk(t1, . . . , tm)(
m
k

) ,

where σk(t1, . . . , tm) is the kth elementary symmetric
function in m variables, i.e.

σk =
∑

I⊆{1,...,m}
|I|=k

(
∏

i∈I
ti).

Recall that (
m
k

)
=

m!

k!(m− k)!
,

a binomial coefficient (with 0 ≤ k ≤ m) where,

m! = m · (m− 1) · · · 2 · 1,
called m-factorial .
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Given a polynomial curve F :A → An of degree m

x1(t) = F1(t),

. . . = . . .

xn(t) = Fn(t),

where F1(t), . . . , Fn(t) are polynomials of degree at most
m, the map F :A → An arises from a unique symmetric
multiaffine map f :Am → An, the polar form of F , such
that

F (t) = f(t, . . . , t︸ ︷︷ ︸
m

),

for all t ∈ A.

For example, consider the plane cubic defined as follows:

F1(t) =
3

4
t2 − 3

2
t− 9

4
, F2(t) =

3

4
t3 − 3

2
t2 − 9

4
t.

We get the polar forms

f1(t1, t2, t3) =
1

4
(t1t2 + t1t3 + t2t3)−

1

2
(t1 + t2 + t3)−

9

4

f2(t1, t2, t3) =
3

4
t1t2t3 −

1

2
(t1t2 + t1t3 + t2t3)−

3

4
(t1 + t2 + t3).
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Also, for r 6= s, the map f :Am → An is determined by
the m + 1 control points (b0, . . . , bm), where

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),

since

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, card(J)=k

∏

i∈I

(s− ti
s− r

)∏

j∈J

(tj − r

s− r

)
f(r, . . . , r︸ ︷︷ ︸

m−k

, s, . . . , s︸ ︷︷ ︸
k

).

For example, with respect to the affine frame r = −1,
s = 3, the coordinates of the control points of the cubic
defined earlier are:

b0 = (0, 0)

b1 = (−4, 4)

b2 = (−4,−12)

b3 = (0, 0).
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Conversely, for every sequence ofm+1 points (b0, . . . , bm),
there is a unique symmetric multiaffine map f such that

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),

namely,

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, card(J)=k

∏

i∈I
(
s− ti
s− r

)
∏

j∈J
(
tj − r

s− r
) bk.

Thus, there is a bijection between the set of polynomial
curves of degree m and the set of sequences (b0, . . . , bm)
of m + 1 control points.

The upshot of all this is that for algorithmic purposes,
it is convenient to define polynomial curves in terms of
polar forms.
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Definition 3.1.1 A (parameterized) polynomial curve
in polar form of degree m is an affine polynomial map
F :A → E of polar degree m, defined by its m-polar
form , which is some symmetricm-affine map f :Am → E ,
where A is the real affine line, and E is any affine space
(of dimension at least 2).

Given any r, s ∈ A, with r < s, a (parameterized) poly-
nomial curve segment F ([r, s]) in polar form of degree
m is the restriction F : [r, s] → E of an affine polynomial
curve F :A → E in polar form of degree m.

We define the trace of F as F (A), and the the trace of
F [r, s] as F ([r, s]).

Typically, the affine space E is the real affine space A3 of
dimension 3.
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Remark : When defining polynomial curves, it is conve-
nient to denote the polynomial map defining the curve by
an upper-case letter, such as F :A → E , and the polar
form of F by the same, but lower-case letter, f .

It would then be confusing to denote the affine space
which is the range of the maps F and f also as F , and
thus, we denote it as E (or at least, we use a letter dif-
ferent from the letter used to denote the polynomial map
defining the curve).

Also note that we defined a polynomial curve in polar
form of degree at mostm, rather than a polynomial curve
in polar form of degree exactly m, because an affine poly-
nomial map f of polar degree m may end up being de-
generate, in the sense that it could be equivalent to a
polynomial map of lower polar degree.

For convenience, we will allows ourselves the abuse of
language where we abbreviate “polynomial curve in polar
form” to “polynomial curve”.
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We summarize the relationship between control points
and polynomial curves in the following lemma.

Lemma 3.1.2 Given any sequence of m + 1 points
a0, . . . , am in some affine space E, there is a unique
polynomial curve F :A → E of degree m, whose polar
form f :Am → E satisfies the conditions

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

) = ak,

(where r, s ∈ A, r 6= s).

Furthermore, the polar form f of F is given by the
formula

f(t1, . . . , tm) =
m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I
(
s− ti
s− r

)
∏

j∈J
(
tj − r

s− r
) ak,
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and F (t) is given by the formula

F (t) =
m∑

k=0

Bm
k [r, s](t) ak,

where the polynomials

Bm
k [r, s](t) =

(
m
k

)
(
s− t

s− r
)m−k(

t− r

s− r
)k

are the Bernstein polynomials of degree m over [r, s].

Note that since the polar form f of a polynomial curve
F of degree m is symmetric, the order of the arguments
is irrelevant.
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Often, when argument are repeated, we also omit commas
between argument. For example, we abbreviate
f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

) by f(risj).

In the next section, we will abbreviate
f(t, . . . , t︸ ︷︷ ︸

j

, r, . . . , r︸ ︷︷ ︸
m−i−j

, s, . . . , s︸ ︷︷ ︸
i

) by f(tjrm−i−jsi).

3.2 The de Casteljau Algorithm

The definition of polynomial curves in terms of polar
forms leads to a very nice algorithm known as the de
Casteljau algorithm , to draw polynomial curves.

Using the de Casteljau algorithm, it is possible to de-
termine any point F (t) on the curve, by repeated affine
interpolations (see Farin [?, ?], Hoschek and Lasser [?],
Risler [?], or Gallier [?]).
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The example below shows F (1/2).

b0

b1

b2

b3

b0, 1

b1, 1

b2, 1

b0, 2 b1, 2

F (1/2) = b0, 3

Figure 3.1: A de Casteljau diagram for t = 1/2
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In the general case where a curve F is specified by m+1
control points (b0, . . . , bm) w.r.t. to an interval [r, s], let
us define the following points bi,j used during the compu-
tation of F (t) (where f is the polar form of F ):

bi,j =

{
bi if j = 0, 0 ≤ i ≤ m,
f(tjrm−i−jsi) if 1 ≤ j ≤ m, 0 ≤ i ≤ m− j.

Then, we have the following equations:

bi,j = (
s− t

s− r
)bi,j−1 + (

t− r

s− r
)bi+1,j−1.

The result is F (t) = b0,m.
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The computation can be conveniently represented in the
following triangular form:

0 1 . . . j − 1 j . . . m− k . . . m
b0,0

b0,1

b1,0
. . .

b0,j−1
... b0,j

bi,j−1
... . . .
bi,j b0,m−k

bi+1,j−1
...

... bm−k−j,j
... b0,m

bm−k−j+1,j−1
... bk,m−k

bm−k−1,1
...

bm−k,0 bm−j,j

... bm−j+1,j−1
...

bm−1,0

bm−1,1

bm,0

When r ≤ t ≤ s, each interpolation step computes a con-
vex combination, and bi,j lies between bi,j−1 and bi+1,j−1.
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In this case, geometrically, the algorithm consists of a
diagram consisting of the m polylines

(b0,0, b1,0), (b1,0, b2,0), (b2,0, b3,0), (b3,0, b4,0), . . . , (bm−1,0, bm,0)

(b0,1, b1,1), (b1,1, b2,1), (b2,1, b3,1), . . . , (bm−2,1, bm−1,1)

(b0,2, b1,2), (b1,2, b2,2), . . . , (bm−3,2, bm−2,2)

. . .

(b0,m−2, b1,m−2), (b1,m−2, b2,m−2)

(b0,m−1, b1,m−1)

called shells , and with the point b0,m, they form the de
Casteljau diagram .

Note that the shells are nested nicely. The polyline

(b0, b1), (b1, b2), (b2, b3), (b3, b4), . . . , (bm−1, bm)

is also called a control polygon of the curve. When t is
outside [r, s], we still obtain m shells and a de Casteljau
diagram, but the shells are not nicely nested.

One of the best features of the de Casteljau algorithm is
that it lends itself very well to recursion.
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Indeed, going back to the case of a cubic curve, it is easy
to show that the sequences of points (b0, b0,1, b0,2, b0,3) and
(b0,3, b1,2, b2,1, b3) are also control polygons for the exact
same curve.

Thus, we can compute the points corresponding to
t = 1/2 with respect to the control polygons

(b0, b0,1, b0,2, b0,3) and (b0,3, b1,2, b2,1, b3),

and this yields a recursive method for approximating the
curve. This method called the subdivision method ap-
plies to polynomial curves of any degree and can be used
to render efficiently a curve segment F over [r, s].

b0

b1

b2

b3

b0, 1

b1, 1

b2, 1

b0, 2 b1, 2

F (1/2) = b0, 3

Figure 3.2: Approximating a curve using subdivision



Chapter 4

Polynomial Surfaces

4.1 Polar Forms

The purpose of this short chapter is to show how polyno-
mial surfaces are handled in terms of control points.

As in Chapter 3, this chapter is just a brief introduction

The deep reason why polynomial surfaces can be effec-
tively handled in terms of control points is that multivari-
ate polynomials arise from multiaffine symmetric maps.
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Denoting the affine plane A2 as P , traditionally, a poly-
nomial surface in An is a function F :P → An, defined
such that

x1 = F1(u, v),

. . . = . . .

xn = Fn(u, v),

for all (u, v) ∈ A2, where F1(U, V ), . . . , Fn(U, V ) are
polynomials in R[U, V ].

There are two natural ways to polarize the polynomials
defining F .

The first way is to polarize separately in u and v.
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If p is the highest degree in u and q is the highest degree
in v, we get a unique multiaffine map

f : (A)p × (A)q → An

of degree (p + q) which is symmetric in its first p argu-
ments and symmetric in its last q arguments, such that

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

).

We get what is traditionally called a tensor product sur-
face, or as we prefer to call it, a bipolynomial surface of
bidegree 〈p, q〉 (or a rectangular surface patch).

We also say that the multiaffine maps arising in polarizing
separately in u and v are 〈p, q〉-symmetric.
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The second way to polarize is to treat the variables u and
v as a whole.

This way, if F is a polynomial surface such that the maxi-
mum total degree of the monomials is m, we get a unique
symmetric degree m multiaffine map

f : (A2)m → An,

such that

F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸
m

).

We get what is called a total degree surface (or a trian-
gular surface patch).
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Let us go back to the first case. Using linearity, it is clear
that all we have to do is to polarize a monomial uhvk.

It is easily verified that the unique 〈p, q〉-symmetric mul-
tiaffine polar form of degree p + q

f p,q
h,k(u1, . . . , up; v1, . . . , vq)

of the monomial uhvk is given by

f p,q
h,k(u1, . . . , up; v1, . . . , vq) =

1(
p
h

)(
q
k

)
∑

I⊆{1,...,p},|I|=h
J⊆{1,...,q},|J |=k

(∏

i∈I
ui

)
∏

j∈J
vj


 .

The denominator (
p
h

)(
q
k

)

is the number of terms in the above sum.

Recall that (
n
k

)
=

n!

k!(n− k)!
,

a binomial coefficient , where

n! = n · (n− 1) · · · 2 · 1,
called n factorial .
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It is also easily verified that in the second case, the unique
symmetric multiaffine polar form of degree m

fm
h,k((u1, v1), . . . , (um, vm))

of the monomial uhvk is given by

fm
h,k((u1, v1), . . . , (um, vm)) =

1(
m
h

)(
m− h

k

)
∑

I∪J⊆{1,...,m}
|I|=h,|J |=k,I∩J=∅

(∏

i∈I
ui

)
∏

j∈J
vj


 .

The denominator(
m
h

)(
m− h

k

)
=

(
m

h k (m− h− k)

)

is the number of terms in the above sum.
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As an example, consider the following surface known as
Enneper’s surface:

F1(U, V ) = U − U 3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U 2V

F3(U, V ) = U 2 − V 2.

We get the polar forms

f1((U1, V1), (U2, V2), (U3, V3)) =
U1 + U2 + U3

3
− U1U2U3

3

+
U1V2V3 + U2V1V3 + U3V1V2

3

f2((U1, V1), (U2, V2), (U3, V3)) =
V1 + V2 + V3

3
− V1V2V3

3

+
U1U2V3 + U1U3V2 + U2U3V1

3

f3((U1, V1), (U2, V2), (U3, V3)) =
U1U2 + U1U3 + U2U3

3
− V1V2 + V1V3 + V2V3

3
.
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-5

0

5

x

-5 0 5

y

-5

-2.5

0

2.5

5

z

-5

0

5

x

-5 0 5
-5

-2.5

0

2.5

5

Figure 4.1: The Enneper surface



4.2. CONTROL POINTS FOR TRIANGULAR SURFACES 115

4.2 Control Points For Triangular Surfaces

Given an affine frame ∆rst in the plane (where r, s, t ∈ P
are affinely independent points), it turns out that any
symmetric multiaffine map f :Pm → E is uniquely deter-
mined by a family of (m+1)(m+2)

2 points (where E is any
affine space, say An). Let

∆m = {(i, j, k) ∈ N3 | i + j + k = m}.
The following lemma is easily shown (see Ramshaw [?] or
Gallier [?]).
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Lemma 4.2.1 Given a reference triangle ∆rst in the
affine plane P, given any family (bi, j, k)(i,j,k)∈∆m of
(m+1)(m+2)

2 points in E, there is a unique surface
F :P → E of total degree m, defined by a symmetric
m-affine polar form f :Pm → E, such that

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

) = bi, j, k,

for all (i, j, k) ∈ ∆m. Furthermore, f is given by the
expression

f(a1, . . . , am) =∑

I∪J∪K={1,...,m}
I,J,K pairwise disjoint

(
∏

i∈I
λi)(
∏

j∈J
µj)(

∏

k∈K
νk)

f(r, . . . , r︸ ︷︷ ︸
|I|

, s, . . . , s︸ ︷︷ ︸
|J |

, t, . . . , t︸ ︷︷ ︸
|K|

),

where ai = λir + µis + νit, with λi + µi + νi = 1, and
1 ≤ i ≤ m.
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A point F (a) on the surface F can be expressed in
terms of the Bernstein polynomials

Bm
i,j,k(U, V, T ) =

m!

i!j!k!
U iV jT k,

as

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

) =

∑

(i, j, k)∈∆m

Bm
i,j,k(λ, µ, ν) f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where a = λr + µs + νt, with λ + µ + ν = 1.
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For example, with respect to the standard frame
∆rst = ((1, 0, 0), (0, 1, 0), (0, 0, 1)), we obtain the follow-
ing 10 control points for the Enneper surface:

f(r, r, r)(
2

3
, 0, 1

)

f(r, r, t)(
2

3
, 0,

1

3

) f(r, r, s)(
2

3
,
2

3
,
1

3

)

f(r, t, t)(
1

3
, 0, 0

) f(r, s, t)(
1

3
,
1

3
, 0

) f(r, s, s)(
2

3
,
2

3
,−1

3

)

f(t, t, t)
(0, 0, 0)

f(s, t, t)(
0,

1

3
, 0

) f(s, s, t)(
0,

2

3
,−1

3

) f(s, s, s)(
0,

2

3
,−1

)
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A family N = (bi, j, k)(i,j,k)∈∆m of (m+1)(m+2)
2

points in E is
called a (triangular) control net, or Bézier net . Note
that the points in

∆m = {(i, j, k) ∈ N3 | i + j + k = m},
can be thought of as a triangular grid of points in P . For
example, when m = 5, we have the following grid of 21
points:

500
401 410

302 311 320
203 212 221 230

104 113 122 131 140
005 014 023 032 041 050

We intentionally let i be the row index, starting from
the left lower corner, and j be the column index, also
starting from the left lower corner. The control net N =
(bi, j, k)(i,j,k)∈∆m can be viewed as an image of the trian-
gular grid ∆m in the affine space E .
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It follows from lemma 9.4.2 that there is a bijection be-
tween polynomial surfaces of degree m and control nets
N = (bi, j, k)(i,j,k)∈∆m.

4.3 Control Points For Rectangular Surfaces

Given any two affine frames (r1, s1) and (r2, s2) for the
affine line A, it turns out that a 〈p, q〉-symmetric multi-
affine map

f : (A)p × (A)q → E
is completely determined by the family of (p + 1)(q + 1)
points in E
bi, j = f(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

where 0 ≤ i ≤ p and 0 ≤ j ≤ q. The following lemma is
easily shown (see Ramshaw [?] or Gallier [?]).
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Lemma 4.3.1 Let (r1, s1) and (r2, s2) be any two affine
frames for the affine line A, and let E be an affine
space (of finite dimension n ≥ 3). For any nat-
ural numbers p, q, for any family (bi, j)0≤i≤p, 0≤j≤q of
(p + 1)(q + 1) points in E, there is a unique bipolyno-
mial surface F :A×A → E of degree 〈p, q〉, with polar
form the (p + q)-multiaffine 〈p, q〉-symmetric map

f : (A)p × (A)q → E ,
such that

f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

) = bi, j,

for all i, 1 ≤ i ≤ p and all j, 1 ≤ j ≤ q. Furthermore,
f is given by the expression

f(u1, . . . , up; v1, . . . , vq)

=
∑

I∩J=∅
I∪J={1,...,p}

K∩L=∅
K∪L={1,...,q}

∏

i∈I
(
s1 − ui
s1 − r1

)
∏

j∈J
(
uj − r1
s1 − r1

)

∏

k∈K
(
s2 − vk
s2 − r2

)
∏

l∈L
(
vl − r2
s2 − r2

) b|J |, |L|.
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A point F (u, v) on the surface F can be expressed in
terms of the Bernstein polynomials Bp

i [r1, s1](u) and
Bq

j [r2, s2](v), as

F (u, v) =
∑

0≤i≤p
0≤j≤q

Bp
i [r1, s1](u)B

q
j [r2, s2](v)

f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).
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A family N = (bi, j)0≤i≤p, 0≤j≤q of (p+1)(q+1) points in
E , is often called a (rectangular) control net, or Bézier
net . Note that we can view the set of pairs

p,q = {(i, j) ∈ N2 | 0 ≤ i ≤ p, 0 ≤ j ≤ q},
as a rectangular grid of (p + 1)(q + 1) points in A × A.
The control net N = (bi, j)(i,j)∈ p,q, can be viewed as an
image of the rectangular grid p,q in the affine space E .
The portion of the surface F corresponding to the points
F (u, v) for which the parameters u, v satisfy the inequal-
ities r1 ≤ u ≤ s1 and r2 ≤ v ≤ s2, is called a rectangu-
lar (surface) patch, or rectangular Bézier patch , and
F ([r1, s1], [r2, s2]) is the trace of the rectangular patch .
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As an example, the monkey saddle is the surface defined
by the equation

z = x3 − 3xy2.

It is easily shown that the monkey saddle is specified by
the following rectangular control net of degree (3, 2) over
[0, 1]× [0, 1]:

sqmonknet1 = {{0, 0, 0}, {0, 1/2, 0}, {0, 1, 0}, {1/3, 0, 0},

{1/3, 1/2, 0}, {1/3, 1, -1}, {2/3, 0, 0}, {2/3, 1/2, 0},

{2/3, 1, -2}, {1, 0, 1}, {1, 1/2, 1}, {1, 1, -2}}
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Figure 4.2: A monkey saddle, rectangular subdivision
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Chapter 5

Affine Geometry

5.1 Affine Spaces

For simplicity, it is assumed that all vector spaces under
consideration are defined over the field R of real numbers.

It is also assumed that all families (λi)i∈I of scalars have
finite support. Recall that a family (λi)i∈I of scalars has
finite support if

λi = 0 for all i ∈ I − J ,

where J is a finite subset of I .

Obviously, finite families of scalars have finite support,
and for simplicity, the reader may assume that all families
are finite.

127
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Definition 5.1.1 An affine space is either the empty

set or a triple 〈E,
−→
E ,+〉 consisting of a nonempty set E

(of points), a vector space
−→
E (of translations, or free

vectors), and an action +:E × −→
E → E, satisfying the

following conditions:

(AF1) a +
−→
0 = a, for every a ∈ E;

(AF2) (a+−→u ) +−→v = a+ (−→u +−→v ), for every a ∈ E, and

every −→u ,−→v ∈ −→
E ;

(AF3) For any two points a, b ∈ E, there is a unique −→u ∈
−→
E such that a+−→u = b. The unique vector −→u ∈ −→

E

such that a +−→u = b is denoted as
−→
ab, or sometimes

as b− a. Thus, we also write

b = a +
−→
ab

(or even b = a + (b− a)).

The dimension of the affine space 〈E,
−→
E ,+〉 is the di-

mension dim(
−→
E ) of the vector space

−→
E . For simplicity,

it is denoted as dim(E).
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Conditions (AF1) and (AF2) say that the (abelian) group
−→
E acts on E, and condition (AF3) says that

−→
E acts

transitively and faithfully on E.

Note that −−−−−−→
a(a +−→v ) = −→v

for all a ∈ E and all −→v ∈ −→
E , since

−−−−−−→
a(a +−→v ) is the

unique vector such that a +−→v = a +
−−−−−−→
a(a +−→v ).

Thus, b = a +−→v is equivalent to
−→
ab = −→v .

It is natural to think of all vectors as having the same
origin, the null vector.

E
−→
E

a

b = a+−→u

c = a+−→w
−→u

−→v

−→w

Figure 5.1: Intuitive picture of an affine space
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For every a ∈ E, consider the mapping from
−→
E to E:

−→u 7→ a +−→u ,

where −→u ∈ −→
E , and consider the mapping from E to

−→
E :

b 7→ −→
ab,

where b ∈ E.

The composition of the first mapping with the second is

−→u 7→ a +−→u 7→
−−−−−−→
a(a +−→u ),

which, in view of (AF3), yields −→u .

The composition of the second with the first mapping is

b 7→ −→
ab 7→ a +

−→
ab,

which, in view of (AF3), yields b.

Thus, these compositions are the identity from
−→
E to

−→
E

and the identity from E to E, and the mappings are both
bijections.
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When we identify E to
−→
E via the mapping b 7→ −→

ab,
we say that we consider E as the vector space obtained
by taking a as the origin in E, and we denote it as

Ea. Thus, an affine space 〈E,
−→
E ,+〉 is a way of defining

a vector space structure on a set of points E, without
making a commitment to a fixed origin in E.

For notational simplicity, we will often denote an affine

space 〈E,
−→
E ,+〉 as (E,

−→
E ), or even as E. The vector

space
−→
E is called the vector space associated with E.

� One should be careful about the overloading of the ad-
dition symbol +. Addition is well-defined on vectors,

as in −→u + −→v , the translate a + −→u of a point a ∈ E

by a vector −→u ∈ −→
E is also well-defined, but addition of

points a + b does not make sense.

In this respect, the notation b − a for the unique vector
−→u such that b = a+−→u , is somewhat confusing, since it
suggests that points can be substracted (but not added!).
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Any vector space
−→
E has an affine space structure spec-

ified by choosing E =
−→
E , and letting + be addition in

the vector space
−→
E . We will refer to this affine space

〈−→E ,
−→
E ,+〉 as the canonical (or natural) affine struc-

ture on
−→
E .

In particular, the vector space Rn can be viewed as an
affine space 〈Rn,Rn,+〉 denoted as An. In order to dis-
tinguish between the double role played by members of
Rn, points and vectors, we will denote points as row vec-
tors, and vectors as column vectors. Thus, the action of
the vector space Rn over the set Rn simply viewed as a
set of points, is given by

(a1, . . . , an) +




u1
...
un


 = (a1 + u1, . . . , an + un).

The affine space An is called the real affine space of
dimension n. In most cases, we will consider n = 1, 2, 3.
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For a slightly wilder example, consider the subset P of A3

consisting of all points (x, y, z) satisfying the equation

x2 + y2 − z = 0.

The set P is paraboloid of revolution, with axis Oz.

The surface P can be made into an official affine space
by defining the action

+:P × R2 → P

of R2 on P defined such that for every point (x, y, x2+y2)

on P and any

(
u
v

)
∈ R2,

(x, y, x2+y2)+

(
u
v

)
= (x+u, y+v, (x+u)2+(y+v)2).

Affine spaces not already equipped with an obvious vector
space structure arise in projective geometry.
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Given any three points a, b, c ∈ E, since c = a + −→ac,
b = a +

−→
ab, and c = b +

−→
bc , we get

c = b +
−→
bc = (a +

−→
ab) +

−→
bc = a + (

−→
ab +

−→
bc)

by (AF2), and thus, by (AF3),
−→
ab +

−→
bc = −→ac,

which is known as Chasles’ identity .

E
−→
E

a

b

c

−→
ab

−→
bc

−→ac

Figure 5.2: Points and corresponding vectors in affine geometry
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5.2 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a lin-
ear combination. The corresponding concept in affine
geometry is that of an affine combination, also called a
barycenter.

However, there is a problem with the naive approach in-
volving a coordinate system. The problem is that the sum
a + b may correspond to two different points depending
on which coordinate system is used for its computation!

Thus, some extra condition is needed in order for affine
combinations to make sense. It turns out that if the
scalars sum up to 1, the definition is intrinsic, as the
following lemma shows.
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Lemma 5.2.1 Given an affine space E, let (ai)i∈I be
a family of points in E, and let (λi)i∈I be a family of
scalars. For any two points a, b ∈ E, the following
properties hold:

(1) If
∑

i∈I λi = 1, then

a +
∑

i∈I
λi
−→aai = b +

∑

i∈I
λi
−→
bai.

(2) If
∑

i∈I λi = 0, then
∑

i∈I
λi
−→aai =

∑

i∈I
λi
−→
bai.

Thus, by lemma 5.2.1, for any family of points (ai)i∈I in
E, for any family (λi)i∈I of scalars such that

∑
i∈I λi = 1,

the point

x = a +
∑

i∈I
λi
−→aai

is independent of the choice of the origin a ∈ E.
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The unique point x is called the barycenter (or barycen-
tric combination, or affine combination) of the points
ai assigned the weights λi. and it is denoted as

∑

i∈I
λiai.

In dealing with barycenters, it is convenient to introduce
the notion of a weighted point , which is just a pair (a, λ),
where a ∈ E is a point, and λ ∈ R is a scalar.

Then, given a family of weighted points ((ai, λi))i∈I , where∑
i∈I λi = 1, we also say that the point

∑

i∈I
λiai

is the barycenter of the family of weighted points
((ai, λi))i∈I.
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Note that the barycenter x of the family of weighted
points ((ai, λi))i∈I is also the unique point such that

−→ax =
∑

i∈I
λi
−→aai for every a ∈ E,

and setting a = x, the point x is the unique point such
that ∑

i∈I
λi
−→xai =

−→
0 .

In physical terms, the barycenter is the center of mass
of the family of weighted points ((ai, λi))i∈I (where the
masses have been normalized, so that

∑
i∈I λi = 1, and

negative masses are allowed).
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The figure below illustrates the geometric construction of
the barycenters g1 and g2 of the weighted points

(
a, 14
)
,(

b, 14
)
, and

(
c, 12
)
, and (a,−1), (b, 1), and (c, 1).

a b

c

g1

a b

c
g2

Figure 5.3: Barycenters, g1 =
1

4
a+ 1

4
b+ 1

2
c, g2 = −a + b+ c.
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5.3 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized
as a nonempty subset of a vector space closed under linear
combinations. In affine spaces, the notion corresponding
to the notion of (linear) subspace is the notion of affine
subspace.

It is natural to define an affine subspace as a subset of an
affine space closed under affine combinations.

Definition 5.3.1 Given an affine space 〈E,
−→
E ,+〉, a

subset V of E is an affine subspace if for every family of
points (ai)i∈I in V , for any family (λi)i∈I of scalars such
that

∑
i∈I λi = 1, the barycenter

∑
i∈I λiai belongs to

V .

An affine subspace is also called a flat by some authors.
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According to definition 5.3.1, the empty set is trivially an
affine subspace, and every intersection of affine subspaces
is an affine subspace.

As an example, consider the subset U of A2 defined by

U = {(x, y) ∈ R2 | ax + by = c},
i.e. the set of solutions of the equation

ax + by = c,

where it is assumed that a 6= 0 or b 6= 0.

Given any m points (xi, yi) ∈ U and any m scalars λi

such that λ1 + · · · + λm = 1, we claim that
m∑

i=1

λi(xi, yi) ∈ U.

Thus, U is an affine subspace of A2. In fact, it is just a
usual line in A2.
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It turns out that U is closely related to the subset of R2

defined by

−→
U = {(x, y) ∈ R2 | ax + by = 0},

i.e. the set of solution of the homogeneous equation

ax + by = 0

obtained by setting the right-hand side of ax+ by = c to
zero.

Indeed, for any m scalars λi, the same calculation as
above yields that

m∑

i=1

λi(xi, yi) ∈
−→
U ,

this time without any restriction on the λi, since
the right-hand side of the equation is null.
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Thus,
−→
U is a subspace ofR2. In fact,

−→
U is one-dimensional,

and it is just a usual line in R2.

This line can be identified with a line passing through
the origin of A2, line which is parallel to the line U of
equation ax + by = c.

Now, if (x0, y0) is any point in U , we claim that

U = (x0, y0) +
−→
U ,

where

(x0, y0) +
−→
U = {(x0 + u1, y0 + u2) | (u1, u2) ∈

−→
U }.
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The above example shows that the affine line U defined
by the equation

ax + by = c

is obtained by “translating” the parallel line
−→
U of equa-

tion
ax + by = 0

passing through the origin.

In fact, given any point (x0, y0) ∈ U ,

U = (x0, y0) +
−→
U .

U

−→
U

Figure 5.4: An affine line U and its direction
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More generally, it is easy to prove the following fact.
Given any m × n matrix A and any vector c ∈ Rm,
the subset U of An defined by

U = {x ∈ Rn | Ax = c}
is an affine subspace of An.

Furthermore, if we consider the corresponding homoge-
neous equation Ax = 0, the set

−→
U = {x ∈ Rn | Ax = 0}

is a subspace of Rn, and for any x0 ∈ U , we have

U = x0 +
−→
U .
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This is a general situation. Affine subspaces can also be

characterized in terms of subspaces of
−→
E .

Given any point a ∈ E and any subspace
−→
V of

−→
E , let

a +
−→
V denote the following subset of E:

a +
−→
V = {a +−→v | −→v ∈ −→

V }.
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Lemma 5.3.2 Let 〈E,
−→
E ,+〉 be an affine space.

(1) A nonempty subset V of E is an affine subspace
iff, for every point a ∈ V , the set

−→
Va = {−→ax | x ∈ V }

is a subspace of
−→
E . Consequently, V = a +

−→
Va .

Furthermore,

−→
V = {−→xy | x, y ∈ V }

is a subspace of
−→
E and

−→
Va =

−→
V for all a ∈ E.

Thus, V = a +
−→
V .

(2) For any subspace
−→
V of

−→
E , for any a ∈ E, the set

V = a +
−→
V is an affine subspace.

The subspace
−→
V associated with an affine subspace V is

called the direction of V .
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It is clear that the map +:V × −→
V → V induced by

+:E×−→
E → E confers to 〈V,−→V ,+〉 an affine structure.

E
−→
E

a

V = a +
−→
V

−→
V

Figure 5.5: An affine subspace V and its direction
−→
V

By the dimension of the subspace V , we mean the dimen-

sion of
−→
V .

An affine subspace of dimension 1 is called a line, and an
affine subspace of dimension 2 is called a plane.
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An affine subspace of codimension 1 is called an hyper-
plane.

We say that two affine subspaces U and V are parallel

if their directions are identical. Equivalently, since
−→
U =

−→
V , we have U = a+

−→
U , and V = b+

−→
U , for any a ∈ U

and any b ∈ V , and thus, V is obtained from U by the

translation
−→
ab.

In general, when we talk about n points a1, . . . , an, we
mean the sequence (a1, . . . , an), and not the set {a1, . . . , an}
(the ai’s need not be distinct).

We say that three points a, b, c are collinear , if the vec-

tors
−→
ab and −→ac are linearly dependent.

If two of the points a, b, c are distinct, say a 6= b, then

there is a unique λ ∈ R, such that −→ac = λ
−→
ab, and we

define the ratio
−→ac−→
ab

= λ.

We say that four points a, b, c, d are coplanar , if the vec-

tors
−→
ab,−→ac, and −→

ad, are linearly dependent.
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Lemma 5.3.3 Given an affine space 〈E,
−→
E ,+〉, for

any family (ai)i∈I of points in E, the set V of barycen-
ters

∑
i∈I λiai (where

∑
i∈I λi = 1) is the smallest

affine subspace containing (ai)i∈I.

Given a nonempty subset S of E, the smallest affine sub-
space of E generated by S is often denoted as 〈S〉. For
example, a line specified by two distinct points a and b is
denoted as 〈a, b〉, or even (a, b), and similarly for planes,
etc.

Remarks : Since it can be shown that the barycenter of
n weighted points can be obtained by repeated computa-
tions of barycenters of two weighted points, a nonempty
subset V of E is an affine subspace iff for every two points
a, b ∈ V , the set V contains all barycentric combinations
of a and b.

If V contains at least two points, V is an affine subspace
iff for any two distinct points a, b ∈ V , the set V contains
the line determined by a and b, that is, the set of all points
(1− λ)a + λb, λ ∈ R.
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5.4 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in
vector spaces, we have the notion of affine independence.

Given a family (ai)i∈I of points in an affine space E, we
will reduce the notion of (affine) independence of these
points to the (linear) independence of the families
(−−→aiaj)j∈(I−{i}) of vectors obtained by choosing any ai as
an origin.

First, the following lemma shows that it sufficient to con-
sider only one of these families.

Lemma 5.4.1 Given an affine space 〈E,
−→
E ,+〉, let

(ai)i∈I be a family of points in E. If the family
(−−→aiaj)j∈(I−{i}) is linearly independent for some i ∈ I,
then (−−→aiaj)j∈(I−{i}) is linearly independent for every
i ∈ I.
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Definition 5.4.2 Given an affine space 〈E,
−→
E ,+〉, a

family (ai)i∈I of points in E is affinely independent if
the family (−−→aiaj)j∈(I−{i}) is linearly independent for some
i ∈ I .

Definition 5.4.2 is reasonable, since by Lemma 5.4.1, the
independence of the family (−−→aiaj)j∈(I−{i}) does not de-
pend on the choice of ai.

A crucial property of linearly independent vectors

(−→u1 , . . . ,−→um) is that if a vector −→v is a linear combination

−→v =
m∑

i=1

λi
−→ui

of the −→ui , then the λi are unique. A similar result holds
for affinely independent points.
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Lemma 5.4.3 Given an affine space 〈E,
−→
E ,+〉, let

(a0, . . . , am) be a family of m+1 points in E. Let x ∈
E, and assume that x =

∑m
i=0 λiai, where

∑m
i=0 λi = 1.

Then, the family (λ0, . . . , λm) such that x =
∑m

i=0 λiai
is unique iff the family (−−→a0a1, . . . ,

−−→a0am) is linearly in-
dependent.

E
−→
E

a0 a1

a2

−−→a0a1

−−→a0a2

Figure 5.6: Affine independence and linear independence

Lemma 5.4.3 suggests the notion of affine frame.
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Let 〈E,
−→
E ,+〉 be a nonempty affine space, and let

(a0, . . . , am) be a family of m + 1 points in E. The
family (a0, . . . , am) determines the family of m vectors

(−−→a0a1, . . . ,
−−→a0am) in

−→
E .

Conversely, given a point a0 in E and a family of m

vectors (−→u1 , . . . ,−→um) in
−→
E , we obtain the family ofm+1

points (a0, . . . , am) in E, where ai = a0+
−→ui , 1 ≤ i ≤ m.

Thus, for any m ≥ 1, it is equivalent to consider a
family of m + 1 points (a0, . . . , am) in E, and a pair

(a0, (
−→u1 , . . . ,−→um)), where the −→ui are vectors in

−→
E .
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When (−−→a0a1, . . . ,
−−→a0am) is a basis of

−→
E , then, for every

x ∈ E, since x = a0 +
−→a0x, there is a unique family

(x1, . . . , xm) of scalars, such that

x = a0 + x1
−−→a0a1 + · · · + xm

−−→a0am.

The scalars (x1, . . . , xm) are coordinates with respect to
(a0, (

−−→a0a1, . . . ,
−−→a0am)). Since

x = a0 +

m∑

i=1

xi
−−→a0ai iff x = (1−

m∑

i=1

xi)a0 +

m∑

i=1

xiai,

x ∈ E can also be expressed uniquely as

x =
m∑

i=0

λiai

with
∑m

i=0 λi = 1, and where λ0 = 1 −∑m
i=1 xi, and

λi = xi for 1 ≤ i ≤ m.

The scalars (λ0, . . . , λm) are also certain kinds of coordi-
nates with respect to (a0, . . . , am).
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Definition 5.4.4 Given an affine space 〈E,
−→
E ,+〉, an

affine frame with origin a0 is a family (a0, . . . , am) of
m + 1 points in E such that (−−→a0a1, . . . ,

−−→a0am) is a basis

of
−→
E . The pair (a0, (

−−→a0a1, . . . ,
−−→a0am)) is also called an

affine frame with origin a0.

Then, every x ∈ E can be expressed as

x = a0 + x1
−−→a0a1 + · · · + xm

−−→a0am

for a unique family (x1, . . . , xm) of scalars, called the co-
ordinates of x w.r.t. the affine frame
(a0, (

−−→a0a1, . . . ,
−−→a0am)).

Furthermore, every x ∈ E can be written as

x = λ0a0 + · · · + λmam

for some unique family (λ0, . . . , λm) of scalars such that
λ0 + · · ·+ λm = 1 called the barycentric coordinates of
x with respect to the affine frame (a0, . . . , am).
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The coordinates (x1, . . . , xm) and the barycentric coor-
dinates (λ0, . . . , λm) are related by the equations λ0 =
1−∑m

i=1 xi and λi = xi, for 1 ≤ i ≤ m.

An affine frame is called an affine basis by some authors.
The figure below shows affine frames for |I| = 0, 1, 2, 3.

a0

a0 a1

a0 a1

a2

a0

a3

a2

a1

Figure 5.7: Examples of affine frames.
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A family of two points (a, b) in E is affinely independent

iff
−→
ab 6= −→

0 , iff a 6= b. If a 6= b, the affine subspace
generated by a and b is the set of all points (1−λ)a+λb,
which is the unique line passing through a and b.

A family of three points (a, b, c) in E is affinely indepen-

dent iff
−→
ab and −→ac are linearly independent, which means

that a, b, and c are not on a same line (they are not
collinear). In this case, the affine subspace generated by
(a, b, c) is the set of all points (1 − λ − µ)a + λb + µc,
which is the unique plane containing a, b, and c.

A family of four points (a, b, c, d) in E is affinely indepen-

dent iff
−→
ab, −→ac, and −→

ad are linearly independent, which
means that a, b, c, and d are not in a same plane (they
are not coplanar). In this case, a, b, c, and d, are the
vertices of a tetrahedron.
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Given n + 1 affinely independent points (a0, . . . , an) in
E, we can consider the set of points λ0a0 + · · · + λnan,
where λ0 + · · ·+ λn = 1 and λi ≥ 0, λi ∈ R. Such affine
combinations are called convex combinations . This set
is called the convex hull of (a0, . . . , an) (or n-simplex
spanned by (a0, . . . , an)).

When n = 1, we get the segment between a0 and a1,
including a0 and a1.

When n = 2, we get the interior of the triangle whose ver-
tices are a0, a1, a2, including boundary points (the edges).

When n = 3, we get the interior of the tetrahedron whose
vertices are a0, a1, a2, a3, including boundary points (faces
and edges).
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The set

{a0+λ1
−−→a0a1+· · ·+λn

−−→a0an | where 0 ≤ λi ≤ 1 (λi ∈ R)},
is called the parallelotope spanned by (a0, . . . , an). When
E has dimension 2, a parallelotope is also called a paral-
lelogram , and when E has dimension 3, a parallelepiped .

A parallelotope is shown in figure 5.8: it consists of the
points inside of the parallelogram (a0, a1, a2, d), including
its boundary.

a0 a1

da2

Figure 5.8: A parallelotope

More generally, we say that a subset V of E is convex ,
if for any two points a, b ∈ V , we have c ∈ V for every
point c = (1− λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R).
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5.5 Affine Maps

Corresponding to linear maps, we have the notion of an
affine map.

Definition 5.5.1 Given two affine spaces 〈E,
−→
E ,+〉 and

〈E ′,
−→
E ′ ,+′〉, a function f :E → E ′ is an affine map iff

for every family (ai)i∈I of points in E, for every family
(λi)i∈I of scalars such that

∑
i∈I λi = 1, we have

f

(∑

i∈I
λiai

)
=
∑

i∈I
λif(ai).

In other words, f preserves affine combinations (barycen-
ters).

Affine maps can be obtained from linear maps as follows.
For simplicity of notation, the same symbol + is used for
both affine spaces (instead of using both + and +′).
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Given any point a ∈ E, any point b ∈ E ′, and any linear

map h:
−→
E →

−→
E ′ , the map f :E → E ′ defined such that

f(a +−→v ) = b + h(−→v )

is an affine map.

As a more concrete example, the map

(
x1
x2

)
7→
(
1 2
0 1

)(
x1
x2

)
+

(
3
1

)

defines an affine map in A2. It is a “shear” followed
by a translation. The effect of this shear on the square
(a, b, c, d) is shown in figure 5.9. The image of the square
(a, b, c, d) is the parallelogram (a′, b′, c′, d′).

a b

cd

a′ b′

c′d′

Figure 5.9: The effect of a shear

Let us consider one more example.
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The map

(
x1
x2

)
7→
(
1 1
1 3

)(
x1
x2

)
+

(
3
0

)

is an affine map.

Since we can write

(
1 1
1 3

)
=
√
2

( √
2
2 −

√
2
2√

2
2

√
2
2

)(
1 2
0 1

)
,

this affine map is the composition of a shear, followed by a
rotation of angle π/4, followed by a magnification of ratio√
2, followed by a translation. The effect of this map on

the square (a, b, c, d) is shown in figure 5.10. The image
of the square (a, b, c, d) is the parallelogram (a′, b′, c′, d′).

a b

cd

a′

b′

c′

d′

Figure 5.10: The effect of an affine map



164 CHAPTER 5. AFFINE GEOMETRY

The following lemma shows the converse of what we just
showed. Every affine map is determined by the image of
any point and a linear map.

Lemma 5.5.2 Given an affine map f :E → E ′, there

is a unique linear map
−→
f :

−→
E →

−→
E ′, such that

f(a +−→v ) = f(a) +
−→
f (−→v ),

for every a ∈ E and every −→v ∈ −→
E .

The unique linear map
−→
f :

−→
E →

−→
E ′ given by lemma

5.5.2 is the linear map associated with the affine map
f .
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Note that the condition

f(a +−→v ) = f(a) +
−→
f (−→v ),

for every a ∈ E and every −→v ∈ −→
E , can be stated equiv-

alently as

f(x) = f(a) +
−→
f (−→ax), or

−−−−−→
f(a)f(x) =

−→
f (−→ax),

for all a, x ∈ E.

E
−→
E

E ′ −→
E ′

a

f(a)

a +−→v

f(a) +
−→
f (−→v )

= f(a+−→v )

−→v

−→
f (−→v )

f −→
f

Figure 5.11: An affine map f and its associated linear map
−→
f
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Lemma 5.5.2 shows that for any affine map f :E → E ′,
there are points a ∈ E, b ∈ E ′, and a unique linear map
−→
f :

−→
E →

−→
E ′ , such that

f(a +−→v ) = b +
−→
f (−→v ),

for all −→v ∈ −→
E (just let b = f(a), for any a ∈ E).

Since an affine map preserves barycenters, and since an
affine subspace V is closed under barycentric combina-
tions, the image f(V ) of V is an affine subspace in E ′.

So, for example, the image of a line is a point or a line,
the image of a plane is either a point, a line, or a plane.

Affine maps for which
−→
f is the identity map are called

translations . Indeed, if
−→
f = id, it is easy to show that

for any two points a, x ∈ E,

f(x) = x +
−−−→
af(a).



5.5. AFFINE MAPS 167

It is easily verified that the composition of two affine maps
is an affine map.

Also, given affine maps f :E → E ′ and g:E ′ → E ′′, we
have

g(f(a+−→v )) = g(f(a)+
−→
f (−→v )) = g(f(a))+−→g (

−→
f (−→v )),

which shows that
−−−→
(g ◦ f) = −→g ◦ −→f .

It is easy to show that an affine map f :E → E ′ is injec-

tive iff
−→
f :

−→
E →

−→
E ′ is injective, and that f :E → E ′ is

surjective iff
−→
f :

−→
E →

−→
E ′ is surjective.

An affine map f :E → E ′ is constant iff
−→
f :

−→
E →

−→
E ′ is

the null (constant) linear map equal to
−→
0 for all−→v ∈ −→

E .
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IfE is an affine space of dimensionm, and (a0, a1, . . . , am)
is an affine frame for E, for any other affine space F , for
any sequence (b0, b1, . . . , bm) of m+ 1 points in F , there
is a unique affine map f :E → F such that f(ai) = bi,
for 0 ≤ i ≤ m.

The following diagram illustrates the above result when
m = 2.

a0 a1

a2

λ0a0 + λ1a1 + λ2a2

b0

b1 b2

λ0b0 + λ1b1 + λ2b2

Figure 5.12: An affine map mapping a0, a1, a2 to b0, b1, b2.

Using affine frames, affine maps can be represented in
terms of matrices.
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We explain how an affine map f :E → E is represented
with respect to a frame (a0, . . . , an) in E.

Since

f(a0 +
−→x ) = f(a0) +

−→
f (−→x )

for all −→x ∈ −→
E , we have

−−−−−−−−→
a0f(a0 +

−→x ) =
−−−−→
a0f(a0) +

−→
f (−→x ).

Since −→x ,
−−−−→
a0f(a0), and

−−−−−−−−→
a0f(a0 +

−→x ), can be expressed
as

−→x = x1
−−→a0a1 + · · · + xn

−−→a0an,−−−−→
a0f(a0) = b1

−−→a0a1 + · · · + bn
−−→a0an,−−−−−−−−→

a0f(a0 +
−→x ) = y1

−−→a0a1 + · · · + yn
−−→a0an,

if A = (ai j) is the n×n-matrix of the linear map
−→
f over

the basis (−−→a0a1, . . . ,
−−→a0an), letting x, y, and b denote the

column vectors of components (x1, . . . , xn), (y1, . . . , yn),
and (b1, . . . , bn),
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−−−−−−−−→
a0f(a0 +

−→x ) =
−−−−→
a0f(a0) +

−→
f (−→x )

is equivalent to
y = Ax + b.

Note that b 6= 0 unless f(a0) = a0. Thus, f is generally
not a linear transformation, unless it has a fixed point ,
i.e., there is a point a0 such that f(a0) = a0. The vector
b is the “translation part” of the affine map.

Affine maps do not always have a fixed point. Obviously,
nonnull translations have no fixed point. A less trivial
example is given by the affine map

(
x1
x2

)
7→
(
1 0
0 −1

)(
x1
x2

)
+

(
1
0

)
.

This map is a reflection about the x-axis followed by a
translation along the x-axis.
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The affine map

(
x1
x2

)
7→
(

1 −
√
3√

3
4

1
4

)(
x1
x2

)
+

(
1
1

)

can also be written as

(
x1
x2

)
7→
(
2 0
0 1

2

)(
1
2

−
√
3
2√

3
2

1
2

)(
x1
x2

)
+

(
1
1

)
,

which shows that it is the composition of a rotation of
angle π/3, followed by a stretch (by a factor of 2 along the
x-axis, and by a factor of 1/2 along the y-axis), followed
by a translation. It is easy to show that this affine map
has a unique fixed point.
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On the other hand, the affine map

(
x1
x2

)
7→
(

8
5 −6

5
3
10

2
5

)(
x1
x2

)
+

(
1
1

)

has no fixed point, even though

(
8
5

−6
5

3
10

2
5

)
=

(
2 0
0 1

2

)(
4
5

−3
5

3
5

4
5

)
,

and the second matrix is a rotation of angle θ such that
cos θ = 4

5 and sin θ = 3
5.
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There is a useful trick to convert the equation y = Ax+b
into what looks like a linear equation. The trick is to
consider an (n + 1) × (n + 1)-matrix. We add 1 as the
(n+1)th component to the vectors x, y, and b, and form
the (n + 1)× (n + 1)-matrix

(
A b
0 1

)

so that y = Ax + b is equivalent to

(
y
1

)
=

(
A b
0 1

)(
x
1

)
.

This trick is very useful in kinematics and dynamics,
where A is a rotation matrix. Such affine maps are called
rigid motions .
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If f :E → E ′ is a bijective affine map, given any three
collinear points a, b, c in E, with a 6= b, where say, c =
(1 − λ)a + λb, since f preserves barycenters, we have
f(c) = (1−λ)f(a)+λf(b), which shows that f(a), f(b), f(c)
are collinear in E ′.

There is a converse to this property, which is simpler to
state when the ground field is K = R.

The converse states that given any bijective function
f :E → E ′ between two real affine spaces of the same
dimension n ≥ 2, if f maps any three collinear points to
collinear points, then f is affine. The proof is rather long
(see Berger [?] or Samuel [?]).
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Given three collinear points where a, b, c, where a 6= c,
we have b = (1 − β)a + βc for some unique β, and we
define the ratio of the sequence a, b, c, as

ratio(a, b, c) =
β

(1− β)
=

−→
ab
−→
bc
,

provided that β 6= 1, i.e. that b 6= c. When b = c, we
agree that ratio(a, b, c) = ∞.

We warn our readers that other authors define the ratio of

a, b, c as−ratio(a, b, c) =
−→
ba−→
bc
. Since affine maps preserves

barycenters, it is clear that affine maps preserve the ratio
of three points.
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5.6 Affine Groups

We now take a quick look at the bijective affine maps.

Given an affine space E, the set of affine bijections
f :E → E is clearly a group, called the affine group of
E, and denoted as GA(E).

Recall that the group of bijective linear maps of the vector

space
−→
E is denoted as GL(

−→
E ). Then, the map f 7→ −→

f

defines a group homomorphism L: GA(E) → GL(
−→
E ).

The kernel of this map is the set of translations on E.

The subset of all linear maps of the form λ idE, where

λ ∈ R−{0}, is a subgroup of GL(
−→
E ), and is denoted as

R∗idE.
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The subgroup DIL(E) = L−1(R∗idE) of GA(E) is par-
ticularly interesting. It turns out that it is the disjoint
union of the translations and of the dilatations of ratio
λ 6= 1.

The elements of DIL(E) are called affine dilatations (or
dilations).

Given any point a ∈ E, and any scalar λ ∈ R, a dilata-
tion (or central dilatation, or magnification, or ho-
mothety) of center a and ratio λ, is a map Ha,λ defined
such that

Ha,λ(x) = a + λ−→ax,
for every x ∈ E.

Observe that Ha,λ(a) = a, and when λ 6= 0 and x 6= a,
Ha,λ(x) is on the line defined by a and x, and is obtained
by “scaling” −→ax by λ. When λ = 1, Ha,1 is the identity.
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Note that
−−→
Ha,λ = λ idE. When λ 6= 0, it is clear that

Ha,λ is an affine bijection.

It is immediately verified that

Ha,λ ◦Ha,µ = Ha,λµ.

We have the following useful result.

Lemma 5.6.1 Given any affine space E, for any affine

bijection f ∈ GA(E), if
−→
f = λ idE, for some λ ∈ R∗

with λ 6= 1, then there is a unique point c ∈ E such
that f = Hc,λ.

Clearly, if
−→
f = idE, the affine map f is a translation.

Thus, the group of affine dilatations DIL(E) is the dis-
joint union of the translations and of the dilatations of
ratio λ 6= 0, 1. Affine dilatations can be given a purely
geometric characterization.
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5.7 Affine Hyperplanes

In section 5.3, we observed that the set L of solutions of
an equation

ax + by = c

is an affine subspace of A2 of dimension 1, in fact a line
(provided that a and b are not both null).

It would be equally easy to show that the set P of solu-
tions of an equation

ax + by + cz = d

is an affine subspace of A3 of dimension 2, in fact a plane
(provided that a, b, c are not all null).

More generally, the set H of solutions of an equation

λ1x1 + · · · + λmxm = µ

is an affine subspace of Am, and if λ1, . . . , λm are not all
null, it turns out that it is a subspace of dimension m− 1
called a hyperplane.
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We can interpret the equation

λ1x1 + · · · + λmxm = µ

in terms of the map f :Rm → R defined such that

f(x1, . . . , xm) = λ1x1 + · · · + λmxm − µ

for all (x1, . . . , xm) ∈ Rm.

It is immediately verified that this map is affine, and the
set H of solutions of the equation

λ1x1 + · · · + λmxm = µ

is the null set, or kernel, of the affine map f :Am → R,
in the sense that

H = f−1(0) = {x ∈ Am | f(x) = 0},
where x = (x1, . . . , xm).

Thus, it is interesting to consider affine forms , which are
just affine maps f :E → R from an affine space to R.
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Unlike linear forms f ∗, for which Ker f ∗ is never empty

(since it always contains the vector
−→
0 ), it is possible that

f−1(0) = ∅, for an affine form f .

Recall the characterization of hyperplanes in terms of lin-
ear forms.

Given a vector space E, a linear map f :E → R is called
a linear form . The set of all linear forms f :E → R is a
vector space called the dual space of E, and denoted as
E∗.

Hyperplanes are precisely the Kernels of nonnull linear
forms.



182 CHAPTER 5. AFFINE GEOMETRY

Lemma 5.7.1 Let E be a vector space. The following
properties hold:

(a) Given any nonnull linear form f ∈ E∗, its kernel
H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ∈ E∗ such that H = Ker f .

(c) Given any hyperplane H in E and any (nonnull)
linear form f ∈ E∗ such that H = Ker f , for every
linear form g ∈ E∗, H = Ker g iff g = λf for some
λ 6= 0 in R.

Going back to an affine space E, given an affine map
f :E → R, we also denote f−1(0) as Ker f , and we call
it the kernel of f . Recall that an (affine) hyperplane is
an affine subspace of codimension 1.

Affine hyperplanes are precisely the Kernels of noncon-
stant affine forms.



5.7. AFFINE HYPERPLANES 183

Lemma 5.7.2 Let E be an affine space. The follow-
ing properties hold:

(a) Given any nonconstant affine form f :E → R, its
kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant
affine form f :E → R such that H = Ker f . For
any other affine form g:E → R such that H =
Ker g, there is some λ ∈ R such that g = λf (with
λ 6= 0).

(c) Given any hyperplane H in E and any (noncon-
stant) affine form f :E → R such that H = Ker f ,
every hyperplane H ′ parallel to H is defined by a
nonconstant affine form g such that g(a) = f(a)−
λ, for all a ∈ E, for some λ ∈ R.
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Chapter 6

Multiaffine Maps and Polar Forms

6.1 Multiaffine Maps

Let E1, . . . , Em, and F , be vector spaces over R, where
m ≥ 1.

Definition 6.1.1 A function f :E1 × . . .×Em → F is
a multilinear map (or an m-linear map), iff it is linear
in each argument, holding the others fixed.

Having reviewed the definition of a multilinear map, we
define multiaffine maps. Let E1, . . . , Em, and F , be affine
spaces over R, where m ≥ 1 (you may assume that the
Ei’s and F are of the form An, for some n ≥ 0. Also, we

use the notation
−→
E for the vector space Rn associated

with the affine space E = An.)

185
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Definition 6.1.2 A function f :E1 × . . .×Em → F is
a multiaffine map (or an m-affine map), iff it is affine
in each argument, that is, for every i, 1 ≤ i ≤ m, for
all a1 ∈ E1, . . . , ai−1 ∈ Ei−1, ai+1 ∈ Ei+1, . . . , am ∈
Em, a ∈ Ei, the map

a 7→ f(a1, . . . , ai−1, a, ai+1, . . . , am)

is an affine map, i.e. iff it preserves barycentric combina-
tions.

An arbitrary function f :Em → F is symmetric (where E
and F are arbitrary sets, not just vector spaces or affine
spaces), iff

f(xπ(1), . . . , xπ(m)) = f(x1, . . . , xm),

for every permutation π: {1, . . . , m} → {1, . . . , m}.

It is immediately verified that a multilinear map is also
a multiaffine map (viewing a vector space as an affine
space).



6.1. MULTIAFFINE MAPS 187

A good example of n-affine forms is the elementary sym-
metric functions. Given n variables x1, . . . , xn, for each
k, 0 ≤ k ≤ n, we define the k-th elementary symmetric
function σk(x1, . . . , xn), for short, σk, as follows:

σ0 = 1;

σ1 = x1 + · · · + xn;

σ2 = x1x2 + x1x3 + · · · + x1xn + x2x3 + · · · + xn−1xn;

σk =
∑

1≤i1<...<ik≤n xi1 · · ·xik;

σn = x1x2 · · · xn.
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A concise way to express σk is as follows:

σk =
∑

I⊆{1,...,n}
|I|=k

(∏

i∈I
xi

)
.

Note that σk consists of a sum of

(
n
k

)
= n!

k!(n−k)! terms

of the form xi1 · · · xik. As a consequence,

σk(x, x, . . . , x) =

(
n
k

)
xk.

Clearly, each σk is symmetric.

Multiaffine maps can be characterized in terms of multi-
linear maps. This is a generalization of lemma 5.5.2,

The proof is more complicated than we originally ex-
pected. It uses an adaptation of Cartan’s use of “suc-
cessive differences.”

We will not present this result here, and instead, give a
special version later that will be enough for our purposes
(see Lemma 6.2.3).
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6.2 Affine Polynomials, and Polar Forms

The beauty and usefulness of symmetric affine maps lies is
the fact that these maps can be used to define the notion
of a polynomial function from an affine (or vector) space
E of any dimension to an affine (or vector) space F of
any dimension.

Definition 6.2.1 Given two affine spaces E and F , an
affine polynomial function of polar degree m, for short,
an affine polynomial of polar degree m, is a map
h:E → F , such that there is some symmetric m-affine
map f :Em → F , called the m-polar form of h, with

h(a) = f(a, . . . , a︸ ︷︷ ︸
m

),

for all a ∈ E.

Remark: Note that Definition 6.2.1 only asks for the
existence of a symmetric multiaffine map f . Thus, it
is a priori possible that there exists distinct symmetric
multiaffine maps f and g so that

f(a, · · · , a) = g(a, · · · , a)
for all a ∈ E. In fact, this is not so! We will prove
uniqueness of the symmetric multiaffine map f defining
an affine polynomial map h.
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A homogeneous polynomial function of degree m, is a

map h:
−→
E → −→

F , such that there is some nonnull sym-

metric m-linear map f :
−→
Em → −→

F , called the polar form
of h, with

h(−→v ) = f(−→v , . . . ,−→v︸ ︷︷ ︸
m

),

for all −→v ∈ −→
E .

A polynomial function of polar degree m, is a map

h:
−→
E → −→

F , such that there are m symmetric k-linear

map fk:
−→
Ek → −→

F , 1 ≤ k ≤ m, and some f0 ∈
−→
F , with

h(−→v ) = fm(
−→v , . . . ,−→v︸ ︷︷ ︸

m

) +

fm−1(
−→v , . . . ,−→v︸ ︷︷ ︸

m−1

) + · · · + f1(
−→v ) + f0,

for all −→v ∈ −→
E .
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� Instead of defining polynomial maps of degree exactly
m (as Cartan does), we define polynomial maps of de-

gree at most m. For example, if
−→
E = Rn and

−→
F = R,

we have the bilinear map f : (Rn)2 → R (inner product),
defined such that

f((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + x2y2 + · · ·+ xnyn.

The corresponding polynomial h:Rn → R, such that

h(x1, . . . , xn) = x21 + x22 + · · · + x2n,

is a polynomial of total degree 2 in n variables.

However the triaffine map f :R3 → R defined such that

f(x, y, z) = xy + yz + xz,

induces the polynomial h:R → R such that

h(x) = 3x2,

which is of polar degree 3, but a polynomial of degree 2
in x.
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Let us see what are the homogeneous polynomials of de-

gree m, when
−→
E is a vector space of finite dimension n,

and
−→
F is a vector space (readers who are nervous, may

assume for simplicity that
−→
F = R).

Let (−→e1 , . . . ,−→en ) be a basis of
−→
E .

Lemma 6.2.2 Given any vector space
−→
E of finite

dimension n, and any vector space
−→
F , for any ba-

sis (−→e1 , . . . ,−→en ) of
−→
E , for any symmetric multilinear

map f :
−→
Em → −→

F , for any m vectors

−→vj = v1, j
−→e1 + · · · + vn, j

−→en ∈ −→
E ,

we have

f(−→v1 , . . . ,−→vm) =
∑

I1∪...∪In={1,...,m}
Ii∩Ij=∅, i 6=j
1≤i,j≤n


∏

i1∈I1
v1, i1


 · · ·


∏

in∈In
vn, in




f(−→e1 , . . . ,−→e1︸ ︷︷ ︸
|I1|

, . . . ,−→en , . . . ,−→en︸ ︷︷ ︸
|In|

),
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and for any −→v ∈ −→
E , the homogeneous polynomial

function h associated with f is given by

h(−→v ) =
∑

k1+···+kn=m
0≤ki, 1≤i≤n

(
m

k1, . . . , kn

)
vk11 · · · vknn

f(−→e1 , . . . ,−→e1︸ ︷︷ ︸
k1

, . . . ,−→en , . . . ,−→en︸ ︷︷ ︸
kn

).
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Thus, lemma 6.2.2 shows that we can write h(−→v ) as

h(−→v ) =
∑

k1+···+kn=m
0≤ki, 1≤i≤n

vk11 · · · vknn ck1,...,kn,

for some “coefficients” ck1,...,kn ∈ −→
F , which are vectors.

When
−→
F = R, the homogeneous polynomial function h

of degree m in n arguments v1, . . . , vn agrees with the
notion of polynomial function defined by a homogeneous
polynomial. Indeed, h is the homogeneous polynomial
function induced by the homogeneous polynomial of de-
gree m in the variables X1, . . . , Xn,

∑

(k1,...,kn), kj≥0
k1+···+kn=m

ck1,...,knX
k1
1 · · ·Xkn

n .

Thus, when
−→
E = Rn and

−→
F = R, the notion of (affine)

polynomial of polar degreem in n arguments, agrees with
the notion of polynomial function induced by a polyno-
mial of degree ≤ m in n variables (X1, . . . , Xn).
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Lemma 6.2.3 Given any affine space E of finite di-
mension n, and any affine space F , for any basis

(−→e1 , . . . ,−→en ) of
−→
E , for any symmetric multiaffine map

f :Em → F , for any m vectors

−→vj = v1, j
−→e1 + · · · + vn, j

−→en ∈ −→
E ,

for any points a1, . . . , am ∈ E, we have

f(a1 +
−→v1 , . . . , am +−→vm) = b +

∑

1≤p≤m

∑

I1∪...∪In={1,...,p}
Ii∩Ij=∅, i6=j
1≤i,j≤n


∏

i1∈I1
v1, i1


 · · ·


∏

in∈In
vn, in


 −→w |I1|,...,|In|,

for some b ∈ F , and some −→w |I1|,...,|In| ∈
−→
F , and for

any a ∈ E, and −→v ∈ −→
E , the affine polynomial func-

tion h associated with f is given by

h(a +−→v ) = b +
∑

1≤p≤m

∑

k1+···+kn=p
0≤ki, 1≤i≤n

vk11 · · · vknn −→w k1,...,kn,

for some b ∈ F , and some −→w k1,...,kn ∈
−→
F .
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Lemma 6.2.3 shows the crucial role played by homoge-
neous polynomials. We could have taken the form of an
affine map given by this lemma as a definition, when E
is of finite dimension.

Recall that the canonical affine space associated with the
field R is denoted as A.

Definition 6.2.4 A (parameterized) polynomial curve
in polar form of degree m is an affine polynomial map
F :A → E of polar degree m, defined by its polar form
which is some symmetricm-affine map f :Am → E , where
A is the real affine line, and E is any affine space (of
dimension at least 2).

Given any r, s ∈ A, with r < s, a (parameterized) poly-
nomial curve segment F ([r, s]) in polar form of degree
m is the restriction F : [r, s] → E of an affine polynomial
curve F :A → E in polar form of degree m. We define
the trace of F as F (A), and the the trace of F [r, s] as
F ([r, s]).
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Lemma 6.2.5 Given any sequence of m + 1 points
a0, . . . , am in some affine space E, there is a unique
polynomial curve F :A → E of degree m, whose polar
form f :Am → E satisfies the conditions

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

) = ak,

(where r, s ∈ A, r 6= s). Furthermore, the polar form
f of F is given by the formula

f(t1, . . . , tm) =
k=m∑

k=0

∑

I∪J={1,...,m}
I∩J=∅, |J |=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)
ak,

and F (t) is given by the formula

F (t) =
k=m∑

k=0

Bm
k [r, s](t) ak,

where the polynomials

Bm
k [r, s](t) =

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

are the Bernstein polynomials of degree m over [r, s].
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Remarkably, we can prove in full generality, that the polar
form f defining an affine polynomial h of degree m is
unique. All the ingredients to prove this result are in
Bourbaki [?] (chapter A.I, section §8.2, proposition 2),
and [?] (chapter A.IV, section §5.4, proposition 3), but
they are deeply buried!

Before plunging into the proof of lemma 6.2.6, you may
want to verify that for a polynomial h(X) of degree 2,
the polar form is given by the identity

f(x1, x2) =
1

2

[
4h
(x1 + x2

2

)
− h(x1)− h(x2)

]
.

You may also want to try working out on your own, a
formula giving the polar form for a polynomial h(X) of
degree 3. Note that when h(X) is a homogeneous poly-
nomial of degree 2, the above identity reduces to the (per-
haps more familiar) identity

f(x1, x2) =
1

2
[h(x1 + x2)− h(x1)− h(x2)] ,

used for passing from a quadratic form to a bilinear form.
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Lemma 6.2.6 Given two affine spaces E and F , for
any polynomial function h of degree m, the polar form
f :Em → F of h is unique, and is given by the follow-
ing expression:

f(a1, . . . , am) =
1

m!




∑

H⊆{1,...,m}
k=|H|, k≥1

(−1)m−k km h

(∑
i∈H ai
k

)

 .

It should be noted that lemma 6.2.6 is very general, since
it applies to arbitrary affine spaces, even of infinite di-
mension (for example, Hilbert spaces). The expression
of lemma 6.2.6 is far from being economical, since it con-
tains 2m−1 terms. In particular cases, it is often possible
to reduce the number of terms.

We now use lemma 6.2.6 to show that polynomials in one
or several variables are uniquely defined by polar forms
which are multiaffine maps.
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Lemma 6.2.7 The following properties hold.

(1) For every polynomial p(X) ∈ R[X ], of degree ≤ m,
there is a symmetric m-affine form f :Rm → R,
such that

p(x) = f(x, x, . . . , x)

for all x ∈ R. If p(X) ∈ R[X ] is a homogeneous
polynomial of degree exactly m, then the symmet-
ric m-affine form f is multilinear.

(2) For every polynomial p(X1, . . . , Xn) ∈
R[X1, . . . , Xn], of total degree ≤ m, there is a sym-
metric m-affine form f : (Rn)m → R, such that

p(x1, . . . , xn) = f(x, x, . . . , x),

for all x = (x1, . . . , xn) ∈ Rn. If p(X1, . . . , Xn) ∈
R[X1, . . . , Xn] is a homogeneous polynomial of to-
tal degree exactly m, then the symmetric m-affine
form f is multilinear.
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Proof . (1) It is enough to prove it for a monomial of the
form Xk, k ≤ m. Clearly,

f(x1, . . . , xm) =
k!(m− k)!

m!
σk

is a symmetricm-affine form satisfying the lemma (where
σk is the k-th elementary symmetric function, which con-

sists of

(
m
k

)
= m!

k!(m−k)! terms), and when k = m, we

get a multilinear map.

(2) It is enough to prove it for a homogeneous monomial

of the formXk1
1 · · ·Xkn

n , where ki ≥ 0, and k1+· · ·+kn =
d ≤ m. Let

f((x1, 1, . . . , xn, 1), . . . , (x1, m, . . . , xn,m)) =

k1! · · · kn!(m− d)!

m!

∑

I1∪...∪In⊆{1,...,m}
Ii∩Ij=∅, i6=j, |Ij|=kj


∏

i1∈I1
x1, i1


 · · ·


∏

in∈In
xn, in


 .

The idea is to split any subset of {1, . . . ,m} consisting of
d ≤ m elements into n disjoint subsets I1, . . . , In, where
Ij is of size kj (and with k1 + · · · + kn = d).
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As an example, if

p(X) = X3 + 3X2 + 5X − 1,

we get

f(x1, x2, x3) =

x1x2x3 + x1x2 + x1x3 + x2x3 +
5

3
(x1 + x2 + x3)− 1.

When n = 2, which corresponds to the case of surfaces,
we can give an expression which is easier to understand.
Writing U = X1 and V = X2, to minimize the number
of subscripts, given the monomial UhV k, with h + k =
d ≤ m, we get

f((u1, v1), . . . , (um, vm)) =

h!k!(m− (h + k))!

m!

∑

I∪J⊆{1,...,m}
I∩J=∅

|I|=h, |J |=k

(∏

i∈I
ui

)
∏

j∈J
vj


 .
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For a concrete example involving two variables, if

p(U, V ) = UV + U 2 + V 2,

we get

f((u1, v1), (u2, v2)) =
u1v2 + u2v1

2
+ u1u2 + v1v2.
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Theorem 6.2.8 There is an equivalence between poly-
nomials p(X1, . . . , Xn) ∈ R[X1, . . . , Xn], of total de-
gree ≤ m, and symmetric m-affine maps
f : (Rn)m → R, in the following sense:

(1) If f : (Rn)m → R is a symmetric m-affine map,
then the function p:Rn → R defined such that

p(x1, . . . , xn) = f(x, x, . . . , x)

for all x = (x1, . . . , xn) ∈ Rn, is a polynomial
(function) corresponding to a unique polynomial
p(X1, . . . , Xn) ∈ R[X1, . . . , Xn] of total degree ≤
m.
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(2) For every polynomial p(X1, . . . , Xn) ∈
R[X1, . . . , Xn], of total degree ≤ m, there is a unique
symmetric m-affine map f : (Rn)m → R, such that

p(x1, . . . , xn) = f(x, x, . . . , x)

for all x = (x1, . . . , xn) ∈ Rn.

Furthermore, when p(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is
a homogeneous polynomial of total degree exactly m,
the symmetricm-affine map f is multilinear, and con-
versely.
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We conclude this section by proving that the Bernstein
polynomials Bm

0 (t), . . . ,B
m
m(t) also form a basis of the

polynomials of degree ≤ m . For this, we express each ti,
0 ≤ i ≤ m, in terms of the Bernstein polynomials Bm

j (t)
(over [0, 1]).

ti =

j=m−i∑

j=0

(
i + j
i

)

(
m
i

) Bm
i+j(t).



Chapter 7

Polynomial Curves as Bézier Curves

7.1 The de Casteljau Algorithm For Polynomial Curves

An affine polynomial curve F :A → E of degree m, de-
fined by itsm-polar form f :Am → E , is completely deter-
mined by the sequence of m + 1 points bk = f(rm−k sk),
where r, s ∈ A, r 6= s, 0 ≤ k ≤ m, and we showed that

f(t1, . . . , tm) =

k=m∑

k=0

pk(t1, . . . , tm) f(r
m−k sk),

where the coefficient

pk(t1, . . . , tm) =
∑

I∪J={1,...,m}
I∩J=∅, card(J)=k

∏

i∈I

(
s− ti
s− r

)∏

j∈J

(
tj − r

s− r

)

of f(rm−k sk), is a symmetric m-affine function.

207
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The de Casteljau algorithm gives a geometric iterative
method for determining any point F (t) = f(t, . . . , t) on
the curve F specified by the sequence of control points
b0, b1, . . . , bm, where t ∈ A.

What’s good about the algorithm is that it does not as-
sume any prior knowledge of the curve. All that is given
is the sequence b0, b1, . . . , bm of m+1 control points, and
the idea is that we are trying to approximate the shape
of the polygonal line consisting of the m line segments
(b0, b1), (b1, b2), . . ., (bm−1, bm).

Let us review the case of polynomial cubic curves.
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As we observed, the computation of the point F (t) on a
polynomial cubic curve F can be arranged in a triangular
array, as shown below:

1 2 3
f(r, r, r)

f(r, r, t)
f(r, r, s) f(t, t, r)

f(r, t, s) f(t, t, t)
f(r, s, s) f(t, t, s)

f(t, s, s)
f(s, s, s)

The following diagram shows an example of the de Castel-
jau algorithm for computing the point F (t) on a cubic,
where r, s, and t, are arbitrary:
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F (r) = f(r, r, r)

f(r, r, s)

f(r, s, s)

F (s) = f(s, s, s)

f(r, r, t)

f(r, t, s)

f(t, s, s)

f(r, t, t) f(s, t, t)F (t) = f(t, t, t)

Figure 7.1: The de Casteljau algorithm

The general case for computing the point F (t) on the
curve F determined by the sequence of control points
b0, . . . , bm, where bk = f(rm−k sk), is shown below. We
will abbreviate

f(t, . . . , t︸ ︷︷ ︸
i

, r, . . . , r︸ ︷︷ ︸
j

, s, . . . , s︸ ︷︷ ︸
k

),

as f(tirjsk), where i + j + k = m.
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The point f(tjrm−i−jsi) is obtained at step i of phase j,
for 1 ≤ j ≤ m, 0 ≤ i ≤ m− j, by the interpolation step

f(tjrm−i−jsi) =(
s− t

s− r

)
f(tj−1rm−i−j+1si)+

(
t− r

s− r

)
f(tj−1rm−i−jsi+1).

In order to make the triangular array a bit more readable,
let us define the following points bi,j, used during the
computation:

bi,j =

{
bi if j = 0, 0 ≤ i ≤ m,
f(tjrm−i−jsi) if 1 ≤ j ≤ m, 0 ≤ i ≤ m− j.

Then, we have the following equations:

bi,j =

(
s− t

s− r

)
bi,j−1 +

(
t− r

s− r

)
bi+1,j−1.
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By lemma 6.2.5, we have an explicit formula giving any
point F (t) associated with a parameter t ∈ A, on the
unique polynomial curve F :A → E of degree m deter-
mined by the sequence of control points b0, . . . , bm. The
point F (t) is given by the formula

F (t) =

k=m∑

k=0

Bm
k [r, s](t) bk,

where the polynomials

Bm
k [r, s](t) =

(
m
k

)(
s− t

s− r

)m−k (
t− r

s− r

)k

are the Bernstein polynomials of degree m over [r, s].

Thus, the de Casteljau algorithm provides an iterative
method for computing F (t), without actually using the
Bernstein polynomials. This can be advantageous for nu-
merical stability.
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The de Casteljau algorithm is very easy to implement,
and we give below several versions in Mathematica .

The function badecas simply computes the point F (t)
on a polynomial curve F specified by a control polygon
cpoly (over [r, s]). The result is the point F (t).

The function decas computes the point F (t) on a polyno-
mial curve F specified by a control polygon cpoly (over
[r, s]), but also the shells of the de Casteljau diagram.
The output is a list consisting of two sublists, the first
one being the shells of the de Casteljau diagram, and the
second one being F (t) itself.

(* Performs general affine interpolation

between two points p1, p2 *)

(* w.r.t. affine basis [r, s], and

interpolating value t *)

lerp[p_List,q_List,r_,s_,t_] :=

(s - t)/(s - r) p + (t - r)/(s - r) q;
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(* computes a point F(t) on a curve using

the de Casteljau algorithm *)

(* this is the simplest version of de Casteljau *)

(* the auxiliary points involved in the algorithm

are not computed *)

badecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, b = {}, m, i, j},

(m = Length[bb] - 1;

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t]],

{i, 1, m - j + 1}

]; bb = b; b = {}, {j, 1, m}

];

bb[[1]]

)

];
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(* computes the point F(t) and the line segments involved in

computing F(t) using the de Casteljau algorithm *)

decas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, b = {},

m, i, j, lseg = {}, res},

(m = Length[bb] - 1;

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t]];

If[i > 1, lseg = Append[lseg, {b[[i - 1]], b[[i]]}]]

, {i, 1, m - j + 1}

]; bb = b; b = {}, {j, 1, m}

];

res := Append[lseg, bb[[1]]];

res

)

];
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The following function pdecas creates a list consisting of Mathematica line
segments and of the point of the curve, ready for display.

(* this function calls decas, and computes the line segments

in Mathematica, with colors *)

pdecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, pt, ll, res, i, l1, edge, lt, rt},

res = decas[bb, r, s, t];

pt = Last[res]; res = Drop[res, -1];

l1 = Length[res];

ll = {};

Do[

edge = res[[i]]; lt = edge[[1]];

rt = edge[[2]]; edge = {lt, rt};

ll = Append[ll, Line[edge]], {i, 1, l1}

];

res = Append[ll, {RGBColor[1,0,0], PointSize[0.01], Point[pt]}];

res

];
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7.2 Subdivision Algorithms for Polynomial Curves

We now consider the subdivision method. As we will see,
subdivision can be used to approximate a curve segment
using a polygon, and the convergence is very fast. Given
a sequence of control points b0, . . . , bm, and an interval
[r, s], for every t ∈ A, we saw how the de Casteljau
algorithm gives a way of computing the point b0,m on the
Bézier curve, and the computation can be conveniently
represented in triangular form:

Let us now assume that r < t < s. Observe that the two
diagonals

b0,0, b0,1, . . . , b0,j, . . . , b0,m,

and
b0,m, b1,m−1, . . . , bm−j,j, . . . , bm,0,

consist of m + 1 points.

We claim that these two sequences of control points spec-
ify the original curve.
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Indeed, if f is the polar form associated with the Bézier
curve specified by the sequence of control points b0, . . .,
bm over [r, s], g is the polar form associated with the
Bézier curve specified by the sequence of control points
b0,0, . . ., b0,j, . . ., b0,m over [r, t], and h is the polar form
associated with the Bézier curve specified by the sequence
of control points b0,m, . . ., bm−j,j, . . ., bm,0 over [t, s], since
f and g agree on the sequence of m + 1 points

b0,0, . . . , b0,j, . . . , b0,m,

and f and h agree on the sequence of m + 1 points

b0,m, . . . , bm−j,j, . . . , bm,0,

by lemma 6.2.5, we have f = g = h.
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The subdivision method can easily be implemented. Given
a polynomial curve F defined by a control polygon B =
(b0, . . . , bm) over an affine frame [r, s], for every t ∈ A,
we denote as B[r,t] the control polygon

b0,0, b0,1, . . . , b0,j, . . . , b0,m,

and as B[t,s] the control polygon

b0,m, b1,m−1, . . . , bm−j,j, . . . , bm,0.

The following Mathematica function returns a pair con-
sisting of B[r,t] and B[t,s], from an input control polygon
cpoly.
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(* Performs a single subdivision step

using the de Casteljau algorithm *)

(* Returns the control poly (f(r,...,r, t, ..., t)) and *)

(* (f(t, ..., t, s, ..., s)) *)

subdecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, b = {}, ud = {}, ld = {},

m, i, j, res},

(m = Length[bb] - 1; ud = {bb[[1]]}; ld = {bb[[m + 1]]};

Do[

Do[

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, t]],

{i, 1, m - j + 1}

];

ud = Append[ud, b[[1]]];

ld = Prepend[ld, b[[m - j + 1]]];

bb = b; b = {}, {j, 1, m}

];

res := Join[{ud},{ld}];

res

)

];
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In order to approximate the curve segment over [r, s], we
recursively apply subdivision to a list consisting originally
of a single control polygon. The function subdivstep

subdivides each control polygon in a list of control poly-
gons. The function subdiv performs n calls to subdivstep.
Finally, in order to display the resulting curve, the func-
tion makedgelis makes a list of Mathematica line seg-
ments from a list of control polygons.

(* subdivides each control polygon in a list

of control polygons *)

(* using subdecas. Uses t = (r + s)/2 *)

subdivstep[{poly__}, r_, s_] :=

Block[

{cpoly = {poly}, lpoly = {}, t, l, i},

(l = Length[cpoly]; t = (r + s)/2;

Do[

lpoly = Join[lpoly, subdecas[cpoly[[i]], r, s, t]] ,

{i, 1, l}

];

lpoly

)

];
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(* calls subdivstep n times *)

subdiv[{poly__}, r_, s_, n_] :=

Block[

{pol1 = {poly}, newp = {}, i},

(

newp = {pol1};

Do[

newp = subdivstep[newp, r, s], {i, 1, n}

];

newp

)

];

(* To create a list of line segments from a list

of control polygons *)

makedgelis[{poly__}] :=

Block[

{res, sl, newsl = {poly},

i, j, l1, l2},

(l1 = Length[newsl]; res = {};

Do[

sl = newsl[[i]]; l2 = Length[sl];

Do[If[j > 1, res = Append[res, Line[{sl[[j-1]], sl[[j]]}]]],

{j, 1, l2}

], {i, 1, l1}

];

res

)

];
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The subdivision method is illustrated by the following ex-
ample of a curve of degree 4 given by the control polygon

cpoly = ((0, −4), (10, 30), (5, −20), (0, 30), (10, −4)).

The following 6 pictures show polygonal approximations
of the curve segment over [0, 1] using subdiv, for n =
1, 2, 3, 4, 5, 6.



224 CHAPTER 7. POLYNOMIAL CURVES AS BÉZIER CURVES

Figure 7.2: Subdivision, 1 iteration
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Figure 7.3: Subdivision, 2 iterations
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Figure 7.4: Subdivision, 3 iterations
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Figure 7.5: Subdivision, 4 iterations
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Figure 7.6: Subdivision, 5 iterations
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Figure 7.7: Subdivision, 6 iterations
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Another nice application of the subdivision method is
that we can compute very cheaply the control polygon
B[a,b] over a new affine frame [a, b] of a polynomial curve
given by a control polygon B over [r, s]. Indeed, assuming
a 6= r, by subdividing once w.r.t. [r, s] using the param-
eter a, we get the control polygon B[r,a], and then we
reverse this control polygon and subdivide again w.r.t.
[a, r] using b, to get B[a,b]. When r = a, we subdivide
w.r.t. [r, s], using b.
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(* Computes the control polygon wrt new affine frame (a, b) *)

(* Assumes that a = (1 - lambda) r + lambda t and *)

(* that b = (1 - mu) r + mu t, wrt original frame (s, t *)

(* Returns control poly (f(a, ..., a, b, ..., b)) *)

newcpoly[{cpoly__}, r_, s_, a_, b_] :=

Block[

{poly = {cpoly}, m, i, pol1, pola, pol2, npoly, pt},

(

If[a =!= r, pol1 = subdecas[poly, r, s, a];

pola = pol1[[1]]; pol2 = {};

m = Length[pola];

Do[

pt = pola[[i]];

pol2 = Prepend[pol2, pt], {i, 1, m}

];

npoly = subdecas[pol2, a, r, b],

(* Print[" npoly: ", npoly] *)

npoly = subdecas[poly, r, s, b]

];

npoly[[1]]

)

];

The above function can be used to render curve segments
over intervals [a, b] different from the interval [r, s] over
which the original control polygon is defined.
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We consider one more property of Bézier curves, degree
raising . Given a Bézier curve F of polar degree m, and
specified by a sequence ofm+1 control points b0, . . . , bm,
it is sometimes necessary to view F as a curve of polar
degree m + 1. For example, certain algorithms can only
be applied to curve segments of the same degree. Or a
system may only accept curves of a specified degree, say
3, and thus, in order to use such a system on a curve of
lower degree, for example, a curve of degree 2, it may be
necessary to raise the (polar) degree of the curve.

Indeed, if F is defined by the polar form f :Am → E , the
polar form g:Am+1 → E that will yield the same curve
F , in the sense that

g(t, . . . , t︸ ︷︷ ︸
m+1

) = f(t, . . . , t︸ ︷︷ ︸
m

) = F (t),

is necessarily

g(t1, . . . , tm+1) =
1

m + 1


 ∑

1≤i1<...<im≤m+1

f(ti1, . . . , tim)


 .
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Instead of the above notation, the following notation is
often used,

g(t1, . . . , tm+1) =
1

m + 1

i=m+1∑

i=1

f(t1, . . . , t̂i, . . . , tm+1),

where the hat over the argument t̂i indicates that this
argument is omitted.

For example, if f is biaffine, we have

g(t1, t2, t3) =
f(t1, t2) + f(t1, t3) + f(t2, t3)

3
.

If F (and thus f) is specified by the m+1 control points
b0, . . . , bm, then F considered of degree m + 1 (and thus
g), is specified by m+ 2 control points b10, . . . , b

1
m+1, and

it is an easy exercise to show that the points b1j are given
in terms of the original points bi, by the equations:

b1i =
i

m + 1
bi−1 +

m + 1− i

m + 1
bi,

where 1 ≤ i ≤ m, with b10 = b0, and b1m+1 = bm.
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One can also raise the degree again, and so on. It can be
shown that the control polygons obtained by successive
degree raising, converge to the original curve segment.
However, this convergence is much slower than the con-
vergence obtained by subdivision, and it is not useful in
practice.
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7.3 The Progressive Version of the de Casteljau Algo-

rithm (the de Boor Algorithm)

When dealing with splines, it is convenient to consider
control points not just of the form f(rm−i si), but of the
form f(uk+1, . . . , uk+m), where the ui are real numbers
taken from a sequence 〈u1, . . . , u2m〉 of length 2m, satis-
fying certain inequality conditions. Let us begin with the
case m = 3.

Given a sequence 〈u1, u2, u3, u4, u5, u6〉, we say that this
sequence is progressive iff the inequalities indicated in
the following array hold:

u1 6=
u2 6= 6=
u3 6= 6= 6=

u4 u5 u6

Then, we consider the following four control points:

f(u1, u2, u3), f(u2, u3, u4), f(u3, u4, u5), f(u4, u5, u6).
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Observe that these points are obtained from the sequence
〈u1, u2, u3, u4, u5, u6〉, by sliding a window of length 3
over the sequence, from left to right.

We can compute any polar value f(t1, t2, t3) from the
above control points, using the following triangular array
obtained using the de Casteljau algorithm:

1 2 3
f(u1, u2, u3)

f(t1, u2, u3)
f(u2, u3, u4) f(t1, t2, u3)

f(t1, u3, u4) f(t1, t2, t3)
f(u3, u4, u5) f(t1, t2, u4)

f(t1, u4, u5)
f(u4, u5, u6)

The following diagram shows the computation of the po-
lar value f(t1, t2, t3), given the progressive sequence

〈u1, u2, u3, u4, u5, u6〉 :
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f(u1, u2, u3)

f(u2, u3, u4)

f(u3, u4, u5)

f(u4, u5, u6)

f(t1, u2, u3)

f(t1, u3, u4)

f(t1, u4, u5)

f(t1, t2, u3)

f(t1, t2, u4)

f(t1, t2, t3)

Figure 7.8: The de Casteljau algorithm, progressive case

In the general case, we have a sequence 〈u1, . . . , u2m〉 of
numbers ui ∈ R.

Definition 7.3.1 A sequence 〈u1, . . . , u2m〉 of numbers
ui ∈ R is progressive iff uj 6= um+i, for all j, and all i,

1 ≤ i ≤ j ≤ m. These m(m+1)
2 conditions correspond to

the lower triangular part of the following array:
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u1 6=
u2 6= 6=
...
uj 6= 6= . . . 6=
... . . . . . .
... . . . . . . 6=
... . . . . . . . . .

um−1 6= 6= . . . 6= . . . 6= . . . 6=
um 6= 6= . . . 6= . . . 6= . . . 6= 6=

um+1 um+2 . . . um+j . . . u2m−j+1 . . . u2m−1 u2m

The point f(t1 . . . tjui+j+1 . . . um+i) is obtained at step
i of phase j, for 1 ≤ j ≤ m, 0 ≤ i ≤ m − j, by the
interpolation step

f(t1 . . . tjui+j+1 . . . um+i) =(
um+i+1 − tj
um+i+1 − ui+j

)
f(t1 . . . tj−1ui+j . . . um+i)

+

(
tj − ui+j

um+i+1 − ui+j

)
f(t1 . . . tj−1ui+j+1 . . . um+i+1).



7.3. THE PROGRESSIVE VERSION OF THE DE CASTELJAU ALGORITHM 239

In order to make the above triangular array a bit more
readable, let us define the following points bi,j, used dur-
ing the computation:

bi,j = f(t1 . . . tjui+j+1 . . . um+i),

for 1 ≤ j ≤ m, 0 ≤ i ≤ m− j, with

bi,0 = f(ui+1, . . . , um+i),

for 0 ≤ i ≤ m. Then, we have the following equations:

bi,j =

(
um+i+1 − tj
um+i+1 − ui+j

)
bi,j−1+

(
tj − ui+j

um+i+1 − ui+j

)
bi+1,j−1.

The progressive version of the de Casteljau algorithm is
also called the de Boor algorithm . It is the major algo-
rithm used in dealing with splines.

One may wonder whether it is possible to give a closed
form for f(t1, . . . , tm), as computed by the progressive
case of the de Casteljau algorithm, and come up with a
version of lemma 6.2.5. This turns out to be difficult, as
the case m = 2 already reveals!
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We can still prove the following theorem generalizing lemma
6.2.5 to the progressive case. The easy half follows from
the progressive version of the de Casteljau algorithm, and
the converse will be proved later.

Theorem 7.3.2 Let 〈u1, . . . , u2m〉 be a progressive se-
quence of numbers ui ∈ R. Given any sequence of
m + 1 points b0, . . . , bm in some affine space E, there
is a unique polynomial curve F :A → E of degree m,
whose polar form f :Am → E satisfies the conditions

f(uk+1, . . . , um+k) = bk,

for every k, 0 ≤ k ≤ m.

There are at least two ways of proving the existence of
a curve satisfying the conditions of theorem 7.3.2. One
proof is fairly computational, and requires computing a
certain determinant, which turns out to be nonzero pre-
cisely because the sequence is progressive. The other
proof, due to Ramshaw, is more elegant and conceptual,
but it uses the more sophisticated concept of symmetric
tensor product.
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7.4 Derivatives of Polynomial Curves

In this section, it is assumed that E is some affine space
An, with n ≥ 2. Our intention is to give the formulae for
the derivatives of polynomial curves F :A → E in terms
of control points.

This characterization will be used in the next section deal-
ing with the conditions for joining polynomial curves with
Ck-continuity.

In this section, following Ramshaw, it will be convenient
to denote a point in A as a, to distinguish it from the
vector a ∈ R.

The unit vector 1 ∈ R is denoted as δ. When dealing
with derivatives, it is also more convenient to denote the

vector
−→
ab as b− a.
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Given a polynomial curve F :A → E , for any a ∈ A,
recall that the derivative DF (a) is the limit

lim
t→0, t6=0

F (a + tδ)− F (a)

t
,

if it exists.

� Recall that since F :A → E , where E is an affine space,

the derivative DF (a) of F at a is a vector in
−→E , and

not a point in E .

Since coefficients of the form m(m − 1) · · · (m − k + 1)
occur a lot when taking derivatives, following Knuth, it is
useful to introduce the falling power notation. We define
the falling power mk, as

mk = m(m− 1) · · · (m− k + 1),

for 0 ≤ k ≤ m, with m0 = 1, and with the convention
that mk = 0 when k > m.
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The following lemma giving the k-th derivative DkF (r)
of F at r in terms of polar values, can be shown.

Lemma 7.4.1 Given an affine polynomial function
F :A → E of polar degree m, for any r, s ∈ A, with
r 6= s, the k-th derivative DkF (r) can be computed
from the polar form f of F as follows, where 1 ≤ k ≤
m:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i f(r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

).

A proof is given in section 12.2. It is also possible to
obtain this formula by expressing F (r) in terms of the
Bernstein polynomials and computing their derivatives.

If F is specified by the sequence of m + 1 control points
bi = f(r m−i s i), 0 ≤ i ≤ m, the above lemma shows
that the k-th derivative DkF (r) of F at r, depends only
on the k + 1 control points b0, . . . , bk
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In terms of the control points b0, . . . , bk, the formula of
lemma 7.4.1 reads as follows:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i bi.

In particular, if b0 6= b1, then DF (r) is the velocity vector
of F at b0, and it is given by

DF (r) =
m

s− r

−−→
b0b1 =

m

s− r
(b1 − b0).

This shows that when b0 and b1 are distinct, the tangent
to the Bézier curve at the point b0 is the line determined
by b0 and b1.

Similarly, the tangent at the point bm is the line deter-
mined by bm−1 and bm (provided that these points are
distinct).
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More generally, the tangent at the current point F (t)
defined by the parameter t, is determined by the two
points

b0, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, r) and b1, m−1 = f(t, . . . , t︸ ︷︷ ︸
m−1

, s),

given by the de Casteljau algorithm. It can be shown
that

DF (t) =
m

s− r
(b1,m−1 − b0,m−1).

The acceleration vector D2F (r) is given by

D2F (r) =
m(m− 1)

(s− r)2
(
−−→
b0b2 − 2

−−→
b0b1)

=
m(m− 1)

(s− r)2
(b2 − 2b1 + b0).

More generally, if b0 = b1 = . . . = bk, and bk 6= bk+1, it
can be shown that the tangent at the point b0 is deter-
mined by the points b0 and bk+1.
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7.5 Joining Affine Polynomial Functions

When dealing with splines, we have several curve seg-
ments that need to be joined with certain required conti-
nuity conditions ensuring smoothness.

The weakest condition is no condition at all, called C−1-
continuity. This means that we don’t even care whether
F (q) = G(q), that is, there could be a discontinuity at
q. In this case, we say that q is a discontinuity knot .
The next weakest condition, called C0-continuity, is that
F (q) = G(q). In other words, we impose continuity at q,
but no conditions on the derivatives.

Definition 7.5.1 Two curve segments F ([p, q]) and
G[q, r]) of polar degree m are said to join with Ck-
continuity at q, where 0 ≤ k ≤ m, iff

DiF (q) = DiG(q),

for all i, 0 ≤ i ≤ k, where by convention,
D0F (q) = F (q), and D0G(q) = G(q).
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As we will see, for curve segments F and G of polar de-
gree m, Cm-continuity imposes that F = G, which is
too strong, and thus, we usually consider Ck-continuity,
where 0 ≤ k ≤ m − 1 (or even k = −1, as mentioned
above). The continuity conditions of definition 7.5.1 are
ususally referred to as parametric continuity . There are
other (more) useful kinds of continuity, for example geo-
metric continuity .

We can characterize Ck-continuity of joins of curve seg-
ments very conveniently in terms of polar forms. A more
conceptual proof of a slightly more general lemma, will
be given in section ??, using symmetric tensor products
(see lemma ??).
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Lemma 7.5.2 Given two intervals [p, q] and [q, r], where
p, q, r ∈ A, with p < q < r, and two affine curve seg-
ments F : [p, q] → E and G: [q, r] → E, of polar degree
m, the curve segments F ([p, q]) and G[q, r]) join with
continuity Ck at q, where 0 ≤ k ≤ m, iff their polar
forms f :Am → E and g:Am → E agree on all mul-
tisets of points that contain at most k points distinct
from q, i.e.,

f(u1, . . . , uk, q, . . . , q︸ ︷︷ ︸
m−k

) = g(u1, . . . , uk, q, . . . , q︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ A.

Another way to state lemma 7.5.2 is to say that the curve
segments F ([p, q]) and G[q, r]) join with continuity Ck at
q, where 0 ≤ k ≤ m, iff their polar forms f :Am → E and
g:Am → E agree on all multisets of points that contain
at least m− k copies of the argument q.
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Thus, the number k is the number of arguments that can
be varied away from q without disturbing the values of
the polar forms f and g.

When k = 0, we can’t change any of the arguments, and
this means that f and g agree on the multiset

q, . . . , q︸ ︷︷ ︸
m

,

i.e., the curve segments F andG simply join at q, without
any further conditions.

On the other hand, for k = m − 1, we can vary m − 1
arguments away from q without changing the value of
the polar forms, which means that the curve segments
F and G join with a high degre of smoothness (Cm−1-
continuity).

In the extreme case where k = m (Cm-continuity), the
polar forms f and g must agree when all arguments vary,
and thus f = g, i.e. F and G coincide. We will see that
lemma 7.5.2 yields a very pleasant treatment of paramet-
ric continuity for splines.
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The following diagrams illustrate the geometric condi-
tions that must hold so that two segments of cubic curves
F :A → E and G:A → E defined on the intervals [p, q]
and [q, r], join at q with Ck-continuity, for k = 0, 1, 2, 3.
Let f and g denote the polar forms of F and G.

The curve segments F and G join at q with C0-continuity
iff the polar forms f and g agree on the (multiset) triplet
q, q, q.

f(p, p, p)

f(p, p, q)

f(p, q, q) f = g(q, q, q)

g(q, q, r)

g(q, r, r)

g(r, r, r)

Figure 7.9: Cubic curves joining at q with C0-continuity
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The curve segments F and G join at q with C1-continuity
iff the polar forms f and g agree on all (multiset) triplets
including two copies of the argument q.

f(p, p, p)

f(p, p, q)

f = g(p, q, q) f = g(q, q, q) f = g(q, q, r)

g(q, r, r)

g(r, r, r)

Figure 7.10: Cubic curves joining at q with C1-continuity
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The curve segments F and G join at q with C2-continuity
iff the polar forms f and g agree on all (multiset) triplets
including the argument q.

f(p, p, p)

f = g(p, p, q)

f = g(p, q, q)

f = g(p, q, r)

f = g(q, q, r)

f = g(q, r, r)

g(r, r, r)

f = g(q, q, q)

Figure 7.11: Cubic curves joining at q with C2-continuity
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The curve segments F and G join at q with C3-continuity
iff the polar forms f and g agree on all (multiset) triplets,
i.e., iff f = g.

f = g(p, p, p)

f = g(p, p, q)

f = g(p, p, r) f = g(p, q, r) f = g(p, r, r)

f = g(q, r, r)

f = g(r, r, r)

f = g(p, q, q) f = g(q, q, r)

f = g(q, q, q)

Figure 7.12: Cubic curves joining at q with C3-continuity
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The above examples show that the points corresponding
to the common values

f(p i, r j, q 3−i−j) = g(p i, r j, q 3−i−j)

of the polar forms f and g, where i + j ≤ k ≤ 3, con-
stitute a de Casteljau diagram with k shells, where k is
the degree of continuity required. These de Casteljau di-
agrams are represented in bold.

This is a general fact. When two polynomial curves F
and G of degree m join at q with Ck-continuity (where
0 ≤ k ≤ m), then

f(p i, r j, q m−i−j) = g(p i, r j, q m−i−j)

for all i, j with i + j ≤ k ≤ m, and these points form a
de Casteljau diagram with k shells.
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8.1 Introduction: Knot Sequences, de Boor Control

Points

d1 : 123

d2 : 235

d3 : 356

d4 : 568

d5 : 689

d6 : 89 11

d7 : 9 11 14

d8 : 11 14 15

Figure 8.1: Part of a cubic spline with knot sequence . . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . .. Thick
segments are images of [6, 8].
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Given a sequence of 2m knots

〈uk+1, uk+2, . . . , uk+2m〉,
for any parameter value in the middle interval
t ∈ [uk+m, uk+m+1], a point on the curve segment speci-
fied by them+1 control points di, di+1, . . . , di+m (where
di is mapped onto uk+1), is computed by repeated affine
interpolation, as follows:

Using the mapping

u 7→ uk+m+j+1 − u

uk+m+j+1 − uk+j+1
di+j+

u− uk+j+1

uk+m+j+1 − uk+j+1
di+j+1,

mapping the interval [uk+j+1, uk+m+j+1] onto the line
segment (di+j, di+j+1), where 0 ≤ j ≤ m − 1, we map
t ∈ [uk+m, uk+m+1] onto the line segment (di+j, di+j+1),
which gives us a point dj, 1.
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Then, we consider the new control polygon determined
by the m points

d0, 1, d1, 1, . . . , dm−1, 1,

and we map affinely each of the m− 1 intervals
[uk+j+2, uk+m+j+1] onto the line segment (dj, 1, dj+1, 1),
where 0 ≤ j ≤ m − 2, and for t ∈ [uk+m, uk+m+1], we
get a point dj, 2 on (dj, 1, dj+1, 1).

Note that each interval [uk+j+2, uk+m+j+1] now consists
of m− 1 consecutive subintervals, and that the leftmost
interval [uk+2, uk+m+1] starts at knot uk+2, the immedi-
ate successor of the starting knot uk+1 of the leftmost
interval used at the previous stage.

The above round gives us a new control polygon deter-
mined by the m− 1 points

d0, 2, d1, 2, . . . , dm−2, 2,

and we repeat the procedure.
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d1 : 123

d2 : 235

d3 : 356

d4 : 568

d5 : 689

d6 : 89 11

d7 : 9 11 14

d8 : 11 14 15

d0,3 : 777

d0,1 : 567

d1,1 : 678

d2,1 : 789
d0,2 : 677

d1,2 : 778

Figure 8.2: Part of a cubic spline with knot sequence . . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . ., and
construction of the point corresponding to t = 7. Thick segments are images of [6, 8].
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d1 : 123

d2 : 235

d3 : 356

d4 : 568

d5 : 689

d6 : 89 11

d7 : 9 11 14

d8 : 11 14 15

333

555

666

888

999

11 11 11

Figure 8.3: Part of a cubic spline with knot sequence . . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . ., and
some of its Bézier control points
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8.2 Infinite Knot Sequences, Open B-Spline Curves

We begin with knot sequences.

Definition 8.2.1 A knot sequence is a bi-infinite non-
decreasing sequence 〈uk〉k∈Z of points uk ∈ A (i.e.
uk ≤ uk+1 for all k ∈ Z), such that every knot in the
sequence has finitely many occurrences. A knot uk in a
knot sequence 〈uk〉k∈Z has multiplicity n (n ≥ 1) iff it
occurs exactly n (consecutive) times in the knot sequence.
Given any natural number m ≥ 1, a knot sequence has
degree of multiplicity at most m + 1 iff every knot has
multiplicity at most m + 1, i.e. there are at most m + 1
occurrences of identical knots in the sequence. Thus, for
a knot sequence of degree of multiplicity at most m + 1,
we must have uk ≤ uk+1 for all k ∈ Z, and for every
k ∈ Z, if

uk+1 = uk+2 = . . . = uk+n,

then 1 ≤ n ≤ m + 1. A knot uk of multiplicity m + 1
is called a discontinuity (knot). A knot of multiplicity
1 is called a simple knot . A knot sequence 〈uk〉k∈Z is
uniform iff uk+1 = uk + h, for some fixed h ∈ R+.
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We can now define spline (B-spline) curves.

Definition 8.2.2 Given any natural number m ≥ 1,
given any knot sequence 〈uk〉k∈Z of degree of multiplicity
at most m + 1, a piecewise polynomial curve of (po-
lar) degree m based on the knot sequence 〈uk〉k∈Z, is
a function F :A → E , where E is some affine space (of
dimension at least 2), such that, for any two consecutive
distinct knots ui < ui+1, if ui+1 is a knot of multiplic-
ity n, the next distinct knot being ui+n+1 (since we must
have ui+1 = . . . = ui+n < ui+n+1), then the following
condition hold:

1. The restriction of F to [ui, ui+1[ agrees with a poly-
nomial curve Fi of polar degree m, with associated
polar form fi.
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A spline curve F of (polar) degree m based on
the knot sequence 〈uk〉k∈Z, is a piecewise polynomial
curve F :A → E , such that, for every two consecu-
tive distinct knots ui < ui+1, the following condition
holds:

2. The curve segments Fi and Fi+n join with continuity
(at least)Cm−n at ui+1, in the sense of definition 7.5.1,
where n is the multiplicity of the knot ui+1

(1 ≤ n ≤ m + 1).

Thus, in particular, if ui+1 is a discontinuity knot, that is,
a knot of multiplicitym+1, then we have C−1-continuity,
and Fi(ui+1) and Fi+n(ui+1) may differ. The set F (A) is
called the trace of the spline F .
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012

123

234 345

456
567

Figure 8.4: Part of a cubic spline with knot sequence . . . , 0, 1, 2, 3, 4, 5, 6, 7, . . .

The next figure shows the construction of the control
points for the three Bézier curve segments constituting
this part of the spline.
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012

122

222

123

234 345

456

223

233

334

333

344

445

444

455

556

555

567

Figure 8.5: Construction of part of a cubic spline with knot sequence . . . , 0, 1, 2, 3, 4, 5, 6, 7, . . .
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Lemma 8.2.3 Given any m ≥ 1, given any knot se-
quence 〈uk〉k∈Z of degree of multiplicity at most m+1,
for any piecewise polynomial curve F of (polar) degree
m based on the knot sequence 〈uk〉k∈Z, the curve F is
a spline iff the following conditions holds:

For all i, j, with i < j ≤ i +m, ui < ui+1 and
uj < uj+1, the polar forms fi and fj agree on all multi-
sets of m elements from A (supermultisets) containing
the multiset of intervening knots

{ui+1, ui+2, . . . , uj}.

The following figure shows part of a cubic spline corre-
sponding to the knot sequence

. . . , r, s, u, v, t, . . .

with C2-continuity at the knots s, u, v.
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f(r, r, r)

f = g(r, r, s)

f = g = h(r, s, u)

f = g = h = k(s, u, v)

g = h = k(u, v, t)

h = k(v, t, t)

k(t, t, t)

f = g(r, s, s)

f = g = h(s, s, u)

f = g = h(s, u, u)

g = h = k(u, u, v)

g = h = k(u, v, v)

h = k(v, v, t)

f = g(s, s, s)

g = h(u, u, u)

h = k(v, v, v)

Figure 8.6: Part of a cubic spline with C2-continuity at the knots s, u, v
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f(r, r, r)

f = g(r, r, s)

f = g(r, s, u)

f = g = k(s, u, u)

g = k(u, u, t)

k(u, t, t)

k(t, t, t)

f = g(r, s, s)

f = g(s, s, u)

f = g(s, s, s)

g = k(u, u, u)

Figure 8.7: Part of a cubic spline with C1-continuity at the knot u
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f(r, r, r)

f = g(r, r, s)

f = g = h(r, s, u)

f = g = h = k(s, u, v)

g = h = k(u, v, t)

h = k(v, t, t)

k(t, t, t)

f = g(r, s, s)

f = g = h(s, s, u)

f = g = h(s, u, u)

g = h = k(u, u, v)

g = h = k(u, v, v)

h = k(v, v, t)

f = g(s, s, s)

g = h(u, u, u)

h = k(v, v, v)

Figure 8.8: Part of a cubic spline with C2-continuity at the knots s, u, v



270 CHAPTER 8. SPLINE CURVES (B-SPLINE CURVES)

f(r, r, r)

f(r, r, s)

f(r, s, s)

f = k(s, s, s)

k(s, s, t)

k(s, t, t)

k(t, t, t)

Figure 8.9: Part of a cubic spline with C0-continuity at the triple knot s
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Theorem 8.2.4 Given any m ≥ 1, given any knot
sequence 〈uk〉k∈Z of degree of multiplicity at most
m+1, for any bi-infinite sequence 〈dk〉k∈Z of points in
some affine space E, there exists a unique spline curve
F :A → E, such that the following conditions hold:

dk = fi(uk+1, . . . , uk+m),

for all k, i, where ui < ui+1 and k ≤ i ≤ k +m.

Given a knot ui in the knot sequence, such that ui < ui+1,
the inequality k ≤ i ≤ k +m can be interpreted in two
ways. If we think of k as fixed, the theorem tells us which
curve segments Fi of the spline F are influenced by the
specific de Boor point dk: the de Boor point dk influences
at most m+ 1 curve segments. This is achieved when all
the knots are simple.

On the other hand, we can consider i as fixed, and think
of the inequalities as i−m ≤ k ≤ i. In this case, the the-
orem tells us which de Boor points influence the specific
curve segment Fi: there are m + 1 de Boor points that
influence the curve segment Fi. This does not depend on
the knot multiplicity.
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8.3 Finite Knot Sequences, Finite B-Spline Curves

In the case of a finite knot sequence, we have to deal with
the two end knots. A reasonable method is to assume
that the end knots have multiplicity m+1. This way the
first curve segment is unconstrained at its left end, and
the last curve segment is unconstrained at its right end.

Actually, multiplicity m will give the same results, but
multiplicity m + 1 allows us to view a finite spline curve
as a fragment of an infinite spline curve delimited by two
discontinuity knots.

Definition 8.3.1 Given any natural numbers m ≥ 1
and N ≥ 0, a finite knot sequence of degree of mul-
tiplicity at most m + 1 with N intervening knots is
any finite nondecreasing sequence 〈uk〉−m≤k≤N+m+1, such
that u−m < uN+m+1, and every knot uk has multiplicty
at most m+ 1. A knot uk of multiplicity m+ 1 is called
a discontinuity (knot). A knot of multiplicity 1 is called
a simple knot .
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Given a finite knot sequence 〈uk〉−m≤k≤N+m+1, of de-
gree of multiplicity at most m + 1 and with N inter-
vening knots, we now define the number L of subinter-
vals in the knot sequence. If N = 0, the knot sequence
〈uk〉−m≤k≤m+1 consists of 2(m+1) knots, where u−m and
um+1 are distinct and of multiplicity m + 1, and we let
L = 1. If N ≥ 1, then we let L − 1 ≥ 1 be the num-
ber of distinct knots in the sequence 〈u1, . . . , uN〉. If the
multiplicities of the L− 1 distinct knots in the sequence
〈u1, . . . , uN〉 are n1, . . . , nL−1 (where 1 ≤ ni ≤ m + 1,
and 1 ≤ i ≤ L− 1), then

N = n1 + · · · + nL−1,

and the knot sequence 〈uk〉−m≤k≤N+m+1 consists of
2(m+ 1) +N = 2(m+ 1) + n1 + · · ·+ nL−1 knots, with
L + 1 of them distinct.

The picture below gives a clearer idea of the knot mul-
tiplicities.

u−m, u1, un1+1, . . . , uN−nL−1+1, uN+1,
... ... ... . . . ... ...
u0 un1 un1+n2 . . . uN uN+m+1

m + 1 n1 n2 . . . nL−1 m + 1
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Definition 8.3.2 Given any natural numbers m ≥ 1
andN ≥ 0, given any finite knot sequence 〈uk〉−m≤k≤N+m+1

of degree of multiplicity at most m + 1 and with N in-
tervening knots, a piecewise polynomial curve of degree
m based on the finite knot sequence 〈uk〉−m≤k≤N+m+1

is a function F : [u0, uN+1] → E , where E is some affine
space (of dimension at least 2), such that the following
condition hold:

1. If N = 0, then F : [u0, um+1] → E agrees with a poly-
nomial curve F0 of polar degree m, with associated
polar form f0. When N ≥ 1, then for any two consec-
utive distinct knots ui < ui+1, if 0 ≤ i ≤ N − nL−1,
then the restriction of F to [ui, ui+1[ agrees with a
polynomial curve Fi of polar degree m, with associ-
ated polar form fi, and if i = N , then the restriction
of F to [uN , uN+1] agrees with a polynomial curve
FN of polar degree m, with associated polar form fN .
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A spline curve F of degree m based on the finite
knot sequence 〈uk〉−m≤k≤N+m+1 or for short, a finite
B-spline, is a piecewise polynomial curve
F : [u0, uN+1] → E , such that, when N ≥ 1 and
L ≥ 2, for every two consecutive distinct knots
ui < ui+1 (where 0 ≤ i ≤ N − nL−1), if ui+1 has
multiplicity n ≤ m+1, the following condition holds:

2. The curve segments Fi and Fi+n join with continuity
(at least)Cm−n at ui+1, in the sense of definition 7.5.1.

The set F ([u0, uN+1]) is called the trace of the finite
spline F .
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Remark : The remarks about discontinuities made after
definition 8.2.2 also apply. However, we also want the last
curve segment FN to be defined at uN+1. Note that if we
assume that u0 and uN+1 have multiplicity m, then we
get the same curve. However, using multiplicity m + 1
allows us to view a finite spline as a fragment of an infinite
spline.

Note that a spline curve defined on the finite knot se-
quence

u−m, u1, un1+1, . . . , uN−nL−1+1, uN+1,
... ... ... . . . ... ...
u0 un1 un1+n2 . . . uN uN+m+1

m + 1 n1 n2 . . . nL−1 m + 1

where
N = n1 + · · · + nL−1,

consists of L curve segments,
F0, Fn1, . . ., Fn1+···+nL−1

= FN .
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111
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123

234 345

456 566

666

Figure 8.10: A cubic spline with knot sequence 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6
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Figure 8.11: Construction of a cubic spline with knot sequence 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6
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Figure 8.12: A cubic spline with knot sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7
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Figure 8.13: Construction of a cubic spline with knot sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7
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000
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11 11 12
11 12 13

12 13 13

13 13 13

Figure 8.14: A cubic spline with knot sequence
0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 12, 13, 13, 13, 13
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Figure 8.15: Construction of a cubic spline with knot sequence
0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 11, 11, 12, 13, 13, 13, 13
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Figure 8.16: A cubic spline with non-uniform knot sequence
0, 0, 0, 0, 1, 2, 3, 5, 6, 7, 8, 8, 9, 10, 10, 10, 10
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Figure 8.17: Construction of a cubic spline with non-uniform knot sequence
0, 0, 0, 0, 1, 2, 3, 5, 6, 7, 8, 8, 9, 10, 10, 10, 10
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8.4 Cyclic Knot Sequences, Closed B-Spline Curves

Definition 8.4.1 A cyclic knot sequence of period L,
cycle length N , and period size T , is any bi-infinite
nondecreasing sequence 〈uk〉k∈Z of points uk ∈ A (i.e.
uk ≤ uk+1 for all k ∈ Z), where L,N, T ∈ N, L ≥ 2,
and N ≥ L, such that there is some subsequence

〈uj+1, . . . , uj+N〉
ofN consecutive knots containing exactly L distinct knots,
with multiplicities n1, . . . , nL, uj+N < uj+N+1, and
uk+N = uk + T , for every k ∈ Z. Note that we must
have N = n1+ · · ·+nL (and ni ≥ 1). Given any natural
number m ≥ 1, a cyclic knot sequence of period L, cycle
length N , and period size T , has degree of multiplicity
at most m, iff every knot has multiplicity at most m.

As before, a knot sequence (finite, or cyclic) is uniform
iff uk+1 = uk + h, for some fixed h ∈ R+.
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A cyclic knot sequence of period L, cycle length N , and
period size T , is completely determined by a sequence of
N+1 consecutive knots, which looks as follows (assuming
for simplicity that the index of the starting knot of the
cycle that we are looking at is k = 1):

u1

un1

···

uN+1 = u1 + T

un1+1

un1+n2

···
uN−nL+1

uN

· · ·

Figure 8.18: A cyclic knot sequence
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Closed B-spline curves are defined as follows.

Definition 8.4.2 Given any natural number m ≥ 1,
given any cyclic knot sequence 〈uk〉k∈Z of period L, cycle
length N , period size T , and of degree of multiplicity at
mostm, a closed piecewise polynomial curve of (polar)
degree m based on the cyclic knot sequence 〈uk〉k∈Z, is
a function F :A → E , where E is some affine space (of
dimension at least 2), such that, for any two consecutive
distinct knots ui < ui+1, if ui+1 is a knot of multiplicity
n, the next distinct knot being ui+n+1, then the following
condition hold:

1. The restriction of F to [ui, ui+1] agrees with a polyno-
mial curve Fi of polar degreem, with associated polar
form fi, and Fi+N(t+T ) = Fi(t), for all t ∈ [ui, ui+1].
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A closed spline curve F of (polar) degree m based
on the cyclic knot sequence 〈uk〉k∈Z of period L,
cycle lengthN , and period size T , is a closed piecewise
polynomial curve F :A → E , such that, for every two
consecutive distinct knots ui < ui+1, the following
condition holds:

2. The curve segments Fi and Fi+n join with continuity
(at least)Cm−n at ui+1, in the sense of definition 7.5.1,
where n is the multiplicity of the knot ui+1

(1 ≤ n ≤ m).

The set F (A) is called the trace of the closed spline F .
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Figure 8.19: A closed cubic spline with cyclic knot sequence of period 16, cycle length 16,
and period size 16: . . . , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, . . .
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Figure 8.20: Construction of a closed cubic spline with cyclic knot sequence of period 16,
cycle length 16, and period size 16: . . . , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, . . .
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−2 13 = 69 11

Figure 8.21: A closed cubic spline with cyclic knot sequence
. . . ,−3,−2, 1, 3, 4, 5, 6, 9, 11, 12, . . ., with L = N = 5, T = 8
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Figure 8.22: Construction of a closed cubic spline with cyclic knot sequence
. . . ,−3,−2, 1, 3, 4, 5, 6, 9, 11, 12, . . ., with L = N = 5, T = 8
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Theorem 8.4.3 (1) Given any m ≥ 1, given any fi-
nite knot sequence 〈uk〉−m≤k≤N+m+1 of degree of mul-
tiplicity at most m+1, for any sequence 〈d−m, . . . , dN〉
of N+m+1 points in some affine space E, there exists
a unique spline curve F : [u0, uN+1] → E, such that the
following conditions hold:

dk = fi(uk+1, . . . , uk+m),

for all k, i, where −m ≤ k ≤ N , ui < ui+1, and
k ≤ i ≤ k +m.

(2) Given any m ≥ 1, given any finite cyclic knot
sequence 〈uk〉k∈Z of period L, cycle length N , period
size T , and of degree of multiplicity at most m, for
any bi-infinite periodic sequence 〈dk〉k∈Z of period N
of points in some affine space E, i.e., sequence such
that dk+N = dk for all k ∈ Z, there exists a unique
closed spline curve F :A → E, such that the following
conditions hold:

dk = fi(uk+1, . . . , uk+m),

for all k, i, where ui < ui+1 and k ≤ i ≤ k +m.
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8.5 The de Boor Algorithm, and Knot Insertion

Given a knot sequence 〈uk〉 (infinite, finite, of cyclic),
and a sequence 〈dk〉 of control points (corresponding to
the nature of the knot sequence), given any parameter
t ∈ A (where t ∈ [u0, uN+1], in case of a finite spline),
in order to compute the point F (t) on the spline curve
F determined by 〈uk〉 and 〈dk〉, we just have to find
the interval [uI , uI+1] for which uI ≤ t < uI+1, and
then to apply the progressive version of the de Casteljau
algorithm, starting from the m+1 control points indexed
by the sequences 〈uI−m+k, . . . , uI+k−1〉, where
1 ≤ k ≤ m + 1.

As in section 7.3, let us assume for simplicity that I = m,
since the indexing will be a bit more convenient. Indeed,
in this case [um, um+1] is the middle of the sequence
〈u1, . . . , u2m〉 of length 2m. For the general case, we
translate all knots by I −m.



8.5. THE DE BOOR ALGORITHM, AND KNOT INSERTION 295

Recall that F (t) = f(t, . . . , t) is computed by iteration,
as the point b0,m determined by the inductive computa-
tion

bk,j = (
um+k+1 − t

um+k+1 − uk+j
)bk,j−1+(

t− uk+j

um+k+1 − uk+j
)bk+1,j−1,

where
bk,j = f(t

j
uk+j+1 . . . um+k),

for 1 ≤ j ≤ m, 0 ≤ k ≤ m− j, and with
bk,0 = f(uk+1, . . . , um+k) = dk, for 0 ≤ k ≤ m.

The computation proceeds by rounds, and during round
j, the points b0,j, b1,j, . . . , bm−j,j are computed.
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If t = um, and the knot um has multiplicity r
(1 ≤ r ≤ m), we notice that

b0,m−r = b0,m−r+1 = . . . = b0,m,

because b0,m−r = f(t
m−r

um−r+1 . . . um) = F (t), since
um is of multiplicity r, and t = um−r+1 = . . . = um.

Thus, in this case, we only need to start with the
m−r+1 control points b0,0, . . . , bm−r,0, and we only need
to construct the part of the triangle above the ascending
diagonal

bm−r,0, bm−r−1,1, . . . , b0,m−r.
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It turns out that it is convenient in order to present
the de Boor algorithm, to index the points bk,j differ-
ently. First, we will label the starting control points as
d1, 0, . . . , dm+1, 0, and second, for every round j, rather
than indexing the points on the j-th column with an in-
dex k always starting from 0, and running up to m−j, it
will be convenient to index the points in the j-th column
with an index i starting at j + 1, and always ending at
m + 1.

Thus, at round j, the points

b0,j, b1,j, . . . , bk,j, . . . , bm−j,j

indexed using our original indexing, will correspond the
to the points

dj+1,j, dj+2,j, . . . , dk+j+1,j, . . . , dm+1,j,

under our new indexing.
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As we can easily see, the inductive relation giving dk+j+1,j

in terms of dk+j+1,j−1 and dk+j,j−1, is given by the equa-
tion:

dk+j+1,j = (
um+k+1 − t

um+k+1 − uk+j
)dk+j,j−1

+ (
t− uk+j

um+k+1 − uk+j
)dk+j+1,j−1,

where 1 ≤ j ≤ m − r, 0 ≤ k ≤ m − r − j, and with
dk+1,0 = dk, when 0 ≤ k ≤ m − r, where r is the
multiplicity of um when t = um, and r = 0 otherwise.
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Letting i = k + j + 1, the above equation becomes

di,j = (
um+i−j − t

um+i−j − ui−1
)di−1,j−1 + (

t− ui−1

um+i−j − ui−1
)di,j−1,

where 1 ≤ j ≤ m− r, j + 1 ≤ i ≤ m + 1− r, and with
di,0 = di−1, when 1 ≤ i ≤ m+ 1− r. The point F (t) on
the spline curve is dm+1−r,m−r.

Finally, in order to deal with the general case where
t ∈ [uI, uI+1[, we translate all the knot indices by
I −m, which does not change differences of indices, and
we get the equation

di,j = (
um+i−j − t

um+i−j − ui−1
)di−1,j−1 + (

t− ui−1

um+i−j − ui−1
)di,j−1,

where 1 ≤ j ≤ m − r, I −m + j + 1 ≤ i ≤ I + 1 − r,
and with di,0 = di−1, when I −m + 1 ≤ i ≤ I + 1 − r,
where r is the multiplicity of the knot uI when t = uI ,
and r = 0 when uI < t < uI+1 (1 ≤ r ≤ m).
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The point F (t) on the spline curve is dI+1−r,m−r. This is
the de Boor algorithm. Note that other books often use
a superscript for the “round index” j, and write our di,j
as dji . The de Boor algorithm can be described as follows
in “pseudo-code”:

begin

I = max{k | uk ≤ t < uk+1};
if t = uI then r := multiplicity(uI) else r := 0 endif;

for i := I −m+ 1 to I + 1− r do
di,0 := di−1

endfor;
for j := 1 to m− r do
for i := I −m+ j + 1 to I + 1− r do

di,j :=
(

um+i−j−t

um+i−j−ui−1

)
di−1,j−1 +

(
t−ui−1

um+i−j−ui−1

)
di,j−1

endfor
endfor;

F (t) := dI+1−r,m−r

end
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The process of knot insertion consists of inserting a knot
w into a given knot sequence, without altering the spline
curve. The knotw may be new or may coincide with some
existing knot of multiplicity r < m, and in the latter case,
the effect will be to increase the degree of multiplicity of
w by 1.

Knot insertion can be used either to construct new control
points, Bézier control points associated with the curve
segments forming a spline curve, and even for computing
a point on a spline curve.

If I is the largest knot index such that uI ≤ w < uI+1,
inserting the knot w will affect them−1−r control points
f(uI−m+k+1, . . . , uI+k) associated with the sequences
〈uI−m+k+1, . . . , uI+k〉 containing the subinterval [uI , uI+1],
where 1 ≤ k ≤ m−1−r, and where r is the multiplicity
of uI if w = uI (with 1 ≤ r < m), and r = 0 if uI < w.
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Let, vk = uk, for all k ≤ I , vI+1 = w, and vk+1 = uk,
for all k ≥ I + 1.

We need to compute the m− r new control points

f(vI−m+k+1, . . . , vI+1, . . . , vI+k),

which are just the polar values corresponding to them−r
subsequences of m− 1 consecutive subintervals

〈vI−m+k+1, . . . , vI+1, . . . , vI+k〉,
one of which containing w = vI+1, where 1 ≤ k ≤ m−r.
We can use the de Boor algorithm to compute the new
m− r control points.

In fact, note that these points constitute the first column
obtained during the first round of the de Boor algorithm.
Thus, we can describe knot insertion in “pseudo-code”,
as follows:



8.5. THE DE BOOR ALGORITHM, AND KNOT INSERTION 303

begin
I = max{k | uk ≤ w < uk+1};
if w = uI then r := multiplicity(uI) else r := 0 endif;
for i := I −m+ 1 to I + 1− r do

di,0 := di−1

endfor;

for i := I −m+ 2 to I + 1− r do

di,1 :=
(

um+i−1−w

um+i−1−ui−1

)
di−1,0 +

(
w−ui−1

um+i−1−ui−1

)
di,0

endfor

return 〈dI−m+2,1, . . . , dI+1−r,1〉
end

Note that evaluation of a point F (t) on the spline curve
amounts to repeated knot insertions: we perform m − r
rounds of knot insertions, to raise the original multiplicity
r of the knot t to m (again, r = 0 if t is distinct from all
existing knots).
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d1 : 123

d2 : 235

d3 : 356

d4 : 568

d5 : 689

d6 : 89 11

d7 : 9 11 14

d8 : 11 14 15

d3,3 : 777

d1,1 : 567

d2,1 : 678

d3,1 : 789
d2,2 : 677

d3,2 : 778

Figure 8.23: Part of a cubic spline with knot sequence . . . , 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, . . .,
insertion of the knot t = 7

Evaluation of the point F (7) on the spline curve above,
consists in inserting the knot t = 7 three times.
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8.6 Cubic Spline Interpolation

We now consider the problem of interpolation by smooth
curves. Unlike the problem of approximating a shape
by a smooth curve, interpolation problems require find-
ing curves passing through some given data points, and
possibly satisfying some extra constraints.

Problem 1: Given N + 1 data points x0, . . . , xN , and
a sequence of N +1 knots u0, . . . , uN , with ui < ui+1 for
all i, 0 ≤ i ≤ N−1, find a C2 cubic spline curve F , such
that F (ui) = xi, for all i, 0 ≤ i ≤ N .

In order to solve the above problem, we can try to find
the de Boor control points of a C2 cubic spline curve F
based on the finite knot sequence

u0, u0, u0, u1, u2, . . . , uN−2, uN−1, uN , uN , uN .
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We note that we are looking for a total of N + 3 de
Boor control points d−1, . . . , dN+1. Actually, since the
first control point d−1 coincides with x0, and the last
control point dN+1 coincides with xN , we are looking for
N +1 de Boor control points d0, . . . , dN . However, using
the de Boor evaluation algorithm, we only come up with
N − 1 equations expressing x1, . . . , xN−1 in terms of the
N + 1 unknown variables d0, . . . , dN .

The figure below shows N + 1 = 7 + 1 = 8 data points,
and a C2 cubic spline curve F passing throught these
points, for a uniform knot sequence. The control points
d0 and d7 = dN were chosen arbitrarily.
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x7 = d8

d0

d1
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d3

d4

d5

d6

d7

Figure 8.24: A C2 cubic interpolation spline curve passing through the points
x0, x1, x2, x3, x4, x5, x6, x7

Thus, the above problem has two degrees of freedom,
and it is under-determined. To remove these degrees
of freedom, we can add various “end conditions”, which
amounts to the assumption that the de Boor control points
d0 and dN are known.

For example, we can specify that the tangent vectors at
x0 and xN be equal to some desired value. We now have
a system of N − 1 linear equations in the N − 1 variables
d1, . . . , dN−1.
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In order to derive this system of linear equations, we use
the de Boor evaluation algorithm. Note that for all i,
with 1 ≤ i ≤ N − 1, the de Boor control point di corre-
sponds to the polar label ui−1 ui ui+1, xi corresponds to
the polar label ui ui ui, and d−1, d0, dN and dN+1, corre-
spond respectively to u0 u0 u0, u0 u0 u1, uN−1 uN uN , and
uN uN uN .

For every i, with 1 ≤ i ≤ N − 1, xi can be computed
from di−1, di, di+1, using the following diagram represent-
ing the de Boor algorithm:

di−1 : ui−2 ui−1 ui

di : ui−1 ui ui+1

di+1 : ui ui+1 ui+2

di−1,1 : ui−1 ui ui di,1 : ui ui ui+1

xi : ui ui ui

Figure 8.25: Computation of xi from di−1, di, di+1
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Letting
ri = (ui+1 − ui−1) xi,

for all i, 1 ≤ i ≤ N − 1, and r0 and rN be arbitrary
points, we obtain the following (N +1)× (N +1) system
of linear equations in the unknowns d0, . . . , dN :




1
α1 β1 γ1

α2 β2 γ2 0
. . .

0 αN−2 βN−2 γN−2

αN−1 βN−1 γN−1

1







d0
d1
d2
...

dN−2

dN−1

dN




=




r0
r1
r2
...

rN−2

rN−1

rN




The matrix of the system of linear equations is tridiago-
nal, and it is clear that αi, βi, γi ≥ 0. If

αi + γi < βi,

for all i, 1 ≤ i ≤ N − 1, which means that the matrix
is diagonally dominant, then it can be shown that the
matrix is invertible. In particular, this is the case for a
uniform knot sequence.
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There are methods for solving diagonally dominant sys-
tems of linear equations very efficiently, for example, us-
ing an LU -decomposition.

In the case of a uniform knot sequence, it is an easy ex-
ercise to show that the linear system can be written as




1
3
2

7
2 1
1 4 1 0

. . .
0 1 4 1

1 7
2

3
2
1







d0
d1
d2
...

dN−2

dN−1

dN




=




r0
6x1
6x2
...

6xN−2
6xN−1
rN




It can also be shown that the general system of linear
equations has a unique solution when the knot sequence
is strictly increasing, that is, when ui < ui+1 for all i,
0 ≤ i ≤ N − 1.
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For example, this can be shown by expressing each spline
segment in terms of the Hermite polynomials. Writing
the C2 conditions leads to a tridiagonal system, which is
diagonally dominant when the knot sequence is strictly
increasing. For details, see Farin [?].

We can also solve the problem of finding a closed inter-
polating spline curve, formulated as follows.

Problem 2: Given N data points x0, . . . , xN−1, and a
sequence of N + 1 knots u0, . . . , uN , with ui < ui+1 for
all i, 0 ≤ i ≤ N − 1, find a C2 closed cubic spline curve
F , such that F (ui) = xi, for all i, 0 ≤ i ≤ N , where we
let xN = x0.
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This time, we consider the cyclic knot sequence deter-
mined by the N + 1 knots u0, . . . , uN , which means that
we consider the infinite cyclic knot sequence 〈uk〉k∈Z which
agrees with u0, . . . , uN for i = 0, . . . , N , and such that,

uk+N = uk + uN − u0,

for all k ∈ Z, and we observe that we are now looking
for N de Boor control points d0, . . . , dN−1, since the con-
dition x0 = xN implies that d0 = dN , so that we can
write a system of N linear equations in the N unknowns
d0, . . . , dN−1. The following system of linear equations is
easily obtained:




β0 γ0 α0

α1 β1 γ1
α2 β2 γ2 0

. . .
0 αN−3 βN−3 γN−3

αN−2 βN−2 γN−2

γN−1 αN−1 βN−1







d0
d1
d2
...

dN−3

dN−2

dN−1




=




r0
r1
r2
...

rN−3

rN−2

rN−1






8.6. CUBIC SPLINE INTERPOLATION 313

The system is no longer tridiagonal, but it can still be
solved efficiently.

The coefficients αi, βi, γi can be written in a uniform fash-
ion for both the open and the closed interpolating C2

cubic spline curves, if we let ∆i = ui+1 − ui. It is imme-
diately verified that we have

αi =
∆2

i

∆i−2 +∆i−1 +∆i
,

βi =
∆i(∆i−2 +∆i−1)

∆i−2 +∆i−1 +∆i
+

∆i−1(∆i + ∆i+1)

∆i−1 +∆i +∆i+1
,

γi =
∆2

i−1

∆i−1 +∆i +∆i+1
,

where in the case of an open spline curve, ∆−1 = ∆N = 0,
and in the case of a closed spline curve, ∆−1 = ∆N−1,
∆−2 = ∆N−2.
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In the case of an open C2 cubic spline interpolant, several
end conditions have been proposed to determine d0 and
dN , and we quickly review these conditions.

(a) The first method consists in specifying the tangent
vectors m0 and mN at x0 and xN , usually called the
clamped condition method. Since the tangent vector at
x0 is given by

DF (u0) =
3

u1 − u0
(d0 − x0),

we get

d0 = x0 +
u1 − u0

3
m0,

and similarly

dN = xN − uN − uN−1

3
mN .
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One specific method is the Bessel end condition . If we
consider the parabola interpolating the first three data
points x0, x1, x2, the method consists in picking the tan-
gent vector to this parabola at x0. A similar selection
is made using the parabola interpolating the last three
points xN−2, xN−1, xN .

(b) Another method is the quadratic end condition . In
this method, we require that

D2F (u0) = D2F (u1)

and
D2F (uN−1) = D2F (uN).
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(c) Another method is the natural end condition . In
this method, we require that

D2F (u0) = D2F (uN) =
−→
0 .

(d) Finally, we have the not-a-knot condition , which
forces the first two cubic segments to merge into a single
cubic segment and similarly for the last two cubic seg-
ments.

In practice, when attempting to solve an interpolation
problem, the knot sequence u0, . . . , uN is not given. Thus,
it is necessary to find knot sequences that produce rea-
sonable results. We now briefly survey methods for pro-
ducing knot sequences.
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The simplest method consists in choosing a uniform knot
sequence. Although simple, this method may produce
bad results when the data points are heavily clustered in
some areas.

Another popular method is to use a chord length knot
sequence. In this method, after choosing u0 and uN , we
determine the other knots in such a way that

ui+1 − ui
ui+2 − ui+1

=
‖xi+1 − xi‖
‖xi+2 − xi+1‖

,

where ‖xi+1 − xi‖ is the length of the chord between xi
and xi+1. This method usually works quite well.

Another method is the so-called centripedal method, de-
rived from physical heuristics, where we set

ui+1 − ui
ui+2 − ui+1

=
( ‖xi+1 − xi‖
‖xi+2 − xi+1‖

)1/2
.

There are other methods, in particular due to Foley. For
details, the reader is referred to Farin [?].
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Chapter 9

Polynomial Surfaces

9.1 Polarizing Polynomial Surfaces

We begin with the traditional definition of polynomial
surfaces. As we shall see, there are two natural ways to
polarize a polynomial surface. Intuitively, this depends
on whether we decide to tile the parameter plane with
rectangles, or with triangles.

We also denote the affine plane A2 as P . We assume

that some fixed affine frame (O, (
−→
i1 ,

−→
i2 )) for P is chosen,

typically, the canonical affine frame where O = (0, 0),
−→
i1 =

(
1
0

)
, and

−→
i2 =

(
0
1

)
.

Let E be some affine space of finite dimension n ≥ 3, and

let (Ω1, (
−→e1 , . . . ,−→en )) be an affine frame for E .

319
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Definition 9.1.1 A polynomial surface is a function
F :P → E , such that, for all u, v ∈ R, we have

F (O + u
−→
i1 + v

−→
i2 ) = Ω1 + F1(u, v)

−→e1 + · · · + Fn(u, v)
−→en ,

where F1(U, V ), . . ., Fn(U, V ) are polynomials in
R[U, V ]. Given natural numbers p, q, and m, if each
polynomial Fi(U, V ) has total degree ≤ m, we say that
F is a polynomial surface of total degree m. If the
maximum degree of U in all the Fi(U, V ) is ≤ p, and the
maximum degree of V in all the Fi(U, V ) is ≤ q, we say
that F is a bipolynomial surface of degree 〈p, q〉. The
trace of the surface F is the set F (P).

For simplicity, we denote F (O + u
−→
i1 + v

−→
i2 ) as F (u, v).
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The following polynomials define a polynomial surface of
total degree 2 in A3:

F1(U, V ) = U 2 + V 2 + UV + 2U + V − 1

F2(U, V ) = U − V + 1

F3(U, V ) = UV + U + V + 1.

The above is also a bipolynomial surface of degree 〈2, 2〉.
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Another example known as Enneper’s surface is as fol-
lows:

F1(U, V ) = U − U 3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U 2V

F3(U, V ) = U 2 − V 2.

As defined above, Enneper’s surface is a surface of total
degree 3, and a bipolynomial surface of degree 〈3, 3〉.

Given a polynomial surface F :P → E , there are two
natural ways to polarize.

The first way to polarize, is to treat the variables u and
v separately, and polarize separately in u and v.
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This way, if p and q are such that F is a bipolynomial
surface of degree 〈p, q〉, we get a (p+ q)-multiaffine map

f : (A)p × (A)q → E ,
which is symmetric separately in its first p arguments
and in its last q arguments, but not symmetric in all its
arguments.

We get what are traditionally called tensor product sur-
faces . Note that in this case, since

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

, v, . . . , v︸ ︷︷ ︸
q

),

the surface F is really a map F :A × A → E . However,
since A × A is isomorphic to P , we can view F as a
polynomial surface F :P → E .
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The second way to polarize, is to treat the variables u and
v as a whole, namely as the coordinates of a point (u, v)
in P , and to polarize the polynomials in both variables
simultaneously.

This way, if m is such that F is a polynomial surface of
total degree m, we get an m-multiaffine map

f :Pm → E ,
which is symmetric in all of its m arguments. Since

F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸
m

),

the surface F is a map F :P → E .
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We begin with the first method for polarizing, in which
we polarize separately in u and v. Using linearity, it is
enough to explain how to polarize a monomial F (u, v) of
the form uhvk with respect to the bidegree 〈p, q〉, where
h ≤ p and k ≤ q.

f(u1, . . . , up, v1, . . . , vq)

=
1(

p
h

)(
q
k

)
∑

I⊆{1,...,p}, |I|=h
J⊆{1,...,q}, |J |=k

(∏

i∈I
ui

)
∏

j∈J
vj


 .
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Example 1.

Consider the following surface viewed as a bipolynomial
surface of degree 〈2, 2〉:

F1(U, V ) = U 2 + V 2 + UV + 2U + V − 1

F2(U, V ) = U − V + 1

F3(U, V ) = UV + U + V + 1,

In order to find the polar form f(U1, U2, V1, V2) of F ,
viewed as a bipolynomial surface of degree 〈2, 2〉, we po-
larize each of the Fi(U, V ) separately in U and V . It is
quite obvious that the same result is obtained if we first
polarize with respect to U , and then with respect to V ,
or conversely.
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After polarizing, we have

f1(U1, U2, V1, V2) = U1U2 + V1V2 +
(U1 + U2)(V1 + V2)

4
+ U1 + U2 +

V1 + V2

2
− 1

f2(U1, U2, V1, V2) =
U1 + U2

2
− V1 + V2

2
+ 1

f3(U1, U2, V1, V2) =
(U1 + U2)(V1 + V2)

4
+

U1 + U2

2
+

V1 + V2

2
+ 1.

The nine control points bi,j have coordinates:

bi,j j 0 1 2
i
0 (−1, 1, 1) (−1

2,
1
2,

3
2) (1, 0, 2)

1 (0, 32,
3
2) (34, 1,

9
4) (52,

1
2, 3)

2 (2, 2, 2) (3, 3
2
, 3) (5, 1, 4)
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Let us now review how to polarize a polynomial in two
variables as a polynomial of total degree m. Using lin-
earity, it is enough to deal with a single monomial. Ac-
cording to lemma 6.2.7, given the monomial UhV k, with
h+k = d ≤ m, we get the following polar form of degree
m:

f((u1, v1), . . . , (um, vm))

=
h!k!(m− (h + k))!

m!

∑

I∪J⊆{1,...,m}
I∩J=∅

|I|=h, |J |=k

(∏

i∈I
ui

)
∏

j∈J
vj


 .
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Example 2.

Let us now polarize the surface of Example 1 as a surface
of total degree 2. Starting from

F1(U, V ) = U 2 + V 2 + UV + 2U + V − 1

F2(U, V ) = U − V + 1

F3(U, V ) = UV + U + V + 1,

we get

f1((U1, V1), (U2, V2)) = U1U2 + V1V2 +
U1V2 + U2V1

2
+ U1 + U2 +

V1 + V2

2
− 1

f2((U1, V1), (U2, V2)) =
U1 + U2

2
− V1 + V2

2
+ 1

f3((U1, V1), (U2, V2)) =
U1V2 + U2V1

2
+

U1 + U2

2
+

V1 + V2

2
+ 1.
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Control points:

f(r, r)
(2, 2, 2)

f(r, t)

(0,
3

2
,
3

2
)

f(r, s)

(1, 1,
5

2
)

f(t, t)
(−1, 1, 1)

f(s, t)

(−1

2
,
1

2
,
3

2
)

f(s, s)
(1, 0, 2)
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Example 3.

Let us also find the polar forms of the Enneper’s surface,
considered as a total degree surface (of degree 3):

F1(U, V ) = U − U 3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U 2V

F3(U, V ) = U 2 − V 2.

We get

f1((U1, V1), (U2, V2), (U3, V3)) =
U1 + U2 + U3

3
− U1U2U3

3

+
U1V2V3 + U2V1V3 + U3V1V2

3

f2((U1, V1), (U2, V2), (U3, V3)) =
V1 + V2 + V3

3
− V1V2V3

3

+
U1U2V3 + U1U3V2 + U2U3V1

3

f3((U1, V1), (U2, V2), (U3, V3)) =
U1U2 + U1U3 + U2U3

3
− V1V2 + V1V3 + V2V3

3
,
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and evaluating these polar forms for argument pairs (U1, V1),
(U2, V2), and (U3, V3), ranging over (1, 0), (0, 1) and (0, 0),
we find the following 10 control points:

f(r, r, r)

(
2

3
, 0, 1)

f(r, r, t)

(
2

3
, 0,

1

3
)

f(r, r, s)

(
2

3
,
2

3
,
1

3
)

f(r, t, t)

(
1

3
, 0, 0)

f(r, s, t)

(
1

3
,
1

3
, 0)

f(r, s, s)

(
2

3
,
2

3
,−1

3
)

f(t, t, t)
(0, 0, 0)

f(s, t, t)

(0,
1

3
, 0)

f(s, s, t)

(0,
2

3
,−1

3
)

f(s, s, s)

(0,
2

3
,−1)

Let us consider two more examples.
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Example 4.

Let F be the surface considered as a total degree surface,
and defined such that

F1(U, V ) = U,

F2(U, V ) = V,

F3(U, V ) = U 2 − V 2.

The polar forms are:

f1((U1, V1), (U2, V2)) =
U1 + U2

2
,

f2((U1, V1), (U2, V2)) =
V1 + V2

2
,

f3((U1, V1), (U2, V2)) = U1U2 − V1V2.
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With respect to the barycentric affine frame (r, s, t) =

(O +
−→
i1 , O +

−→
i2 , O), the control net consists of the fol-

lowing six points, obtained by evaluating the polar forms
f1, f2, f3 on the (u, v) coordinates of (r, s, t), namely
(1, 0), (0, 1), and (0, 0):

f(r, r)
(1, 0, 1)

f(r, t)

(
1

2
, 0, 0)

f(r, s)

(
1

2
,
1

2
, 0)

f(t, t)
(0, 0, 0)

f(s, t)

(0,
1

2
, 0)

f(s, s)
(0, 1,−1)

The resulting surface is an hyperbolic paraboloid , of im-
plicit equation

z = x2 − y2.



9.1. POLARIZING POLYNOMIAL SURFACES 335

Example 5.

Let F be the surface considered as a total degree surface,
and defined such that

F1(U, V ) = U,

F2(U, V ) = V,

F3(U, V ) = 2U 2 + V 2.

The polar forms are:

f1((U1, V1), (U2, V2)) =
U1 + U2

2
,

f2((U1, V1), (U2, V2)) =
V1 + V2

2
,

f3((U1, V1), (U2, V2)) = 2U1U2 + V1V2.
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With respect to the barycentric affine frame (r, s, t) =

(O +
−→
i1 , O +

−→
i2 , O), the control net consists of the fol-

lowing six points, obtained by evaluating the polar forms
f1, f2, f3 on the (u, v) coordinates of (r, s, t), namely
(1, 0), (0, 1), and (0, 0):

f(r, r)
(1, 0, 2)

f(r, t)

(
1

2
, 0, 0)

f(r, s)

(
1

2
,
1

2
, 0)

f(t, t)
(0, 0, 0)

f(s, t)

(0,
1

2
, 0)

f(s, s)
(0, 1, 1)

The resulting surface is an elliptic paraboloid . of implicit
equation

z = 2x2 + y2.

Its general shape is that of a “boulder hat”.
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9.2 Bipolynomial Surfaces in Polar Form

Given a bipolynomial surface F :P → E of degree 〈p, q〉,
where E is of dimension n, applying lemma 6.2.7 to each
polynomial Fi(U, V ) defining F , first with respect to U ,
and then with respect to V , we get polar forms

fi: (A)
p × (A)q → A,

which together, define a (p + q)-multiaffine map

f : (A)p × (A)q → E ,
such that f(U1, . . . , Up;V1, . . . , Vq) is symmetric in its
first p-arguments, and symmetric in its last q-arguments,
and with

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

),

for all u, v ∈ R.

By analogy with polynomial curves, it is natural to pro-
pose the following definition.
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Definition 9.2.1 Given any affine space E of dimension
≥ 3, a bipolynomial surface of degree 〈p, q〉 in polar
form is a map F :A × A → E , such that there is some
multiaffine map

f : (A)p × (A)q → E ,
which is symmetric in its first p-arguments, and symmet-
ric in its last q-arguments, and with

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

),

for all u, v ∈ A. We also say that f is 〈p, q〉-symmetric.
The trace of the surface F is the set F (A,A).
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Let (r1, s1) and (r2, s2) be two affine frames for the affine
line A. Every point u ∈ A can be written as

u =

(
s1 − u

s1 − r1

)
r1 +

(
u− s1
s1 − r1

)
s1,

and similarly any point v ∈ A can be written as

v =

(
s2 − v

s2 − r2

)
r2 +

(
v − s2
s2 − r2

)
s2.

We can expand

f(u1, . . . , up; v1, . . . , vq),

using multiaffineness.
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Lemma 9.2.2 Let (r1, s1) and (r2, s2) be any two affine
frames for the affine line A, and let E be an affine
space (of finite dimension n ≥ 3). For any nat-
ural numbers p, q, for any family (bi, j)0≤i≤p, 0≤j≤q of
(p + 1)(q + 1) points in E, there is a unique bipolyno-
mial surface F :A×A → E of degree 〈p, q〉, with polar
form the (p + q)-multiaffine 〈p, q〉-symmetric map

f : (A)p × (A)q → E ,
such that

f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

) = bi, j,

for all i, 1 ≤ i ≤ p, and all j, 1 ≤ j ≤ q. Further-
more, f is given by the expression

f(u1, . . . , up; v1, . . . , vq)

=
∑

I∩J=∅
I∪J={1,...,p}

K∩L=∅
K∪L={1,...,q}

∏

i∈I

(
s1 − ui

s1 − r1

)∏

j∈J

(
uj − r1
s1 − r1

)∏

k∈K

(
s2 − vk
s2 − r2

)∏

l∈L

(
vl − r2
s2 − r2

)
b|J |, |L|.
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A point F (u, v) on the surface F can be expressed in
terms of the Bernstein polynomials Bp

i [r1, s1](u) and
Bq

j [r2, s2](v), as

F (u, v) =∑

0≤i≤p
0≤j≤q

Bp
i [r1, s1](u)B

q
j [r2, s2](v) f(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).

Thus, we see that the Bernstein polynomials show up
again, and indeed, in traditional presentations of bipoly-
nomial surfaces, they are used in the definition itself.
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A family N = (bi, j)0≤i≤p, 0≤j≤q of (p+1)(q+1) points in
E , is often called a (rectangular) control net, or Bézier
net .

Note that we can view the set of pairs

p,q = {(i, j) ∈ N2 | 0 ≤ i ≤ p, 0 ≤ j ≤ q},
as a rectangular grid of (p + 1)(q + 1) points in A × A.
The control net N = (bi, j)(i,j)∈ p,q, can be viewed as an
image of the rectangular grid p,q in the affine space E .

By lemma 9.2.2, such a control netN determines a unique
bipolynomial surface F of degree 〈p, q〉.

The portion of the surface F corresponding to the points
F (u, v) for which the parameters u, v satisfy the inequal-
ities r1 ≤ u ≤ s1 and r2 ≤ v ≤ s2, is called a rectangu-
lar (surface) patch, or rectangular Bézier patch , and
F ([r1, s1], [r2, s2]) is the trace of the rectangular patch .
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The surface F (or rectangular patch) determined by a
control netN , contains the four control points b0, 0, b0, q, bp, 0,
and bp, q, the corners of the surface patch.

Note that there is a natural way of connecting the points
in a control net N : every point bi, j, where 0 ≤ i ≤ p−1,
and 0 ≤ j ≤ q − 1, is connected to the three points
bi+1, j, bi, j+1, and bi+1, j+1. Generally, pq quadrangles are
obtained in this manner, and together, they form a poly-
hedron which gives a rough approximation of the surface
patch.

The de Casteljau algorithm can be generalized very easily
to bipolynomial surfaces.
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9.3 The de Casteljau Algorithm for Rectangular Sur-

face Patches

Given a rectangular control net N = (bi, j)(i,j)∈ p,q, we
can first compute the points

b0∗, . . . , bp∗,

where bi∗ is obtained by applying the de Casteljau algo-
rithm to the Bézier control points

bi, 0, . . . , bi, q,

with 0 ≤ i ≤ p, and then compute bp0∗, by applying the
de Casteljau algorithm to the control points

b0∗, . . . , bp∗.

For every i, with 0 ≤ i ≤ p, we first compute the points
bji∗, k, where b

0
i∗, j = bi, j, and

bji∗, k =

(
s2 − v

s2 − r2

)
bj−1
i∗, k +

(
v − r2
s2 − r2

)
bj−1
i∗, k+1,

with 1 ≤ j ≤ q and 0 ≤ k ≤ q−j, and we let bi∗ = bqi∗, 0.
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It is easily shown by induction that

bji∗, k = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
j

, r2, . . . , r2︸ ︷︷ ︸
q−j−k

, s2, . . . , s2︸ ︷︷ ︸
k

),

and since bi∗ = bqi∗, 0, we have

bi∗ = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
q

).

Next, we compute the points bji∗, where b
0
i∗ = bi∗, and

bji∗ =

(
s1 − u

s1 − r1

)
bj−1
i∗ +

(
u− r1
s1 − r1

)
bj−1
i+1∗,

with 1 ≤ j ≤ p and 0 ≤ i ≤ p− j, and we let
F (u, v) = bp0∗.



346 CHAPTER 9. POLYNOMIAL SURFACES

It is easily shown by induction that

bji∗ = f(u, . . . , u︸ ︷︷ ︸
j

, r1, . . . , r1︸ ︷︷ ︸
p−i−j

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
q

),

and thus,

F (u, v) = bp0∗ = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

).
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Alternatively, we can first compute the points

b∗0, . . . , b∗q,

where b∗j is obtained by applying the de Casteljau algo-
rithm to the Bézier control points

b0, j, . . . , bp, j,

with 0 ≤ j ≤ q, and then compute bq∗0, by applying the
de Casteljau algorithm to the control points

b∗0, . . . , b∗q.

The same result bp0∗ = bq∗0, is obtained.

We give, in pseudo code, the version of the algorithm in
which we compute first the control points

b0∗, . . . , bp∗,

and then bp0∗. We assume that the input is a control net
N = (bi, j)(i,j)∈ p,q.
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begin

for i := 0 to p do

for j := 0 to q do

b0i∗, j := bi, j
endfor;

for j := 1 to q do

for k := 0 to q − j do

bji∗, k :=
(

s2−v
s2−r2

)
bj−1
i∗, k +

(
v−r2
s2−r2

)
bj−1
i∗, k+1

endfor

endfor;

bi∗ = bqi∗,0;
endfor;

for i := 0 to p do

b0i∗ = bi∗
endfor;

for j := 1 to p do

for i := 0 to p− j do

bji∗ :=
(

s1−u
s1−r1

)
bj−1
i∗ +

(
u−r1
s1−r1

)
bj−1
i+1∗

endfor

endfor;

F (u, v) := bp0∗
end
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uuu; vvv

rrr; xxx

rrs; xxx rss; xxx

sss; xxx
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Figure 9.1: The de Casteljau algorithm for a bipolynomial surface of degree 〈3, 3〉
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9.4 Total Degree Surfaces in Polar Form

Given a surface F :P → E of total degree m, where E is
of dimension n, applying lemma 6.2.7 to each polynomial
Fi(U, V ) defining F , with respect to both U and V , we
get polar forms

fi:Pm → A,

which together, define an m-multiaffine and symmetric
map

f :Pm → E ,
such that

F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸
m

).

Note that each f((U1, V1), . . . , (Um, Vm)) is multiaffine
and symmetric in the pairs (Ui, Vi).
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By analogy with polynomial curves, it is also natural to
propose the following definition.

Definition 9.4.1 Given any affine space E of dimension
≥ 3, a surface of total degree m in polar form , is a map
F :P → E , such that there is some symmetric multiaffine
map

f :Pm → E ,
and with

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

),

for all a ∈ P . The trace of the surface F is the set
F (P).
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The polynomials in three variables U, V, T , defined such
that

Bm
i,j,k(U, V, T ) =

m!

i!j!k!
U iV jT k,

where i + j + k = m, are also called Bernstein polyno-
mials .

The points

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where i + j + k = m, can be viewed as control points.
Let

∆m = {(i, j, k) ∈ N3 | i + j + k = m}.

From now on, we will usually denote a barycentric affine
frame (r, s, t) in the affine plane P , as ∆rst, and call it
a reference triangle.



9.4. TOTAL DEGREE SURFACES IN POLAR FORM 353

Lemma 9.4.2 Given a reference triangle ∆rst in the
affine plane P, given any family (bi, j, k)(i,j,k)∈∆m of
(m+1)(m+2)

2 points in E, there is a unique surface F :P →
E of total degree m, defined by a symmetric m-affine
polar form f :Pm → E, such that

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

) = bi, j, k,

for all (i, j, k) ∈ ∆m. Furthermore, f is given by the
expression

f(a1, . . . , am) =

∑

I∪J∪K={1,...,m}
I,J,K pairwise disjoint

(∏

i∈I
λi

)
∏

j∈J
µj



(∏

k∈K
νk

)
f(r, . . . , r︸ ︷︷ ︸

|I|

, s, . . . , s︸ ︷︷ ︸
|J |

, t, . . . , t︸ ︷︷ ︸
|K|

),

where ai = λir + µis + νit, with λi + µi + νi = 1, and
1 ≤ i ≤ m.
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A point F (a) on the surface F can be expressed in
terms of the Bernstein polynomials

Bm
i,j,k(U, V, T ) =

m!

i!j!k!
U iV jT k,

as

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

) =

∑

(i, j, k)∈∆m

Bm
i,j,k(λ, µ, ν) f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where a = λr + µs + νt, with λ + µ + ν = 1.
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A family N = (bi, j, k)(i,j,k)∈∆m of (m+1)(m+2)
2

points in E ,
is called a (triangular) control net, or Bézier net . Note
that the points in

∆m = {(i, j, k) ∈ N3 | i + j + k = m},
can be thought of as a triangular grid of points in P . For
example, when m = 5, we have the following grid of 21
points:

500
401 410

302 311 320
203 212 221 230

104 113 122 131 140
005 014 023 032 041 050
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9.5 The de Casteljau Algorithm for Triangular Surface

Patches

Given a reference triangle ∆rst, given a triangular control
net N = (bi, j, k)(i,j,k)∈∆m, recall that in terms of the polar
form f :Pm → E of the polynomial surface F :P → E
defined by N , for every (i, j, k) ∈ ∆m, we have

bi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

).

Given a = λr+µs+νt in P , where λ+µ+ν = 1, in order
to compute F (a) = f(a, . . . , a), the computation builds
a sort of tetrahedron consisting of m+1 layers. The base
layer consists of the original control points in N , which
are also denoted as (b0i, j, k)(i,j,k)∈∆m. The other layers are
computed in m stages, where at stage l, 1 ≤ l ≤ m, the
points (bli, j, k)(i,j,k)∈∆m−l

are computed such that

bli, j, k = λbl−1
i+1, j, k + µbl−1

i, j+1, k + νbl−1
i, j, k+1.
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During the last stage, the single point bm0, 0, 0 is computed.
An easy induction shows that

bli, j, k = f(a, . . . , a︸ ︷︷ ︸
l

, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m−l, and thus,

F (a) = bm0, 0, 0.

Similarly, given m points a1, . . . , am in P , where
al = λlr+µls+νlt, with λl+µl+νl = 1, we can compute
the polar value f(a1, . . . , am) as follows. Again, the base
layer of the tetrahedron consists of the original control
points in N , which are also denoted as (b0i, j, k)(i,j,k)∈∆m.

At stage l, where 1 ≤ l ≤ m, the points (bli, j, k)(i,j,k)∈∆m−l

are computed such that

bli, j, k = λlb
l−1
i+1, j, k + µlb

l−1
i, j+1, k + νlb

l−1
i, j, k+1.
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An easy induction shows that

bli, j, k = f(a1, . . . , al, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m−l, and thus,

f(a1, . . . , am) = bm0, 0, 0

In order to present the algorithm, it may be helpful to
introduce some abbreviations. For example, a triple
(i, j, k) ∈ ∆m is denoted as i, and we let e1 = (1, 0, 0),
e2 = (0, 1, 0), e3 = (0, 0, 1), and 0 = (0, 0, 0). Let
a = λr+µs+νt, where λ+µ+ν = 1. We are assuming
that we have initialized the family (b0i )i∈∆m, such that
b0i = bi, for all i ∈ ∆m. Then, we can describe the de
Casteljau algorithm as follows.
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begin

for l := 1 to m do

for i := 0 to m− l do

for j := 0 to m− i− l do

k := m− i− j − l;

i := (i, j, k);

bli := λbl−1
i+e1

+ µbl−1
i+e2

+ νbl−1
i+e3

endfor

endfor

endfor;

F (a) := bm0
end

In order to compute the polar value f(a1, . . . , am), for m
points a1, . . . , am in P , where al = λlr + µls + νlt, with
λl + µl + νl = 1, we simply replace λ, µ, ν by λl, µl, νl.
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Figure 9.2: The de Casteljau algorithm for polynomial surfaces of total degree 3
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It is interesting to note that the same polynomial surface
F , when represented as a bipolynomial surface of degree
〈p, q〉, requires a control net of (p + 1)(q + 1) control
points, and when represented as a surface of total degree
m, requires a control net of (m+1)(m+2)

2
points.
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Figure 9.3: The Enneper surface



Chapter 10

Subdivision Algorithms for
Polynomial Surfaces

10.1 Subdivision Algorithms for Triangular Patches

In this section, we explain in detail how the de Casteljau
algorithm can be used to subdivide a triangular patch
into subpatches, in order to obtain a triangulation of a
surface patch using recursive subdivision.

363
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Given a reference triangle ∆rst, given a triangular control
net N = (bi, j, k)(i,j,k)∈∆m, recall that in terms of the polar
form f :Pm → E of the polynomial surface F :P → E
defined by N , for every (i, j, k) ∈ ∆m, we have

bi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

).

Given a = λr + µs + νt in P , where λ + µ + ν = 1, in
order to compute F (a) = f(a, . . . , a), the computation
builds a sort of tetrahedron consisting of m + 1 layers.
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The base layer consists of the original control points in
N , which are also denoted as (b0i, j, k)(i,j,k)∈∆m. The other
layers are computed in m stages, where at stage l,
1 ≤ l ≤ m, the points (bli, j, k)(i,j,k)∈∆m−l

are computed
such that

bli, j, k = λbl−1
i+1, j, k + µbl−1

i, j+1, k + νbl−1
i, j, k+1.

During the last stage, the single point bm0, 0, 0 is computed.

An easy induction shows that

bli, j, k = f(a, . . . , a︸ ︷︷ ︸
l

, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m−l, and thus,

F (a) = bm0, 0, 0.
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Assuming that a is not on one of the edges of ∆rst, the
crux of the subdivision method is that the three other
faces of the tetrahedron of polar values bli, j, k besides the
face corresponding to the original control net, yield three
control nets

Nast = (bl0, j, k)(l,j,k)∈∆m,

corresponding to the base triangle ∆ast,

N rat = (bli, 0, k)(i,l,k)∈∆m,

corresponding to the base triangle ∆rat, and

N rsa = (bli, j, 0)(i,j,l)∈∆m,

corresponding to the base triangle ∆rsa.
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From an implementation point of view, we found it conve-
nient to assume that a triangular netN = (bi, j, k)(i,j,k)∈∆m

is represented as the list consisting of the concatenation
of the m + 1 rows

bi, 0, m−i, bi, 1, m−i−1, . . . , bi,m−i, 0.

As a triangle, the net N is listed (from top-down) as

f(t, . . . , t︸ ︷︷ ︸
m

) f(t, . . . , t︸ ︷︷ ︸
m−1

, s) . . . f(t, s, . . . , s︸ ︷︷ ︸
m−1

) f(s, . . . , s︸ ︷︷ ︸
m

)

. . . . . .

. . .

f(r, . . . , r︸ ︷︷ ︸
m−1

, t) f(r, . . . , r︸ ︷︷ ︸
m−1

, s)

f(r, . . . , r︸ ︷︷ ︸
m

)

The main advantage of this representation is that we can
view the net N as a two-dimensional array net , such
that net [i, j] = bi, j, k (with i + j + k = m). In fact,
only a triangular portion of this array is filled. This way
of representing control nets fits well with the convention
that the reference triangle ∆rst is represented as follows:
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t s

r

a

Figure 10.1: Reference triangle

Instead of simply computing F (a) = bm0, 0, 0, the de Castel-
jau algorithm can be easily adapted to output the three
nets Nast, N rat, and N rsa. We call this version of the
de Casteljau algorithm the subdivision algorithm .
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In implementing such a program, we found that it was
convenient to compute the nets Nast, Nart, and Nars.

In order to compute N rat from Nart, we wrote a very
simple function transnetj, and in order to compute
N rsa from Nars, we wrote a very simple function
transnetk. We also have a function convtomat which
converts a control net given as a list of rows, into a two-
dimensional array.

We found it convenient to write three distinct functions
subdecas3ra, subdecas3sa, and subdecas3ta, com-
puting the control nets with respect to the reference tri-
angles ∆ast, ∆art, and ∆ars.
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The subdivision strategy that we will follow is to divide
the reference triangle ∆rst into four subtriangles ∆abt,
∆bac, ∆crb, and ∆sca, where a = (0, 1/2, 1/2), b =
(1/2, 0, 1/2), and c = (1/2, 1/2, 0), are the middle points
of the sides st, rt and rs respectively, as shown in the
diagram below:

t r

s

a

b

c

abt
bac

crb

sca

Figure 10.2: Subdividing a reference triangle ∆rst
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The first step is to compute the control net for the refer-
ence triangle ∆bat. This can be done using two steps.

t r

s

a

b

bat
bar

ars

Figure 10.3: Computing the nets N bat, N bar and Nars from N rst

We will now compute the net N cas from the net Nars.
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t r

s

a

b

c

bat

cas

bar

Figure 10.4: Computing the net N cas from Nars

We can now compute the nets N cbr and N cba from the
net N bar.

t r

s

a

b

c

bat
cba

cbr

cas

Figure 10.5: Computing the nets N cbr and N cba from N bar

Finally, we apply some net permutations, and we get
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t r

s

a

b

c

abt
bac

crb

sca

Figure 10.6: Subdividing ∆rst into ∆abt, ∆bac, ∆crb, and ∆sca

Using mainsubdecas4, starting from a list consisting of
a single control net net, we can repeatedly subdivide the
nets in a list of nets, in order to obtain a triangulation of
the surface patch specified by the control net net.

The function rsubdiv4 performs n recursive steps of sub-
division, starting with an input control net net. The
function itersub4 takes a list of nets and subdivides
each net in this list into four subnets.
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The function rsubdiv4 creates a list of nets, where each
net is a list of points. In order to render the surface patch,
it is necessary to triangulate each net, that is, to join the
control points in a net by line segments. This can be done
in a number of ways, and is left as an exercise.

The best thing to do is to use the Polygon construct
of Mathematica . Indeed, polygons are considered non-
transparent. and the rendering algorithm automatically
removes hidden parts. It is also very easy to use the
shading options of Mathematica , or color the polygons
as desired. This is very crucial to understand complicated
surfaces.

The subdivision method is illustrated by the following
example of a cubic patch specified by the control net

net = {{0, 0, 0}, {2, 0, 2}, {4, 0, 2}, {6, 0, 0},

{1, 2, 2}, {3, 2, 5}, {5, 2, 2},

{2, 4, 2}, {4, 4, 2}, {3, 6, 0}};
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Figure 10.7: Subdivision, 1 iteration
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Figure 10.8: Subdivision, 2 iterations



10.1. SUBDIVISION ALGORITHMS FOR TRIANGULAR PATCHES 377

0

2

4

6

x

0

2

4

6

y

0

1

2

3

4

5

z

0

2

4

6

x

0

2

4

6

y

0

1

2

3

4

5

Figure 10.9: Subdivision, 3 iterations
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Another pleasant application of the subdivision method is
that it yields an efficient method for computing a control
net Nabc over a new reference triangle ∆abc, from a
control net N over an original reference triangle ∆rst.

Let ∆rst and ∆abc be two reference triangles, and let
(λ1, µ1, ν1), (λ2, µ2, ν2), and (λ3, µ3, ν3), be the barycen-
tric coordinates of a, b, c, with respect to ∆rts.

Given any arbitrary point d, if d has coordinates (λ, µ, ν)
with respect to ∆rst, and coordinates (λ′, µ′, ν ′) with
respect to ∆abc, since

d = λr + µs + νt = λ′a + µ′b + ν ′c

and

a =λ1r + µ1s + ν1t,

b =λ2r + µ2s + ν2t,

c =λ3r + µ3s + ν3t,
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we easily get




λ
µ
ν


 =

(
λ1 λ2 λ3
µ1 µ2 µ3
ν1 ν2 ν3

)


λ′

µ′

ν ′




and thus,




λ′

µ′

ν ′


 =

(
λ1 λ2 λ3
µ1 µ2 µ3
ν1 ν2 ν3

)−1



λ
µ
ν




Thus, the coordinates (λ′, µ′, ν ′) of d with respect to ∆abc
can be computed from the coordinates (λ, µ, ν) of d with
respect to ∆rst, by inverting a matrix. In this case, this
is easily done using determinants, by Cramer’s formulae.
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Now, given a reference triangle ∆rst and a control net
N over ∆rst, we can compute the new control net Nabc
over the new reference triangle ∆abc, using three subdi-
vision steps as explained below.

In the first step, we compute the control net Nast over
the reference triangle ∆ast, using subdecas3ra.

In the second step, we compute the control net N bat
using subdecas3sa, and then the control net Nabt over
the triangle ∆abt, using transnetj.

In the third step, we compute the control net N cab using
subdecas3ta, and then the control net Nabc over the
triangle ∆abc, using transnetk.



10.1. SUBDIVISION ALGORITHMS FOR TRIANGULAR PATCHES 381

Note that in the second step, we need the coordinates of
b with respect to the reference triangle ∆ast, and in the
third step, we need the coordinates of c with respect to
the reference triangle ∆abt. This can be easily done by
inverting a matrix of order 3, as explained earlier.

One should also observe that the above method is only
correct if a does not belong to st, and b does not be-
long to at. In general, some adaptations are needed. We
used the strategy explained below, and implemented in
Mathematica .

Case 1: a /∈ st.

Compute Nast using subdecas3ra.
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Case 1a: b /∈ at.

First, compute N bat using
subdecas3sa, and then Nabt using transnetj. Next,
compute N cab using subdecas3ta, and then Nabc us-
ing transnetk.

t r

s

a
b

Figure 10.10: Case 1a: a not in st, b not in at
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Case 1b: b ∈ at.

First, computeN tas fromNast using transnetk twice,
then computeN bas using subdecas3ra, and thenNabs
using transnetj. Finally, compute Nabc using
subdecas3ta.

t r

s

a

b

Figure 10.11: Case 1b: a not in st, b ∈ at
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Case 2a: s = a (and thus, a ∈ st).

In this case, ∆rst = ∆rat. First compute Nart using
transnetj, and then go back to case 1.

Case 2b: a ∈ st and s 6= a.

Compute Nars using subdecas3ta, and then go back
to case 1.

t r

s

a

Figure 10.12: Case 2b: a ∈ st, s 6= a
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As an example we can display a portion of a well
known surface known as the “monkey saddle”,
defined by the equations

x = u,

y = v,

z = u3 − 3uv2.

Note that z is the real part of the complex num-
ber (u+iv)3. It is easily shown that the monkey
saddle is specified by the following triangular
control net monknet over the standard reference
triangle ∆rst, where r = (1, 0, 0), s = (0, 1, 0),
and t = (0, 0, 1).

monknet = {{0, 0, 0}, {0, 1/3, 0}, {0, 2/3, 0}, {0, 1, 0},

{1/3, 0, 0}, {1/3, 1/3, 0}, {1/3, 2/3, -1},

{2/3, 0, 0}, {2/3, 1/3, 0}, {1, 0, 1}};
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Using newcnet3 twice to get some new nets net1 and
net2, and then subdividing both nets 3 times, we get the
following picture.
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Figure 10.13: A monkey saddle, triangular subdivision
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Another nice application of the subdivision algorithms, is
an efficient method for computing the control points of
a curve on a triangular surface patch, where the curve is
the image of a line in the parameter plane, specified by
two points a and b.

What we need is to compute the control points

di = f(a, . . . , a︸ ︷︷ ︸
m−i

, b, . . . , b︸ ︷︷ ︸
i

),

where m is the degree of the surface.

We could compute these polar values directly, but there is
a much faster method. Indeed, assuming that the surface
is defined by some netN over the reference triangle ∆rts,
if r does not belong to the line (a, b), we simply have to
compute N rba using newcnet3, and the control points
(d0, . . . , dm) are simply the bottom row of the net N rba,
assuming the usual representation of a triangular net as
the list of rows

bi, 0, m−i, bi, 1, m−i−1, . . . , bi,m−i, 0.
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More precisely, we have the following cases.

Case 1: r /∈ ab.

We compute N rba using newcnet3.

t r

s

a

b

Figure 10.14: Case 1: r not in ab
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Case 2a: r ∈ ab and a ∈ rt.

We compute N sba using newcnet3.

t r

s

a b

Figure 10.15: Case 2a: r ∈ ab and a ∈ rt
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Case 2b: r ∈ ab and a /∈ rt.

In this case, we must have t /∈ ab, since r ∈ ab, and we
compute N tba using newcnet3.

t r

s

a

b

Figure 10.16: Case 2b: r ∈ ab and a not in rt

Using the function curvcpoly , it is easy to render a tri-
angular patch by rendering a number of u-curves and
v-curves.
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10.2 Subdivision Algorithms for Rectangular Patches

We now consider algorithms for approximating rectangu-
lar patches using recursive subdivision.

Given two affine frames (r1, s1) and (r2, s2) for the affine
line A, given a rectangular control net

N = (bi, j)(i,j)∈ p,q,

recall that in terms of the polar form

f : (A)p × (A)q → E
of the bipolynomial surface F :A×A → E of degree 〈p, q〉
defined by N , for every (i, j) ∈ p,q, we have

bi, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).

Unlike subdividing triangular patches, subdividing rect-
angular patches is quite simple.
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Indeed, it is possible to subdivide a rectangular control
net N in two ways. The first way is to compute the two
nets N [r1, u; ∗] and N [u, s1; ∗], where
N [r1, u; ∗]i, j

= f(r1, . . . , r1︸ ︷︷ ︸
p−i

, u, . . . , u︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q, and

N [u, s1; ∗]i, j
= f(u, . . . , u︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q.

This can be achieved in q+1 calls to the version of the de
Casteljau algorithm performing subdivision (in the case
of curves).

This algorithm has been implemented in Mathematica
as the function urecdecas.
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The second way is to compute the two nets N [∗; r2, v]
and N [∗; v, s2], where
N [∗; r2, v]i, j

= f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, v, . . . , v︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q, and

N [∗; v, s2]i, j
= f(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; v, . . . , v︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

with 0 ≤ i ≤ p, and 0 ≤ j ≤ q.

This can be achieved in p+1 calls to the version of the de
Casteljau algorithm performing subdivision (in the case
of curves).

This algorithm has been implemented in Mathematica
as the function vrecdecas.
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Then, given an input net N over [r1, s1]× [r2, s2], for any
u, v ∈ A, we can subdivide the net N into four subnets
N [r1, u; r2, v],N [u, s1; r2, v],N [r1, u; v, s2],N [u, s1; v, s2],
by first subdviding N into N [∗; r2, v] and N [∗; v, s2], us-
ing the function vrecdecas, and then by splitting each
of these two nets using urecdecas.

The four nets have the common corner F (u, v).

r1r2 ur2 s1r2

r1v
uv s1v

r1s2 us2 s1s2

r1u; r2v

r1u; vs2

us1; r2v

us1; vs2

Figure 10.17: Subdividing a rectangular patch
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In order to implement these algorithms, we represent a
rectangular control net

N = (bi, j)(i,j)∈ p,q

as the list of p + 1 rows

bi, 0, bi, 1, . . . , bi, q,

where 0 ≤ i ≤ p.

This has the advantage that we can view N as a rectan-
gular array net, with net[i, j] = bi, j.

The function makerecnet converts an input net into such
a two dimensional array.

The subdivision algorithm is implemented in Mathemat-
ica by the function recdecas, which uses the functions
vrecdecas and urecdecas.
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In turn, these functions use the function subdecas, which
performs the subdivision of a control polygon.

It turns out that an auxiliary function rectrans con-
verting a matrix given as a list of columns into a linear
list of rows, is needed.

As in the case of triangular patches, using the function
recdecas, starting from a list consisting of a single con-
trol net net, we can repeatedly subdivide the nets in a
list of nets, in order to obtain an approximation of the
surface patch specified by the control net net.

The function recsubdiv4 shown below performs n recur-
sive steps of subdivision, starting with an input control
net net.

The function recitersub4 takes a list of nets and sub-
divides each net in this list into four subnets.
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The function recsubdiv4 returns a list of rectangular
nets. In order to render the surface patch, it is necessary
to link the nodes in each net. This is easily done, and is
left as an exercise.

The functions urecdecas and vrecdecas can also be
used to compute the control net N [a, b; c, d] over new
affine bases [a, b] and [c, d], from a control net N over
some affine bases [r1, s1] and [r2, s2].

If d 6= r2 and b 6= r1, we first compute N [r1, s1; r2, d]
using vrecdecas, then N [r1, b; r2, d] using urecdecas,
and then N [r1, b; c, d] using vrecdecas, and finally
N [a, b; c, d] using urecdecas. It is easy to care of the
cases where d = r2 or b = r1.

Let us go back to the example of the monkey saddle,
to illustrate the use of the functions recsubdiv4 and
recnewnet.
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It is easily shown that the monkey saddle is specified
by the following rectangular control net of degree (3, 2)
sqmonknet1, over [0, 1]× [0, 1]:

sqmonknet1 = {{0, 0, 0}, {0, 1/2, 0},

{0, 1, 0}, {1/3, 0, 0},

{1/3, 1/2, 0}, {1/3, 1, -1},

{2/3, 0, 0}, {2/3, 1/2, 0},

{2/3, 1, -2}, {1, 0, 1},

{1, 1/2, 1}, {1, 1, -2}}

Using recnewnet, we can compute a rectangular net
sqmonknet over [−1, 1]× [−1, 1]:

sqmonknet = {{-1, -1, 2}, {-1, 0, -4},

{-1, 1, 2}, {-1/3, -1, 2},

{-1/3, 0, 0}, {-1/3, 1, 2},

{1/3, -1, -2}, {1/3, 0, 0},

{1/3, 1, -2}, {1, -1, -2},

{1, 0, 4}, {1, 1, -2}}
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Finally, we show the output of the subdivision algorithm
recsubdiv4, for n = 1, 2, 3. The advantage of rectangu-
lar nets is that we get the patch over [−1, 1]× [−1, 1] di-
rectly, as opposed to the union of two triangular patches.
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Figure 10.18: A monkey saddle, rectangular subdivision, 1 iteration
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Figure 10.19: A monkey saddle, rectangular subdivision, 2 iterations

The final picture (corresponding to 3 iterations) is basi-
cally as good as the triangulation shown earlier, and is
obtained faster.
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Figure 10.20: A monkey saddle, rectangular subdivision, 3 iterations
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Actually, it is possible to convert a triangular net of degree
m into a rectangular net of degree (m,m), and conversely
to convert a rectangular net of degree (p, q) into a trian-
gular net of degree p+ q, but we will postpone this until
we deal with rational surfaces.



Chapter 11

Polynomial Spline Surfaces

11.1 Joining Polynomial Surfaces

We now attempt to generalize the idea of splines to poly-
nomial surfaces. As we shall see, this is far more subtle
than it is for curves.

In the case of a curve, the parameter space is the affine line
A, and the only reasonable choice is to divide the affine
line into intervals, and to view the curve as the result of
joining curve segments defined over these intervals.

However, in the case of a surface, the parameter space is
the affine plane P , and even if we just want to subdi-
vide the plane into convex regions, there is a tremendous
variety of ways of doing so.

403
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Thus, we will restrict our attention to subdivisions of the
plane into convex polygons, where the edges are line seg-
ments.

In fact, we will basically only consider subdivisions made
of rectangles or of (equilateral) triangles.

First, we will find necessary and sufficient conditions on
polar forms for two surface patches to meet with Cn con-
tinuity.

We will restrict our attention to total degree polynomial
surfaces. This is not a real restriction, since it is always
possible to convert a rectangular net to a triangular net
(see section ??).
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We need to review the definition of a directional deriva-
tive.

Definition 11.1.1 Let E and F be two normed affine
spaces, say E = Am and F = An, let Ω be a nonempty
open subset of E, and let f : Ω → F be any function.

For any a ∈ Ω, for any −→u 6= −→
0 in

−→
E , the directional

derivative of f at a w.r.t. the vector −→u , denoted as
Duf(a), is the limit (if it exists)

lim
t→0, t∈U

f(a + t−→u )− f(a)

t
,

where U = {t ∈ R | a + t−→u ∈ Ω, t 6= 0}.

Since the map t 7→ a + t−→u is continuous, and since
Ω − {a} is open, the inverse image U of Ω − {a} under
the above map is open, and the definition of the limit in
definition 11.1.1 makes sense.

The directional derivative is sometimes called the Gâteaux
derivative.
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Let A and B be two adjacent convex polygons in the
plane, and let (r, s) be the line segment along which they
are adjacent (where r, s ∈ P are distinct vertices of A
and B).

Given two polynomial surface F and G of degree m, for
any point a ∈ P , we say that F and G agree to kth
order at a, iff

Du1 . . .DuiF (a) = Du1 . . .DuiG(a),

for all −→u1 , . . . ,−→ui ∈ R2, where 0 ≤ i ≤ k.

Definition 11.1.2 LetA andB be two adjacent convex
polygons in the plane, and let (r, s) be the line segment
along which they are adjacent (where r, s ∈ P are distinct
vertices of A and B). Given two polynomial surfaces FA

and FB of degreem, FA and FB join with Ck continuity
along (r, s), iff FA and FB agree to kth order for all
a ∈ (r, s).
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Recall that lemma ?? tells us that for any a ∈ (r, s),
FA and FB agree to kth order at a iff their polar forms
fA:Pm → E and fB:Pm → E agree on all multisets of
points that contain at least m− k copies of a, that is, iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ P .

Using this fact, we can prove the following crucial lemma.
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Lemma 11.1.3 Let A and B be two adjacent convex
polygons in the plane, and let (r, s) be the line seg-
ment along which they are adjacent (where r, s ∈ P
are distinct vertices of A and B). Given two polyno-
mial surface FA and FB of degree m, FA and FB join
with Ck continuity along (r, s) iff their polar forms
fA:Pm → E and fB:Pm → E agree on all multisets of
points that contain at least m − k points on the line
(r, s), that is, iff

fA(u1, . . . , uk, ak+1, . . . , am)

= fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ P, and all ak+1, . . . , am ∈ (r, s).

As a consequence of lemma 11.1.3, we obtain the neces-
sary and sufficient conditions on control nets for FA and
FB for having Cn continuity along (r, s).
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Let A = ∆prs and B = ∆qrs be two reference triangles
in the plane, sharing the edge (r, s).

p q

s

r

A B

Figure 11.1: Two adjacent reference triangles

Then, lemma 11.1.3 tells us that FA and FB join with Cn

continuity along (r, s) iff

fA(p
iqjrksl) = fB(p

iqjrksl),

for all i, j, k, l such that i+j+k+l = m, and k+l ≥ m−n
(0 ≤ n ≤ m).
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For n = 0, we just have

fA(r
ksm−k) = fB(r

ksm−k),

with 0 ≤ k ≤ m, which means that the control points
of the boundary curves along (r, s) must agree. This is
natural, the two surfaces join along this curve!

Let us now see what the continuity conditions mean for
m = 3 and n = 1, 2, 3.

For C1 continuity, the following 10 polar values must
agree:

fA(r, r, r) = fB(r, r, r),

fA(r, r, s) = fB(r, r, s),

fA(r, s, s) = fB(r, s, s),

fA(s, s, s) = fB(s, s, s),

fA(p, r, r) = fB(p, r, r),

fA(p, r, s) = fB(p, r, s),

fA(p, s, s) = fB(p, s, s),

fA(q, s, s) = fB(q, s, s),

fA(q, r, s) = fB(q, r, s),

fA(q, r, r) = fB(q, r, r).
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Denoting these common polar values as fA,B(·, ·, ·), note
that these polar values naturally form the vertices of three
diamonds,

(fA,B(p, r, r), fA,B(r, r, r), fA,B(q, r, r), fA,B(s, r, r)),

(fA,B(p, r, s), fA,B(r, r, s), fA,B(q, r, s), fA,B(s, r, s)),

(fA,B(p, s, s), fA,B(r, s, s), fA,B(q, s, s), fA,B(s, s, s)),

images of the diamond (p, r, q, s). In particular, the ver-
tices of each of these diamonds must be coplanar, but
this is not enough to ensure C1 continuity. The above
conditions are depicted in the following diagram:
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fA(p, p, p)

fA(p, p, r)

fA(p, p, s)

fA,B(p, r, r)

fA,B(p, r, s)

fA,B(p, s, s)

fA,B(r, r, r)

fA,B(r, r, s)

fA,B(r, s, s)

fA,B(s, s, s)

fA,B(q, s, s)

fA,B(q, r, r)

fA,B(q, r, s)

fB(q, q, r)

fB(q, q, s)

fB(q, q, q)

Figure 11.2: Control nets of cubic surfaces joining with C1 continuity

We can view this diagram as three pairs of overlaping de
Casteljau diagrams each with one shell.
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Let us now consider C2 continuity, i.e., n = 2. In addition
to the 10 constraints necessary for C1 continuity, we have
6 additional equations among polar values:

fA(p, p, r) = fB(p, p, r),

fA(p, p, s) = fB(p, p, s),

fA(p, q, r) = fB(p, q, r),

fA(p, q, s) = fB(p, q, s),

fA(q, q, r) = fB(q, q, r),

fA(q, q, s) = fB(q, q, s).

Again, denoting these common polar values as fA,B(·, ·, ·),
note that these polar values naturally form the vertices
of four diamonds, images of the diamond (p, r, q, s). For
example, the left two diamonds are

(fA,B(p, p, r), fA,B(r, p, r), fA,B(q, p, r), fA,B(s, p, r)),

(fA,B(p, p, s), fA,B(r, p, s), fA,B(q, p, s), fA,B(s, p, s)).

In particular, the vertices of each of these diamonds must
be coplanar, but this is not enough to ensure C2 continu-
ity.
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Note that the polar values fA(p, q, r) = fB(p, q, r) and
fA(p, q, s) = fB(p, q, s) are not control points of the orig-
inal nets. The above conditions are depicted in the fol-
lowing diagram:

fA(p, p, p)

fA,B(p, p, r)

fA,B(p, p, s)

fA,B(q, q, r)

fA,B(q, q, s)

fB(q, q, q)

fA,B(p, q, r)

fA,B(p, q, s)

Figure 11.3: Control nets of cubic surfaces joining with C2 continuity

We can view this diagram as two pairs of overlaping de
Casteljau diagrams each with two shells.
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Finally, in the case of C3 continuity, i.e., n = 3, all the
control points agree, which means that fA = fB.

In general, Cn continuity is ensured by the overlaping of
m − n + 1 pairs of de Casteljau diagrams, each with n
shells.

We now investigate the realizability of the continuity con-
ditions in the two cases where the parameter plane is sub-
divided into rectangles, or triangles. We assume that the
parameter plane has its natural euclidean structure.
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11.2 Spline Surfaces with Triangular Patches

We study what happens with the continuity conditions
between surface patches, if the parameter plane is divided
into equilateral triangles.

In the case of spline curves, recall that it was possible to
achieve Cm−1 continuity with curve segments of degree
m. Also, spline curves have local flexibility , which means
that changing some control points in a small area does not
affect the entire spline curve.

In the case of surfaces, the situation is not as pleasant.
For simplicity, we will consider surface patches of degree
m joining with the same degree of continuity n for all
common edges.

First, we will prove that if 2m ≤ 3n + 1, then it is gen-
erally impossible to construct a spline surface.
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More precisely, given any 4 adjacent patches as shown in
the Figure below, if fC and fD are known, then fA and
fB are completely determined.

p

s q

t

A
B

C

D

Figure 11.4: Constraints on triangular patches
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The proof is more complicated than it might appear. The
difficulty is that even though A andD join with Cn conti-
nuity along (s, q), A and B join with Cn continuity along
(s, t), and B and C join with Cn continuity along (s, p),
there is no reference triangle containing all of these three
edges!

Lemma 11.2.1 Surface splines consisting of triangu-
lar patches of degree m ≥ 1 joining with Cn conti-
nuity cannot be locally flexible if 2m ≤ 3n + 1. This
means that given any four adjacent patches D,A,B,C
as in the previous figure, if fD and fC are known, then
fA and fB are completely determined. Furthermore,
when 2m = 3n + 2, there is at most one free control
point for every two internal adjacent patches.
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Proof . The idea is to show that the two control nets
of polar values fA(s

itjql) and fB(s
itjpk) are completely

determined, where i + j + l = m in the first case, and
i + j + k = m in the second case.

Since D and A join with Cn continuity along (s, q), B
and C join with Cn continuity along (s, p), and A and B
join with Cn continuity along (s, t),

fA(s
itjpkql) is determined for all j + k ≤ n, fB(s

itjpkql)
is determined for all j + l ≤ n, and

fA(s
itjpkql) = fB(s

itjpkql)

for all k + l ≤ n.
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These conditions do not seem to be sufficient to show that
fA and fB are completely determined, but we haven’t yet
taken advantage of the symmetries of the situation.

Indeed, note that (p, q) and (s, t) have the same middle
point, so that p + q = s + t.

We first reformulate theCn-continuity conditions between
A and B, using the identity p + q = s + t.

Recall that these conditions are

fA(s
itjpkql) = fB(s

itjpkql)

for all k + l ≤ n.
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Replacing p by s + t − q on the left-hand side and q by
s + t− p on the right-hand side, we get
∑

i1+i2+i3=k

(−1)i3
k!

i1!i2!i3!
fA(s

i+i1tj+i2ql+i3) =

∑

j1+j2+j3=l

(−1)j3
l!

j1!j2!j3!
fB(s

i+j1tj+j2pk+j3),

where k + l ≤ n, and i + j + k + l = m.

This is an equation relating some affine combination of
polar values from a triangular net of (k+1)(k+2)

2 polar val-
ues associated with A and some affine combination of po-
lar values from a triangular net of (l+1)(l+2)

2 polar values
associated with B.
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A similar rewriting of the Cn-continuity equations be-
tween A and D and between C and B shows that the
polar values fA(s

m−j−ltjql) are known for 0 ≤ l ≤ m− j
and 0 ≤ j ≤ n, and that the polar values fB(s

m−j−ktjpk)
are known for 0 ≤ k ≤ m− j and 0 ≤ j ≤ n.

On Figure 11.5, the polar values of the form fA(s
m−j−ltjql)

are located in the trapezoid (s, q, x, y) and the polar val-
ues of the form fB(s

m−j−ktjpk) are located in the trape-
zoid (s, p, z, y).

If n = 2h and m = 3h, the polar values associated with
A and B that are not already determined are contained
in the diamond (t, u, v, w), and there are (m− n)2 = h2

such polar values, since fA(s
itj) = fB(s

itj) along (s, t)
(where i + j = m).
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If n = 2h+1 andm = 3h+2, the polar values associated
with A and B that are not already determined are also
contained in the diamond (t, u, v, w), and there are
(m− n)2 = (h + 1)2 such polar values.

p

s q

tw

v
u

x
y

z

p1

p2

q1

q2

A
B

Figure 11.5: Determining polar values in A and B

In either case, the polar values in the diamond (t, u, v, w)
can be determined inductively from right to left and from
bottom up.
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Knowing that we must have 2m ≥ 3n + 2 to have local
flexibility, and thus, to find any reasonable scheme to
constuct triangular spline surfaces, the problem remains
to actually find a method for contructing spline surfaces
when 2m = 3n + 2.

Such a method using convolutions is described by Ramshaw
[?], but it is not practical.

Instead of presenting this method, we attempt to un-
derstand better what are the constraints on triangular
patches when n = 2N and m = 3N + 1. The key is to
look at “derived surfaces”.
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Given a polynomial surface F :P → E of degree m, for

any vector −→u ∈ R2, the map DuF :P → −→E defined by

the directional derivative of F in the fixed direction −→u ,
is a polynomial surface of degree m− 1, called a derived
surface of F .

Given two triangular surfaces F :P → E and G:P → E ,
the following lemmas show that if F and G join with Cn

continuity along a line L and if −→u is parallel to L, then
DuF and DuG also join with Cn continuity along L.
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Lemma 11.2.2 Given two triangular surfaces
F :P → E and G:P → E, if F and G meet with C0

continuity along a line L, and if −→u ∈ R2 is parallel to
L, then DuF and DuG also meet with C0 continuity
along L.

Lemma 11.2.3 Given two triangular surfaces
F :P → E and G:P → E, if F and G meet with Cn

continuity along a line L, and if −→u is parallel to L,
then DuF and DuG also meet with Cn continuity along
L.

We can now derive necessary conditions on surfaces F
and G of degree 3n + 1 to join with C2n continuity.
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Consider three vectors −→α ,
−→
β , −→γ , parallel to the three

directions of the edges of triangles in the triangular grid,
and such that

−→α +
−→
β +−→γ =

−→
0 .

C
B

A
−→α

−→
β

−→γ

Figure 11.6: A stripe in the parameter plane for triangular patches

Lemma 11.2.4 Given a spline surface F :P → E of
degree 3n+1 having C2n continuity, for any three vec-

tors −→α ,
−→
β , −→γ , parallel to the three directions of the

edges of triangles in the triangular grid, and such that
−→α +

−→
β + −→γ =

−→
0 , for every triangle A, the derived

surface Dn+1
α Dn+1

β FA is the same in any stripe in the

direction −→γ , the derived surface Dn+1
β Dn+1

γ FA is the

same in any stripe in the direction −→α , and the de-
rived surface Dn+1

α Dn+1
γ FA is the same in any stripe

in the direction
−→
β .
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From lemma 11.2.4, in order to find spline surfaces of
degree 3n+1 with C2n continuity, it is natural to attempt
to satisfy the conditions

Dn+1
α Dn+1

β FA = Dn+1
β Dn+1

γ FA = Dn+1
α Dn+1

γ FA =
−→
0 ,

for all triangles A.

Each derived surface patch has degree n − 1, and thus,
setting it to zero corresponds to (n+1)n

2 conditions.

If we can show that for −→α ,
−→
β , −→γ , these conditions are

independent, we have a total of 3(n+1)n
2 conditions.
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A surface of degree 3n + 1 is determined by (3n+3)(3n+2)
2

control points. Subtracting the 3(n+1)n
2 conditions, we see

that each patch FA is specified by 3(n+1)2 control points.

We can show that these conditions are indeed indepen-
dent using tensors.

In summary, we were led to consider surface splines of
degree 3n + 1 with C2n continuity, satisfying the inde-
pendent conditions

Dn+1
α Dn+1

β FA = Dn+1
β Dn+1

γ FA = Dn+1
α Dn+1

γ FA =
−→
0 .
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Each patch is then defined by 3(n + 1)2 control points.
Such spline surfaces do exist, and their existence can be
shown using convolutions.

Unfortunately, to the best of our knowledge, no nice scheme
involving de Boor control points is known for such trian-
gular spline surfaces.

This is one of the outstanding open problems for spline
surfaces, as discussed very lucidly by Ramshaw [?].

Next we will see that we have better luck with rectangular
spline surfaces.
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11.3 Spline Surfaces with Rectangular Patches

We now study what happens with the continuity condi-
tions between surface patches, if the parameter plane is
divided into rectangles.

For simplicity, we will consider surface patches of degree
m joining with the same degree of continuity n for all
common edges.

First, we will prove that ifm ≤ 2n+1, then it is generally
impossible to construct a spline surface.
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More precisely, given any 4 adjacent patches as shown
in the figure below, if fB and fD are known, then fA is
completely determined.

y z

wx

AB

C D

Figure 11.7: Constraints on rectangular patches
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As opposed to the triangular case, the proof is fairly sim-
ple.

Lemma 11.3.1 Surface splines consisting of rectan-
gular patches of degree m ≥ 1 joining with Cn conti-
nuity cannot be locally flexible if m ≤ 2n + 1. This
means that given any three adjacent patches A,B,D
as in the previous figure, if fB and fD are known,
then fA is completely determined. Furthermore, when
m = 2n+2, there is at most one free control point for
every two internal adjacent patches.

Thus, in order to have rectangular spline surfaces with
Cn continuity, we must have m ≥ 2n + 2.

We shall consider the case of rectangular spline surfaces
of degree 2n meeting with Cn−1 continuity.

One can prove using convolutions (see Ramshaw [?]) that
such spline surfaces exist, but the construction is not prac-
tical.
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Instead, as in the case of triangular spline surfaces, we will
look for necessary conditions in terms of derived surfaces.
This time, we will be successful in finding a nice class
of spline surfaces specifiable in terms of de Boor control
points.

Lemma 11.3.2 Given two (triangular) surfaces
F :P → E and G:P → E of degree 2n, if F and G

meet with Cn−1 continuity along a line L, and if −→u
is parallel to L, then Dn+1

u F = Dn+1
u G.

We can now derive necessary conditions on surfaces F
and G of degree 2n to join with Cn−1 continuity.

Lemma 11.3.3 Given a spline surface F :P → E of
degree 2n having Cn−1 continuity, for any horizontal

vector −→α , and any vertical vector
−→
β , for every rect-

angle A, the derived surface Dn+1
α FA is the same in

any stripe in the direction −→α , and the derived surface

Dn+1
β FA is the same in any stripe in the direction

−→
β .
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In view of lemma 11.3.3, it makes sense to look for rect-
angular spline surfaces of degree 2n with continuity Cn−1

satisfying the constraints

Dn+1
α FA = Dn+1

β FA =
−→
0

for all rectangles A.

Since Dn+1
α FA has degree n − 1, setting it to zero corre-

sponds to (n+1)n
2 constraints, and thus, we have a total of

(n + 1)n constraints.
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A surface of degree 2n is specified by (2n+2)(2n+1)
2

control
points, and subtracting the (n+ 1)n constraints, we find
that each rectangular patch is determined by
(n + 1)2 control points.

However, note that a surface of degree 2n such that

Dn+1
α FA = Dn+1

β FA =
−→
0

is equivalent to a bipolynomial surface of bidegree 〈n, n〉.

Thus, in the present case of rectangular spline surfaces,
we discover that bipolynomial spline surfaces of bidegree
〈n, n〉 are an answer to our quest.
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Furthermore, since each rectangle is the product of two
intervals, we can easily adapt what we have done for spline
curves to bipolynomial spline surfaces. In fact, we can do
this for bipolynomial spline surfaces of bidegree 〈p, q〉.

Given a knot sequences (si) along the u-direction, and
a knot sequences (tj) along the v-direction, we have de
Boor control points of the form

xi,j = f(si+1, . . . , si+p; tj+1, . . . , tj+q).

The patches of the spline surface have domain rectangles
of the form

Rk,l = [sk, sk+1]× [tl, tl+1],

where sk < sk+1 and tl < tl+1.

The patch defined on the rectangle Rk,l has the
(p + 1)(q + 1) de Boor control points xi,j, where
k − p ≤ i ≤ k and l − q ≤ i ≤ l.



438 CHAPTER 11. POLYNOMIAL SPLINE SURFACES

Two patches adjacent in the u-direction meet with Cp−r

continuity, where r is the multiplicity of the knot si that
divides them, and two patches adjacent in the v-direction
meet with Cq−r continuity, where r is the multiplicity of
the knot tj that divides them.

The progressive version of the de Casteljau algorithm can
be generalized quite easily. Since the study of bipolyno-
mial spline surfaces of bidegree 〈p, q〉 basically reduces
to the study of spline curves, we will not elaborate any
further, and leave this topic as an interesting project.

In summary, contrary to the case of triangular spline sur-
faces, in the case of rectangular spline surfaces, we were
able to generalize the treatment of spline curves in terms
of knot sequences and de Boor control points to bipoly-
nomial spline surfaces.

The challenge of finding such a scheme for triangular
spline surfaces remains open.
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11.4 Subdivision Surfaces

A Quick History of Subdivision Surfaces

The idea of defining a curve or a surface via a limit process
involving subdivision goes back to Chaikin, who (in 1974)
defined a simple subdivision scheme applying to curves
defined by a closed control polygon [?].

Soon after that, Riesenfeld [?] realized that
Chaikin’s scheme was simply the de Boor subdivision
method for quadratic uniform B-splines, i.e., the process
of recursively inserting a knot at the midpoint of every
interval in a cyclic knot sequence.

In 1978, two subdivision schemes for surfaces were pro-
posed by Doo and Sabin [?, ?, ?], and by Catmull and
Clark [?].
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The main difference between the two schemes is the fol-
lowing.

After one round of subdivision the Doo-Sabin scheme pro-
duces a mesh whose vertices all have the same degree 4,
and most faces are rectangular, except for faces arising
from original vertices of degree not equal to four and from
nonrectangular faces.

After one round of subdivision, the number of nonrectan-
gular faces remains constant, and it turns out that these
faces shrink and tend to a limit which is their common
centroid.

The centroid of each nonrectangular face is referred to as
an extraordinary point .
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Furthermore, large regions of the mesh define biquadratic
B-splines.

The limit surface is C1-continuous except at extraordi-
nary points.

On the other hand, after one round of subdivision, the
Catmull-Clark scheme produces rectangular faces, and
most vertices have degree 4, except for vertices arising
from original nonrectangular faces and from vertices of
degree not equal to four, also referred to as extraordinary
points.

The limit surface is C2-continuous except at extraordi-
nary points. Large regions of the mesh define bicubic
B-splines.
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Several years later, Charles Loop in his Master’s thesis
(1987) introduced a subdivision scheme based on a mesh
consisting strictly of triangular faces [?].

In Loop’s scheme, every triangular face is refined into four
subtriangles. Most vertices have degree six, except for
original vertices whose degree is not equal to six, referred
to as extraordinary points.

Large regions of the mesh define triangular splines based
on hexagons consisting of 24 small triangles each of degree
four (each edge of such an hexagon consists of two edges
of a small triangle). The limit surface is C2-continuous
except at extraordinary points.
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Doo-Sabin’s Scheme

During every round of the subdivision process, new ver-
tices and new faces are created as follows.

Every vertex v of the current mesh yields a new vertex
vF called image of v in F , for every face F having v as
a vertex.

Then, image vertices are connected to form three kinds
of new faces: F -faces, E-faces, and V -faces.
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An F -face is a smaller version of a face F , and it is ob-
tained by connecting the image vertices of the boundary
vertices of F in F . Note that if F is an n-sided face, so
is the new F -face. This process is illustrated in Figure
11.8.

u

vw

x

y z

uF

vFwF

xF

yF zF

F

Figure 11.8: Vertices of a new F -face
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A new E-face is created as follows.

For every edge E common to two faces F1 and F2, the
four image vertices vF1, vF2 of the end vertex v of E, and
wF1, wF2 of the other end vertex w of E are connected to
form a rectangular face, as illustrated in Figure 11.9.

EF1 F2

w

v

vF1

wF1

vF2

wF2

Figure 11.9: Vertices of a new E-face
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A new V -face is obtained by connecting the image ver-
tices vF of a given vertex v in all the faces adjacent to v,
provided that v has degree n ≥ 3. If v has degree n, the
new V -face is also n-sided. This process is illustrated in
Figure 11.10.

F1

F2 F3

v

vF1

vF2
vF3

Figure 11.10: Vertices of a new V -face
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Various rules are used to determine the image vertex vF
of a vertex v in some face F .

A simple scheme used by Doo is to compute the centroid c
of the face F , and the image vF of v in F as the midpoint
of c and v (if F has n sides, the centroid of F is the
barycenter of the weighted points (v, 1/n), where the v’s
are the vertices of F ).

Another rule is

vi =

n∑

j=1

αijwj,

where the wj are the vertices of the face F , and vi is the
image of wi in F , with

αij =

{ n+5
4n

if i = j,
3+2 cos(2π(i−j)/n)

4n if i 6= j,

where 1 ≤ i, j ≤ n and n ≥ 3 is the number of boundary
edges of F .
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Observe that after one round of subdivision, all vertices
have degree four, and the number of nonrectangular faces
remains constant.

It is also easy to check that these faces shrink and tend
to a limit which is their common centroid.

However, it is not obvious that such subdivision schemes
converge, and what kind of smoothness is obtained at
extraordinary points.

These matters were investigated by Doo and Sabin [?]
and by Peters and Reif [?].
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This can be achieved by eigenvalue analysis, or better,
using discrete Fourier transforms.

The Doo-Sabin method has been generalized to accomo-
date features such as creases, darts, or cusps, by Seder-
berg, Zheng, Sewell, and Sabin [?].

Such features are desirable in human modeling, for exam-
ple, to model clothes or human skin.
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Catmull-Clark’s Scheme

Unlike the previous one, this method consists in subdi-
viding every face into smaller rectangular faces obtained
by connecting new face points, edge points, and vertex
points.

Given a face F with vertices v1, . . . , vn, the new face point
vF is computed as the centroid of the vi, i.e.

vF =
n∑

i=1

1

n
vi.

Given an edge E with endpoints v and w, if F1 and F2 are
the two faces sharing E as a common edge, the new edge
point vE is the average of the four points v, w, vF1, vF2,
where vF1 and vF2 are the centroids of F1 and F2, i.e.

vE =
v + w + vF1 + vF2

4
.
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The computation of new vertex points is slightly more
involved.

In fact, there are several different versions. The version
presented in Catmull and Clark [?] is as follows.

Given a vertex v (an old one), if F denotes the average of
the new face points of all (old) faces adjacent to v and E
denotes the average of the midpoints of all (old) n edges
incident with v, the new vertex point v′ associated with
v is

v′ =
1

n
F +

2

n
E +

n− 3

n
v.

New faces are then determined by connecting the new
points as follows: each new face point vF is connected by
an edge to the new edge points vE associated with the
boundary edges E of the face F ; each new vertex point
v′ is connected by an edge to the new edge points vE
associated with all the edges E incident with v.

Note that only rectangular faces are created.
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Figure 11.11 shows this process. New face points are
denoted as solid square points, new edges points are de-
noted as hollow round points, and new vertex points are
denoted as hollow square points.

Figure 11.11: New face point, edge points, and vertex points
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An older version of the rule for vertex points is

v′ =
1

4
F +

1

2
E +

1

4
v,

but it was observed that the resulting surfaces could be
too “pointy” (for example, starting from a tetrahedron).

Another version studied by Doo and Sabin is

v′ =
1

n
F +

1

n
E +

n− 2

n
v.

Doo and Sabin analyzed the tangent-plane continuity of
this scheme using discrete Fourier transforms [?].
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Observe that after one round of subdivision, all faces are
rectangular, and the number of extraordinary points (ver-
tices of degree different from four) remains constant.

The tangent-plane continuity of various versions of
Catmull-Clark schemes are also investigated in Ball and
Storry [?] (using discrete Fourier transforms), and C1-
continuity is investigated by Peters and Reif [?].

A more general study of the convergence of subdivision
methods can be found in Zorin [?] (see also Zorin [?]).

It is also possible to accomodate boundary vertices and
edges. DeRose, Kass, and Truong [?], have generalized
the Catmull-Clark subdivision rules to accomodate sharp
edges and creases.
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Their work is inspired by previous work of Hoppe et al
[?], in which the Loop scheme was extended to allow (in-
finitely) sharp creases, except that DeRose et al’s method
applies to Catmull-Clark surfaces.

The method of DeRose Kass, and Truong [?], also al-
lows semi-sharp creases in addition to (infinitely) sharp
creases.

This new scheme was used in modeling the character Geri
in the short film Geri’s game.
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Loop’s Scheme

Unlike the previous methods, Loop’s method only applies
to meshes whose faces are all triangles.

Loop’s method consists in splitting each (triangular) face
into four triangular faces, using rules to determine new
edge points and new vertex points.

For every edge (rs), since exactly two triangles ∆prs and
∆qrs share the edge (rs), we compute the new edge point
ηrs as the following convex combination:

ηrs =
1

8
p +

3

8
r +

3

8
s +

1

8
q,

as illustrated in Figure 11.12.
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This corresponds to computing the affine combination of
three points assigned respectively the weights 3/8, 3/8,
and 2/8: the centroids of the two triangles ∆prs and
∆qrs, and the midpoint of the edge (rs).

p q

s

r

ηrsF G

Figure 11.12: Loop’s scheme for computing edge points

For any vertex v of degree n, if p0, . . . , pn−1 are the other
endpoints of all (old) edges incident with v, the new ver-
tex point v′ associated with v is

v′ = (1− αn)

(
n−1∑

i=0

1

n
pi

)
+ αnv,

where αn is a coefficient dependent on n.
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Loop’s method is illustrated in Figure 11.13, where hollow
round points denote new edge points, and hollow square
points denote new vertex points.

η3η2

η1

v1

v2 v3

Figure 11.13: Loop’s scheme for subdividing faces

Observe that after one round of subdivision, all vertices
have degree six, except for vertices coming from orginal
vertices of degree different from six, but such vertices are
surrounded by ordinary vertices of degree six.
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Vertices of degree different from six are called extraordi-
nary points. Loop determined that the value αn = 5/8
produces good results [?], but in some cases, tangent
plane continuity is lost at extraordinary points.

Large regions of the mesh define triangular splines based
on hexagons consisting of small triangles each of degree
four (each edge of such an hexagon consists of two edges
of a small triangle).

Thus, ordinary points have a well defined limit that can be
computed by subdividing the quartic triangular patches.
The limit surface is C2-continuous except at extraordi-
nary points.
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Loop’s method was first formulated for surfaces without
boundaries. Boundaries can be easily handled by treating
the boundary curves a cubic B-splines, as in the Catmull-
Clark scheme.

In his Master’s thesis [?], Loop rigorously investigates the
convergence and smoothness properties of his scheme.

He proves convergence of extraordinary points to a limit.

He also figures out in which interval αn should belong,
in order to insure convergence and better smoothness at
extraordinary points.

Since the principles of Loop’s analysis are seminal and
yet quite simple, we will present its main lines.
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Loop’s Analysis of Convergence

As we already remarked, after one round of subdivision,
extraordinary points are surrounded by ordinary points,
which makes the analysis of convergence possible.

Since points are created during every iteration of the sub-
division process, it is convenient to label points with the
index of the subdivision round during which they are cre-
ated.

Then, the rule for creating a new vertex point vl associ-
ated with a vertex vl−1 can be written as

vl = (1− αn)q
l−1 + αnv

l−1,

where

ql−1 =
n−1∑

i=0

1

n
pl−1
i

is the centroid of the points pl−1
0 , . . . , pl−1

n−1, the other end-
points of all edges incident with vl−1.
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Loop proves that as l tends to ∞,

(1) Every extraordinary vertex vl tends to the same limit
as ql;

(2) The ordinary vertices pl0, . . . , p
l
n−1 surrounding v

l also
tend to the same limit as ql.

Since ql is the centroid of ordinary points, this proves the
convergence for extraordinary points. Keep in mind that
the lower indices of the pli are taken modulo n.

Proving that liml→∞ vl = liml→∞ ql is fairly easy.
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Using the fact that

pli =
1

8
pl−1
i−1 +

3

8
pl−1
i +

3

8
vl−1 +

1

8
pl−1
i+1

and some calculations, it is easy to show that

vl − ql =

(
αn −

3

8

)
(vl−1 − ql−1).

By a trivial induction, we get

vl − ql =

(
αn −

3

8

)l

(v0 − q0).

Thus, if −1 < αn − 3
8 < 1, i,e,

−5

8
< αn <

11

8
,

we get convergence of vl to ql.

The value αn = 5/8 is certainly acceptable.
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Proving (2) is a little more involved.

Loop makes a clever use of discrete Fourier transforms .

Discrete Fourier series deal with finite sequences c ∈ Cn

of complex numbers.

It is convenient to view a finite sequence c ∈ Cn as a
periodic sequence over Z, by letting ck = ch iff
k − h = 0 mod n.

It is also more convenient to index n-tuples starting from
0 instead of 1, thus writing c = (c0, . . . , cn−1).

Every sequence c = (c0, . . . , cn−1) ∈ Cn of “Fourier co-
efficients” determines a periodic function fc:R → C (of
period 2π) known as discrete Fourier series, or phase
polynomial , defined such that

fc(θ) = c0 + c1e
iθ + · · · + cn−1e

i(n−1)θ =
n−1∑

k=0

cke
ikθ.
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Then, given any sequence f = (f0, . . . , fn−1) of data
points, it is desirable to find the “Fourier coefficients”
c = (c0, . . . , cn−1) of the discrete Fourier series fc such
that

fc(2πk/n) = fk,

for every k, 0 ≤ k ≤ n− 1.

The problem amounts to solving the linear system

Fnc = f,

where Fn is the symmetric n × n-matrix (with complex
coefficients)

Fn =
(
ei2πkl/n

)
0≤k≤n−1
0≤l≤n−1

,

assuming that we index the entries in Fn over
[0, 1, . . . , n− 1]× [0, 1, . . . , n− 1], the standard k-th row
now being indexed by k−1 and the standard l-th column
now being indexed by l − 1.
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The matrix Fn is called a Fourier matrix . Letting

Fn =
(
e−i2πkl/n

)
0≤k≤n−1
0≤l≤n−1

be the conjugate of Fn, it is easily checked that

FnFn = FnFn = n In.

Thus, the Fourier matrix is invertible, and its inverse
F−1
n = (1/n)Fn is computed very cheaply.

The purpose of the discrete Fourier transform is to find
the Fourier coefficients c = (c0, . . . , cn−1) from the data
points f = (f0, . . . , fn−1).

The discrete Fourier transform is a linear map
:̂Cn → Cn.

Now, the other major player in Fourier analysis is the
convolution.
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In the discrete case, it is natural to define the discrete
convolution as a circular type of convolution rule.

The discrete convolution is a map ⋆:Cn × Cn → Cn,
taking two sequences c, d ∈ Cn, and forming the new
sequence c ⋆ d.

The Fourier transform and the convolution rule (discrete
or not!) must be defined in such a way that they form
a harmonious pair, which means that the transform of a
convolution should be the product of the transforms, i.e.

ĉ ⋆ d = ĉ d̂,

where the multiplication on the right-hand side is just the
inner product of ĉ and d̂ (vectors of length n).
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Inspired by the continuous case, and following Strang [?],

it is natural to define the discrete Fourier transform f̂
of a sequence f = (f0, . . . , fn−1) ∈ Cn as

f̂ = Fnf,

or equivalently, as

f̂ (k) =

n−1∑

j=0

fje
−i2πjk/n

for every k, 0 ≤ k ≤ n− 1.

We also define the inverse discrete Fourier transform
(taking c back to f) as

ĉ = Fn c.
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Since

f̂(k) =
n−1∑

j=0

fje
−i2πjk/n,

in view of the formula FnFn = FnFn = n In, the Fourier
coefficients c = (c0, . . . , cn−1) are then given by the for-
mulae

ck =
1

n
f̂ (k) =

1

n

n−1∑

j=0

fje
−i2πjk/n.

Note the analogy with the continuous case, where the
Fourier transform f̂ of the function f is given by

f̂ (x) =

∫ ∞

−∞
f(t)e−ixtdt,

and the Fourier coefficients of the Fourier series

f(x) =
∞∑

k=−∞
cke

ikx

are given by the formulae

ck =
1

2π

∫ π

−π

f(x)e−ikxdx.
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Remark . Others authors (including Strang in his older
book [?]) define the discrete Fourier transform as

f̂ = 1
nFnf .

The drawback of this choice is that the convolution rule
has an extra factor of n.

Loop defines the discrete Fourier transform as Fnf , which
causes problem with the convolution rule. We will come
back to this point shortly!

The simplest definition of discrete convolution is, in our
opinion, the definition in terms of circulant matrices .
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We define the circular shift matrix Sn (of order n) as
the matrix

Sn =




0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0... ... ... ... ... ... ...
0 0 0 0 · · · 1 0




consisting of cyclic permutations of its first column.

For any sequence f = (f0, . . . , fn−1) ∈ Cn, we define the
circulant matrix H(f) as

H(f) =
n−1∑

j=0

fjS
j
n,

where S0
n = In, as usual.

For example, the circulant matrix associated with the se-
quence f = (a, b, c, d) is




a d c b
b a d c
c b a d
d c b a
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We can now define the convolution f ⋆g of two sequences
f = (f0, . . . , fn−1) and g = (g0, . . . , gn−1) as

f ⋆ g = H(f) g,

viewing f and g as column vectors.

Then, the miracle (which is not too hard to prove!) is
that we have

H(f)Fn = Fnf̂ ,

which means that the columns of the Fourier matrix Fn

are the eigenvectors of the circulant matrix H(f), and
that the eigenvalue associated with the lth eigenvector is
(f̂)l, the lth component of the Fourier transform f̂ of f
(counting from 0).
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After some calculations, we get

f̂ ⋆ g = Fn(f ⋆ g),

which can be rewritten

as the (circular) convolution rule

f̂ ⋆ g = f̂ ĝ,

where the multiplication on the right-hand side is just the
inner product of the vectors f̂ and ĝ.

If the sequence f = (f0, . . . , fn−1) is even, which means
that f−j = fj for all j ∈ Z (viewed as a periodic se-
quence), or equivalently, that fn−j = fj for all j,
0 ≤ j ≤ n−1, it is easily seen that the Fourier transform
f̂ can be expressed as

f̂(k) =

n−1∑

j=0

fj cos (2πjk/n) ,

for every k, 0 ≤ k ≤ n− 1.
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Similarly, the inverse Fourier transform (taking c back to
f) is expressed as

ĉ(k) =
n−1∑

j=0

cj cos (2πjk/n) ,

for every k, 0 ≤ k ≤ n− 1.

Observe that it is the same as the (forward) discrete
Fourier transform. This is what saves Loop’s proof (see
below)!

After this digression, we get back to Loop’s Master’s the-
sis [?].

However, we warn our readers that Loop defines the dis-
crete Fourier transform as

F(f) = Fnf,

(which is our inverse Fourier transform f̂ ) and not as

Fnf , which is our Fourier transform f̂ (following Strang
[?]).
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Neverthless, even though Loop appears to be using an
incorrect definition of the Fourier transform, what saves
his argument is that for even sequences, his F(f) and our

f̂ are identical, as observed earlier.

With these remarks in mind, we go back to Loop’s proof
that the ordinary vertices pl0, . . . , p

l
n−1 surrounding v

l also
tend to the same limit as ql.

The trick is rewrite the equations

ql =

n−1∑

i=0

1

n
pli

and

pli =
1

8
pl−1
i−1 +

3

8
pl−1
i +

3

8
vl−1 +

1

8
pl−1
i+1

in terms of discrete convolutions.
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To do so, define the sequences

M =


3

8
,
1

8
, 0, . . . , 0︸ ︷︷ ︸

n−3

,
1

8


 ,

and

A =

(
1

n
, . . . ,

1

n

)
,

both of length n.

Note that these sequences are even!

We also define the sequence P l as

P l = (pl0, . . . , p
l
n−1),

and treat ql and vl as constant sequences Ql and V l of
length n.

Then, after some calculations, we get

P l =

(
M − 5

8
A

)
⋆ P l−1 +Ql.
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Taking advantage of certain special properties of M and
A, namely,

n−1∑

j=0

(
M − 5

8
A

)

j

= 0,

we get

P l =

(
M − 5

8
A

)l⋆

⋆ P 0 +Ql,

where cn⋆ stands for the n-fold convolution c ⋆ · · · ⋆ c︸ ︷︷ ︸
n

.

At this stage, letting

R = M − 5

8
A,

all we have to prove is that Rl⋆ tends to the null sequence
as l goes to infinity.
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Since both M and A are even sequences, applying the
Fourier transform in its cosine form and the convolution
rule, we have

R̂l⋆ = (R̂)l,

and so, we just have to compute the discrete Fourier trans-
form of R.

However, this is easy to do, and we get

(R̂)j =

{
0 if j = 0,
3
8
+ 1

4
cos (2πj/n) if j 6= 0.
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Since the absolute value of the cosine is bounded by 1,

1

8
≤ (R̂)j ≤

5

8

for all j, 0 ≤ j ≤ n− 1, and thus

lim
l→∞

(R̂)l = 0n,

which proves that

lim
l→∞

R̂l⋆ = lim
l→∞

Rl⋆ = 0n,

and consequently that

lim
l→∞

pli = lim
l→∞

ql.

Therefore, the faces surrounding extraordinary points con-
verge to the same limit as the centroid of these faces.
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Loop gives explicit formulae for the limit of extraordinary
points.

He proves that ql (and thus vl) has the limit

(1− βn)q
0 + βnv

0, where βn =
3

11− 8αn
.

The bounds to insure convergence are the same as the
bounds to insure convergence of vl to ql, namely

−5

8
< αn <

11

8
.

In particular, αn = 5/8 yields βn = 1/2. Loop also
investigates the tangent plane continuity at these limit
points.
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He proves that tangent plane continuity is insured if αn

is chosen so that

−1

4
cos (2π/n) < αn <

3

4
+

1

4
cos (2π/n) .

For instance, for a vertex of degree three (n = 3), the
values α3 = 5/8 is outside the correct range, as Loop
first observed experimentally.

If αn is chosen in the correct range, it is possible to find a
formula for the tangent vector function at each extraor-
dinary point.

Loop also discusses curvature continuity at extraordinary
points, but his study is more tentative.
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He proposes the following “optimal” value for αn;

αn =
3

8
+

(
3

8
+
1

4
cos (2π/n)

)2

.

Note that α6 = 5/8 is indeed this value for regular vertices
(of degree n = 6).

In summary, Loop proves that his subdivision scheme is
C2-continuous, except at a finite number of extraordinary
points. At extraordinary points, there is convergence, and
there is a range of values from which αn can be chosen to
insure tangent plane continuity.

The implementation of the method is discussed, and it is
nontrivial.

Stam [?] also implemented a method for computing points
on Loop surfaces.

Loop’s scheme was extended to accomodate sharp edges
and creases on boundaries, see Hoppe et [?].



Chapter 12

Embedding an Affine Space in a
Vector Space

12.1 Embedding an Affine Space as a Hyperplane in a

Vector Space: the “Hat Construction”

Assume that we consider the real affine space E of dimen-

sion 3, and that we have some affine frame (a0, (
−→v1 ,−→v2 ,−→v2 )).

With respect to this affine frame, every point x ∈ E is
represented by its coordinates (x1, x2, x3), where

a = a0 + x1
−→v1 + x2

−→v2 + x3
−→v3 .

A vector −→u ∈ −→
E is also represented by its coordinates

(u1, u2, u3) over the basis (
−→v1 ,−→v2 ,−→v2 ).

483
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One way to distinguish between points and vectors is to
add a fourth coordinate, and to agree that points are
represented by (row) vectors (x1, x2, x3, 1) whose fourth
coordinate is 1, and that vectors are represented by (row)
vectors (v1, v2, v3, 0) whose fourth coordinate is 0.

This “programming trick” works actually very well. Of
course, we are opening the door for strange elements such
as (x1, x2, x3, 5), where the fourth coordinate is neither 1
nor 0.
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The question is, can we make sense of such elements, and
of such a construction? The answer is “yes”. We will

present a construction in which an affine space (E,
−→
E ) is

embedded in a vector space Ê, in which
−→
E is embedded

as a hyperplane passing through the origin, and E itself
is embedded as an affine hyperplane, defined as ω−1(1),

for some linear form ω: Ê → R.

The vector space Ê has the universal property that for

any vector space
−→
F and any affine map f :E → −→

F , there

is a unique linear map f̂ : Ê → −→
F extending f :E → −→

F .
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Some Simple Geometric Transformations

Given an affine space (E,
−→
E ), every −→u ∈ −→

E induces a
mapping tu:E → E, called a translation , and defined

such that tu(a) = a + −→u , for every a ∈ E. Clearly, the

set of translations is a vector space isomorphic to
−→
E .

Given any point a and any scalar λ ∈ R, we define the
mapping Ha,λ:E → E, called dilatation (or central di-
latation, or homothety) of center a and ratio λ, and
defined such that

Ha,λ(x) = a + λ−→ax,
for every x ∈ E.

Ha,λ(a) = a, and when λ 6= 0 and x 6= a, Ha,λ(x) is on
the line defined by a and x, and is obtained by “scaling”
−→ax by λ. The effect is a uniform dilatation (or contrac-
tion, if λ < 1).
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When λ = 0, Ha,0(x) = a for all x ∈ E, and Ha,0 is the
constant affine map sending every point to a.

If we assume λ 6= 1, note that Ha,λ is never the identity,
and since a is a fixed-point, Ha,λ is never a translation.

We now consider the set Ê of geometric transformations
from E to E, consisting of the union of the (disjoint) sets
of translations and dilatations of ratio λ 6= 1.

We would like to give this set the structure of a vector

space, in such a way that both E and
−→
E can be nat-

urally embedded into Ê. In fact, it will turn out that
barycenters show up quite naturally too!
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In order to “add” two dilatations Ha1,λ1 and Ha2,λ2, it
turns out that it is more convenient to consider dilatations
of the form Ha,1−λ, where λ 6= 0. To see this, let us see
the effect of such a dilatation on a point x ∈ E: we have

Ha,1−λ(x) = a + (1− λ)−→ax = a +−→ax− λ−→ax = x + λ−→xa.
For simplicity of notation, let us denote Ha,1−λ as 〈a, λ〉.
Then, we have

〈a, λ〉(x) = x + λ−→xa.
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Lemma 12.1.1 The set Ê consisting of the disjoint
union of the translations and the dilatations Ha,1−λ =
〈a, λ〉, λ ∈ R, λ 6= 0, is a vector space under the fol-
lowing operations of addition and multiplication by a
scalar:

〈a1, λ1〉 +̂ 〈a2, λ2〉 = λ1
−−→a2a1,

if λ1 + λ2 = 0;

〈a1, λ1〉 +̂ 〈a2, λ2〉 = 〈 λ1

λ1 + λ2
a1 +

λ2

λ1 + λ2
a2, λ1 + λ2〉,

if λ1 + λ2 6= 0;

〈a, λ〉 +̂−→u = 〈a + λ−1−→u , λ〉;
−→u +̂−→v = −→u +−→v ;

µ · 〈a, λ〉 = 〈a, λµ〉,
if µ 6= 0, and

0 · 〈a, λ〉 = −→
0 ,

λ · −→u = λ−→u .
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Furthermore, the map ω: Ê → R defined such that

ω(〈a, λ〉) = λ,

ω(−→u ) = 0,

is a linear form, ω−1(0) is a hyperplane isomorphic

to
−→
E under the injective linear map i:

−→
E → Ê such

that i(−→u ) = tu (the translation associated with −→u ),
and ω−1(1) is an affine hyperplane isomorphic to E

with direction i(
−→
E ), under the injective affine map

j:E → Ê, where j(a) = 〈a, 1〉, for every a ∈ E.
Finally, for every a ∈ E, we have

Ê = i(
−→
E )⊕ Rj(a).

The following diagram illustrates the embedding of the
affine space E into the vector space Ê, when E is an
affine plane.
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Ω

〈a, 1〉 = a

〈a, λ〉

i(
−→
E ) = ω−1(0)

j(E) = ω−1(1)

−→u

Figure 12.1: Embedding an affine space E into a vector space Ê

Note that Ê is isomorphic to
−→
E ∪ (E×R∗) (where R∗ =

R − {0}). Other authors, such as Ramshaw, use the

notation E∗ for Ê.
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Ramshaw calls the linear form ω: Ê → R a weight (or

flavor), and he says that an element z ∈ Ê such that
ω(z) = λ is λ-heavy (or has flavor λ) ([?]). The el-
ements of j(E) are 1-heavy and are called points , and

the elements of i(
−→
E ) are 0-heavy and are called vectors .

In general, the λ-heavy elements all belong to the hyper-

plane ω−1(λ) parallel to i(
−→
E ).

Thus, intuitively, we can thing of Ê as a stack of parallel
hyperplanes, one for each λ, a little bit like an infinite
stack of very thin pancakes! There are two privileged
pancakes: one corresponding to E, for λ = 1, and one

corresponding to
−→
E , for λ = 0.

From now on, we will identify j(E) and E, and i(
−→
E ) and

−→
E . We will also write λa instead of 〈a, λ〉, which we will
call a weighted point , and write 1a just as a. When we
want to be more precise, we may also write 〈a, 1〉 as a (as
Ramshaw does).
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In particular, when we consider the homogenized version
Â of the affine space A associated with the base field R

considered as an affine space, we write λ for 〈λ, 1〉, when
viewing λ as a point in both A and Â, and simply λ,
when viewing λ as a vector in R and in Â. The elements
of Â are called Bézier sites , by Ramshaw.

Then, in view of the fact that

〈a +−→u , 1〉 = 〈a, 1〉 +̂−→u ,

and since we are identifying a+−→u with 〈a+−→u , 1〉 (un-
der the injection j), in the simplified notation, the above

reads as a+−→u = a +̂−→u . Thus, we go one step further,

and denote a +̂−→u as a +−→u .

From lemma 12.1.1, for every a ∈ E, every element of Ê

can be written uniquely as −→u +̂ λa. We also denote

λa +̂ (−µ)b

as
λa −̂ µb.
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Given any family (ai)i∈I of points in E, and any family
(λi)i∈I of scalars in R, with finite support, it is easily
shown by induction on the size of the support of (λi)i∈I
that,

(1) If
∑

i∈I λi = 0, then
∑

i∈I
〈ai, λi〉 =

∑

i∈I
λiai,

where ∑

i∈I
λiai =

∑

i∈I
λi
−→
bai

for any b ∈ E, which, by lemma 5.2.1, is a vector inde-
pendent of b, or

(2) If
∑

i∈I λi 6= 0, then

∑

i∈I
〈ai, λi〉 = 〈

∑

i∈I

λi∑
i∈I λi

ai,
∑

i∈I
λi〉.

Thus, we see how barycenters reenter the scene quite nat-
urally, and that in Ê, we can make sense of

∑
i∈I〈ai, λi〉,

regardless of the value of
∑

i∈I λi.
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When
∑

i∈I λi = 1, the element
∑

i∈I〈ai, λi〉 belongs to
the hyperplane ω−1(1), and thus, it is a point. When∑

i∈I λi = 0, the linear combination of points
∑

i∈I λiai
is a vector, and when I = {1, . . . , n}, we allow ourselves
to write

λ1a1 +̂ · · · +̂ λnan,

where some of the occurrences of +̂ can be replaced by
−̂ , as

λ1a1 + · · · + λnan,

where the occurrences of −̂ (if any) are replaced by −.

In fact, we have the following slightly more general prop-
erty, which is left as an exercise.
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Lemma 12.1.2 Given any affine space (E,
−→
E ), for

any family (ai)i∈I of points in E, for any family (λi)i∈I
of scalars in R, with finite support, and any family

(−→vj )j∈J of vectors in
−→
E also with finite support, and

with I ∩ J = ∅, the following properties hold:

(1) If
∑

i∈I λi = 0, then
∑

i∈I
〈ai, λi〉 +̂

∑

j∈J

−→vj =
∑

i∈I
λiai +

∑

j∈J

−→vj ,

where ∑

i∈I
λiai =

∑

i∈I
λi
−→
bai

for any b ∈ E, which, by lemma 5.2.1, is a vector
independent of b, or

(2) If
∑

i∈I λi 6= 0, then
∑

i∈I
〈ai, λi〉 +̂

∑

j∈J

−→vj

= 〈
∑

i∈I

λi∑
i∈I λi

ai +
∑

j∈J

−→vj∑
i∈I λi

,
∑

i∈I
λi〉.

The above formulae show that we have some kind of ex-
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tended barycentric calculus.
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Operations on weighted points and vectors were intro-
duced by H. Grassmann, in his book published in 1844!
This calculus will be helpful in dealing with rational curves.

There is also a nice relationship between affine frames in

(E,
−→
E ) and bases of Ê, stated in the following lemma.

Lemma 12.1.3 Given any affine space (E,
−→
E ), for

any affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am)) for E, the fam-

ily (−−→a0a1, . . . ,
−−→a0am, a0) is a basis for Ê, and for any

affine frame (a0, . . . , am) for E, the family (a0, . . . , am)

is a basis for Ê.

Furthermore, given any element 〈x, λ〉 ∈ Ê, if

x = a0 + x1
−−→a0a1 + · · · + xm

−−→a0am

over the affine frame (a0, (
−−→a0a1, . . . ,

−−→a0am)) in E, then
the coordinates of 〈x, λ〉 over the basis

(−−→a0a1, . . . ,
−−→a0am, a0)

in Ê, are
(λx1, . . . , λxm, λ).
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For any vector −→v ∈ −→
E , if

−→v = v1
−−→a0a1 + · · · + vm

−−→a0am

over the basis
(−−→a0a1, . . . ,

−−→a0am)

in
−→
E , then over the basis

(−−→a0a1, . . . ,
−−→a0am, a0)

in Ê, the coordinates of −→v are

(v1, . . . , vm, 0).
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For any element 〈a, λ〉, where λ 6= 0, if the barycentric
coordinates of a w.r.t. the affine basis (a0, . . . , am) in
E are (λ0, . . . , λm) with λ0 + · · · + λm = 1, then the

coordinates of 〈a, λ〉 w.r.t. the basis (a0, . . . , am) in Ê
are

(λλ0, . . . , λλm).

If a vector −→v ∈ −→
E is expressed as

−→v = v1
−−→a0a1 + · · · + vm

−−→a0am
= −(v1 + · · · + vm)a0 + v1a1 + · · · + vmam,

with respect to the affine basis (a0, . . . , am) in E, then

its coordinates w.r.t. the basis (a0, . . . , am) in Ê are

(−(v1 + · · · + vm), v1, . . . , vm).
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The following diagram shows the basis (−−→a0a1,
−−→a0a2, a0)

corresponding to the affine frame (a0, a1, a2) in E.

Ω

〈a, 1〉 = a

〈a, λ〉

−−→a0a1

−−→a0a2

a0

a1

a2

−→u

E

Figure 12.2: The basis (−−→a0a1,
−−→a0a2, a0) in Ê

If (x1, . . . , xm) are the coordinates of x w.r.t. to the affine
frame (a0, (

−−→a0a1, . . . ,
−−→a0am)) in E, then, (x1, . . . , xm, 1)

are the coordinates of x in Ê, i.e., the last coordinate is

1, and if −→u has coordinates (u1, . . . , um) with respect to

the basis (−−→a0a1, . . . ,
−−→a0am) in

−→
E , then −→u has coordinates

(u1, . . . , um, 0) in Ê, i.e., the last coordinate is 0.
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The following diagram shows the affine frame (a0, a1, a2)

in E viewed as a basis in Ê.

Ω

〈a, 1〉 = a

〈a, λ〉

a1 a2

a0

−→u

E

Figure 12.3: The basis (a0, a1, a2) in Ê
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Now that we have defined Ê and investigated the rela-
tionship between affine frames in E and bases in Ê, we
can give one more construction of a vector space F from

E and
−→
E , that will allow us to “visualize” in a much more

intuitive fashion the structure of Ê and of its operations
+̂ and ·.

Definition 12.1.4 Given any affine space (E,
−→
E ), we

define the vector space F as the direct sum
−→
E ⊕ R,

where R denotes the field R considered as a vector space

(over itself). Denoting the unit vector in R as
−→
1 , since

F =
−→
E ⊕ R, every vector −→v ∈ F can be written as

−→v = −→u + λ
−→
1 , for some unique −→u ∈ −→

E , and some
unique λ ∈ R. Then, for any choice of an origin Ω1 in E,
we define the map Ω̂: Ê → F , as follows:

Ω̂(θ) =

{
λ(
−→
1 +

−→
Ω1a) if θ = 〈a, λ〉, a ∈ E, λ 6= 0;

−→u if θ = −→u , −→u ∈ −→
E .
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The idea is that, once again, viewing F as an affine space
under its canonical structure, E is embedded in F as

the hyperplane H =
−→
1 +

−→
E , with direction

−→
E , the

hyperplane
−→
E in F .

Then, every point a ∈ E is in bijection with the point

A =
−→
1 +

−→
Ω1a, in the hyperplane H . Denoting the origin

−→
0 of the canonical affine space F as Ω, the map Ω̂ maps
a point 〈a, λ〉 ∈ E to a point in F , as follows: Ω̂(〈a, λ〉)
is the point on the line passing through both the origin

Ω of F and the point A =
−→
1 +

−→
Ω1a in the hyperplane

H =
−→
1 +

−→
E , such that

Ω̂(〈a, λ〉) = λ
−→
ΩA = λ(

−→
1 +

−→
Ω1a).

The following lemma shows that Ω̂ is an isomorphism of
vector spaces.
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Lemma 12.1.5 Given any affine space (E,
−→
E ), for

any choice Ω1 of an origin in E, the map Ω̂: Ê → F is
a linear isomorphism between Ê and the vector space
F of definition 12.1.4. The inverse of Ω̂ is given by

Ω̂−1(−→u + λ
−→
1 ) =

{
〈Ω1 + λ−1−→u , λ〉) if λ 6= 0;
−→u if λ = 0.

The following diagram illustrates the embedding of the
affine space E into the vector space F , when E is an
affine plane.
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Ω

A =
−→
1 +

−−→
Ω1a

λ
−→
ΩA

−→
E

H =
−→
1 +

−→
E

−→u

Figure 12.4: Embedding an affine space E into a vector space F

We now consider the universal property of Ê. Other au-
thors, such as Ramshaw, use the notation f∗ for f̂ . First,
we define rigorously the notion of homogenization of an
affine space.
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Definition 12.1.6 Given any affine space (E,
−→
E ), an

homogenization (or linearization) of (E,
−→
E ), is a triple

〈E , j, ω〉, where E is a vector space, j:E → E is an in-
jective affine map with associated injective linear map

i:
−→
E → E , ω: E → R is a linear form, such that ω−1(0) =

i(
−→
E ), ω−1(1) = j(E), and for every vector space

−→
F and

every affine map f :E → −→
F , there is a unique linear map

f̂ : E → −→
F extending f , i.e. f = f̂ ◦j, as in the following

diagram:

E
j−→ E

f ց ↓f̂
−→
F

Thus, j(E) = ω−1(1) is an affine hyperplane with direc-

tion i(
−→
E ) = ω−1(0).
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Lemma 12.1.7 Given any affine space (E,
−→
E ) and

any vector space
−→
F , for any affine map f :E → −→

F ,

there is a unique linear map f̂ : Ê → −→
F extending f ,

such that

f̂ (−→u +̂ λa) = λf(a) +
−→
f (−→u ),

for all a ∈ E, all −→u ∈ −→
E , and all λ ∈ R, where

−→
f is

the linear map associated with f . In particular, when
λ 6= 0, we have

f̂(−→u +̂ λa) = λf(a + λ−1−→u ).

Lemma 12.1.7 shows that 〈Ê, j, ω〉, is an homogenization

of (E,
−→
E ). As a corollary, we obtain the following lemma.
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Lemma 12.1.8 Given two affine spaces E and F and
an affine map f :E → F , there is a unique linear map
f̂ : Ê → F̂ extending f , as in the diagram below,

E
f−→ F

j↓ ↓j
Ê −→̂

f
F̂

such that

f̂ (−→u +̂ λa) =
−→
f (−→u ) +̂ λf(a),

for all a ∈ E, all −→u ∈ −→
E , and all λ ∈ R, where

−→
f is

the linear map associated with f . In particular, when
λ 6= 0, we have

f̂(−→u +̂ λa) = λf(a + λ−1−→u ).

From a practical point of view, lemma 12.1.8 shows us
how to homogenize an affine map to turn it into a linear
map between the two homogenized spaces.
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Assume that E and F are of finite dimension, and that

(a0, (
−→u1 , . . . ,−→un)) is an affine basis of E, with origin a0,

and (b0, (
−→v1 , . . . ,−→vm)) is an affine basis of F , with origin

b0.

Then, with respect to the two bases (−→u1 , . . . ,−→un , a0) in
Ê and (−→v1 , . . . ,−→vm, b0) in F̂ , a linear map h: Ê → F̂ is
given by an (m + 1)× (n + 1) matrice A.

If this linear map h is equal to the homogenized version
f̂ of an affine map f , since

f̂ (−→u +̂ λa) =
−→
f (−→u ) +̂ λf(a),

since over the basis (−→u1 , . . . ,−→un , a0) in Ê, points are rep-
resented by vectors whose last coordinate is 1, and vectors
are represented by vectors whose last coordinate is 0, the
last row of the matrix A = M(f̂) with respect to the
given bases is

(0, 0, . . . , 0, 1),
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with m occurrences of 0, the last column contains the
coordinates

(µ1, . . . , µm, 1)

of f(a0) with respect to the basis (−→v1 , . . . ,−→vm, b0),

the submatrix of A obtained by deleting the last row and

the last column is the matrix of the linear map
−→
f with

respect to the bases (−→u1 , . . . ,−→un) and (−→v1 , . . . ,−→vm), and
since

f(a0 +
−→u ) = f̂ (−→u +̂ a0),

given any x ∈ E and y ∈ F , with coordinates
(x1, . . . , xn, 1) and (y1, . . . , ym, 1),
for X = (x1, . . . , xn, 1)

⊤ and Y = (y1, . . . , ym, 1)
⊤, we

have
y = f(x) iff Y = AX.
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For example, consider the following affine map
f :A2 → A2 defined as follows:

y1 = ax1 + bx2 + µ1,

y2 = cx1 + dx2 + µ2.

The matrix of f̂ is


 a b µ1

c d µ2
0 0 1




and we have



y1
y2
1


 =


 a b µ1

c d µ2
0 0 1






x1
x2
1
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In Ê, we have




y1
y2
y3


 =


 a b µ1

c d µ2
0 0 1






x1
x2
x3




which means that the homogeneous map f̂ is is obtained
from f by “adding the variable of homogeneity x3”:

y1 = ax1 + bx2 + µ1x3,

y2 = cx1 + dx2 + µ2x3,

y3 = x3.

We now show how to homogenize multiaffine maps.
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Lemma 12.1.9 Given any affine space E and any

vector space
−→
F , for any m-affine map f :Em → −→

F ,

there is a unique m-linear map f̂ : (Ê)m → −→
F extend-

ing f , such that, if

f(a1 +
−→v1 , . . . , am +−→vm) = f(a1, . . . , am) +∑

S⊆{1,...,m}, k=card(S)
S={i1,...,ik}, k≥1

fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, and all −→v1 , . . . ,−→vm ∈ −→
E , where

the fS are uniquely determined multilinear maps (by
lemma ??), then

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam)

= λ1 · · ·λmf(a1, . . . , am) +∑

S⊆{1,...,m}, k=card(S)
S={i1,...,ik}, k≥1

(
∏

j∈{1,...,m}
j /∈S

λj) fS(
−→vi1 , . . . ,−→vik),

for all a1 . . . , am ∈ E, all −→v1 , . . . ,−→vm ∈ −→
E , and all

λ1, . . . , λm ∈ R. Furthermore, for λi 6= 0, 1 ≤ i ≤ m,
we have

f̂(−→v1 +̂ λ1a1, . . . ,
−→vm +̂ λmam) =

λ1 · · ·λmf(a1 + λ−1
1
−→v1 , . . . , am + λ−1

m
−→vm).
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12.2 Differentiating Affine Polynomial Functions Us-

ing Their Homogenized Polar Forms, Osculating

Flats

Let δ =
−→
1 , the unit (vector) in R. When dealing with

derivatives, it is also more convenient to denote the vector−→
ab as b− a.

For any a ∈ A, the derivative DF (a) is the limit,

lim
t→0, t6=0

F (a + tδ)− F (a)

t
,

if it exists. However, since F̂ agrees with F on A, we
have

F (a + tδ)− F (a) = F̂ (a + tδ)− F̂ (a),

and thus, we need to see what is the limit of

F̂ (a + tδ)− F̂ (a)

t
,

when t → 0, t 6= 0, with t ∈ R.
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� Recall that since F :A → E , where E is an affine space,

the derivative DF (a) of F at a is a vector in
−→E , and

not a point in E . However, the structure of Ê takes care of
this, since F̂ (a+ tδ)− F̂ (a) is indeed a vector (remember
our convention that − is an abbreviation for −̂ ).

Since
F̂ (a + tδ) = f̂ (a + tδ, . . . , a + tδ︸ ︷︷ ︸

m

),

where f̂ is the homogenized version of the polar form f
of F , and F̂ is the homogenized version of F , since

F̂ (a+ tδ)− F̂ (a) = f̂(a + tδ, . . . , a + tδ︸ ︷︷ ︸
m

)− f̂ (a, . . . , a︸ ︷︷ ︸
m

),

by multilinearity and symmetry, we have

F̂ (a + tδ)− F̂ (a) =

mt f̂ (a, . . . , a︸ ︷︷ ︸
m−1

, δ) +
k=m∑

k=2

(
m
k

)
tk f̂(a, . . . , a︸ ︷︷ ︸

m−k

, δ, . . . , δ︸ ︷︷ ︸
k

),

and thus,

lim
t→0, t6=0

F̂ (a + tδ)− F̂ (a)

t
= mf̂ (a, . . . , a︸ ︷︷ ︸

m−1

, δ).
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However, since F̂ extends F on A, we have DF (a) =

DF̂ (a), and thus, we showed that

DF (a) = mf̂ (a, . . . , a︸ ︷︷ ︸
m−1

, δ).

This shows that the derivative of F at a ∈ A can be
computed by evaluating the homogenized version f̂ of
the polar form f of F , by replacing just one occurrence
of a in f̂(a, . . . , a) by δ.
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More generally, we have the following useful lemma.

Lemma 12.2.1 Given an affine polynomial function
F :A → E of polar degree m, where E is a normed
affine space, the k-th derivative DkF (a) can be com-

puted from the homogenized polar form f̂ of F as fol-
lows, where 1 ≤ k ≤ m:

DkF (a) = m(m−1) · · · (m−k+1) f̂(a, . . . , a︸ ︷︷ ︸
m−k

, δ, . . . , δ︸ ︷︷ ︸
k

).

Since coefficients of the form m(m − 1) · · · (m − k + 1)
occur a lot when taking derivatives, following Knuth, it is
useful to introduce the falling power notation. We define
the falling power mk, as

mk = m(m− 1) · · · (m− k + 1),

for 0 ≤ k ≤ m, with m0 = 1, and with the convention
that mk = 0 when k > m.

Using the falling power notation, the previous lemma
reads as

DkF (a) = mk f̂(a, . . . , a︸ ︷︷ ︸
m−k

, δ, . . . , δ︸ ︷︷ ︸
k

).
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We also get the following explicit formula in terms of
control points.

Lemma 12.2.2 Given an affine polynomial function
F :A → E of polar degree m, where E is a normed
affine space, for any r, s ∈ A, with r 6= s, the k-
th derivative DkF (r) can be computed from the polar
form f of F as follows, where 1 ≤ k ≤ m:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i f(r, . . . , r︸ ︷︷ ︸

m−i

, s, . . . , s︸ ︷︷ ︸
i

).

If F is specified by the sequence of m + 1 control points
bi = f(r m−is i), 0 ≤ i ≤ m, the above lemma shows that
the k-th derivative DkF (r) of F at r, depends only on
the k+1 control points b0, . . . , bk In terms of the control
points b0, . . . , bk, the formula of lemma 7.4.1 reads as
follows:

DkF (r) =
mk

(s− r)k

i=k∑

i=0

(
k
i

)
(−1)k−i bi.
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In particular, if b0 6= b1, then DF (r) is the velocity vector
of F at b0, and it is given by

DF (r) =
m

s− r

−−→
b0b1 =

m

s− r
(b1 − b0),

the last expression making sense in Ê .

In terms of the de Casteljau diagram

DF (t) =
m

s− r
(b1,m−1 − b0,m−1).

Similarly, the acceleration vector D2F (r) is given by

D2F (r) =
m(m− 1)

(s− r)2
(
−−→
b0b2 − 2

−−→
b0b1) =

m(m− 1)

(s− r)2
(b2 − 2b1 + b0),

the last expression making sense in Ê .

Later on when we deal with surfaces, it will be necessary
to generalize the above results to directional derivatives.
However, we have basically done all the work already.
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Let us assume that E and E are normed affine spaces,
and consider a map F :E → E . Recall from definition
11.1.1, that if A is any open subset of E, for any a ∈ A,

for any −→u 6= −→
0 in

−→
E , the directional derivative of F

at a w.r.t. the vector −→u , denoted as DuF (a), is the
limit, if it exists,

lim
t→0,t∈U,t6=0

F (a + t−→u )− F (a)

t
,

where U = {t ∈ R | a + t−→u ∈ A}.

If F :E → E is a polynomial function of degree m, with
polar form the symmetric multiaffine map f :Em → E ,
then

F (a + t−→u )− F (a) = F̂ (a + t−→u )− F̂ (a),

where F̂ is the homogenized version of F , that is, the
polynomial map F̂ : Ê → Ê associated with the homoge-
nized version f : (Ê)m → Ê of the polar form f :Em → E
of F :E → E .
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Thus, DuF (a) exists iff the limit

lim
t→0, t6=0

F̂ (a + t−→u )− F̂ (a)

t

exists, and in this case, this limit is DuF (a) = DuF̂ (a).
We get

DuF (a) = mf̂ (a, . . . , a︸ ︷︷ ︸
m−1

,−→u ).

By a simple, induction, we can prove the following lemma.

Lemma 12.2.3 Given an affine polynomial function
F :E → E of polar degree m, where E and E are

normed affine spaces, for any k nonzero vectors −→u1 ,
. . ., −→uk ∈ −→

E , where 1 ≤ k ≤ m, the k-th directional
derivative Du1 . . .DukF (a) can be computed from the

homogenized polar form f̂ of F as follows:

Du1 . . .DukF (a) = mk f̂ (a, . . . , a︸ ︷︷ ︸
m−k

,−→u1 , . . . ,−→uk ).

If E has finite dimension,

DkF (a)(−→u1 , . . . ,−→uk ) = mk f̂ (a, . . . , a︸ ︷︷ ︸
m−k

,−→u1 , . . . ,−→uk ).


