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Chapter 1

Introduction

1.1 The Need for Affine Geometry

Suppose we have a particle moving in 3-space and that
we want to describe the trajectory of this particle.

If one looks up a good textbook on dynamics, such as
Greenwood [?], one finds out that the particle is mod-
eled as a point, and that the position of this point x is
determined with respect to a “frame” in R? by a vector.

A frame is a pair

(0,(e], e, &)
consisting of an origin O (which is a point) together with

a basis of three vectors (e?, ?2, es).
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For example, the standard frame in R? has origin
O = (0,0,0) and the basis of three vectors el = (1,0,0),
e = (0,1,0), and e = (0,0, 1).

The position of a point x is then defined by the “unique
vector” from O to x.

But wait a minute, this definition seems to be defining
frames and the position of a point without defining what
a point is!

Well, let us identify points with elements of R?.

If so, given any two points a = (ay, as, az) and
b = (by, by, bg), there is a unique free vector denoted ab
from a to b, the vector % = (by — a1, by — ag, by — agy).
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Note that
b=a-+ %,

addition being understood as addition in R?.

A b

Y

Figure 1.1: Points and free vectors

Then, in the standard frame, givega point x = (x1, T9, T3),
the position of x is the vector Ox = (x1, x9, x3), which

coincides with the point itself.



6 CHAPTER 1. INTRODUCTION
What it we pick a frame with a different origin, say

() = (w1, ws, w3), but the same basis vectors (e_f, e es)?

This time, the point x = (1, x9,x3) is defined by two
position vectors:

Oz = (1, T2, 23) in the frame (O, (€7, 3, €3)), and

— .
Qx = (r1 — Wy, Ty — Wy, T3 — w3) in the frame
(2, (e1, e3, e3)).

This 1s because

Oai" = O§>2 - Qa}c and Oﬁ = (w1, wa, W3).

We note that in the second frame ($, (€7, €3, €3)), points
and position vectors are no longer identified.
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This gives us evidence that points are not vectors.
Inspired by physics, it is important to define points and
properties of points that are frame invariant.

An undesirable side-effect of the present approach shows
up if we attempt to define linear combinations of points.

If we consider the change of frame from the frame

(0, (e, €, ¢3))

to the frame

\ \

(Qa (€1>7 62/7 63/))7

where

m — (wla W2, Cdg),
given two points a and b of coordinates (a1, as, az) and
(b1, by, by) with respect to the frame (O, (€7, €3, €3)) and
of coordinates (a}, a), ay) and (b}, b5, b5) of with respect

\ \ \
to the frame (€2, (e, e5, e3)), since
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(af, ab, a%) = (a1 — wy, ag — wy, ag — ws)
and

( /17 /27 bé) — (bl — w1, by — wo, by — WS)a
the coordinates of Aa + ub with respect to the frame
(0, (e, €3, €3)) are

(Aar + pb1, Aag + b, Aas + ubs),

but the coordinates

(Aaj + pby, Aag + pbs, Aag + pby)

of Aa+ ub with respect to the frame (S, (e, 3, €3)) are

(Aay + uby — (A + p)wy,
Aag + by — (A + p)wo,
Aas + pbs — (A + p)ws)

which are different from
()\&1 + b1 — w1, Aas + puby — wo, Aag + pbs — w?,),
unless A+ p = 1.
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Thus, we discovered a major difference between vectors
and points: the notion of linear combination of vectors is
basis independent, but the notion of linear combination
of points is frame dependent.

In order to salvage the notion of linear combination of
points, some restriction is needed: the scalar coefficients
must add up to 1.

A clean way to handle the problem of frame invariance
and to deal with points in a more intrinsic manner is to
make a clearer distinction between points and vectors.

We duplicate R® into two copies, the first copy corre-
sponding to points, where we forget the vector space
structure, and the second copy corresponding to free vec-
tors, where the vector space structure is important.
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Furthermore, we make explicit the important fact that the
vector space R? acts on the set of points R?: Given any
point a = (a1, as, as) and any vector v = (v1, v, v3).
we obtain the point

_>
a—+ v :(a1+’v1,a2+’02,ﬁ3+’03)7

which can be thought of as the result of translating a to
: —
b using the vector v".

This action +: R? x R? — R? satisfies some crucial prop-
erties. For example,

—a+ (T +7)

)

and for any two points a, b, there is a unique free vector

% such that
b=a+ %.
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It turns out that the above properties, although trivial in
the case of R?, are all that is needed to define the abstract
notion of affine space (or affine structure).

This will be done rigorously in Chapter 5, but first, we
will take an informal look at polynomial curves.

When we want to stress that we are dealing at the same
time with points and vectors, we use the notation A" for
R"™. We call A" the real affine space of dimension n.

We need the concept of affine combination, or barycen-
ter. Assume for simplicity that we are in R? (really, A?%).

and that we use the standard frame (O, (€1, €5, €3)).



12 CHAPTER 1. INTRODUCTION

Given any two points a, b € A® of coordinates (ay, as, as)
and (b1, b, b3), for any real number A € R, we define the
point

(1—Xa+ N\

as the point of coordinates

((1 — )\)al + Abq, (1 — )\)@2 + Abo, (1 — )\)&3 + )\bg)

This is the point
a + A%,

which is located “A of the way from a” on the line deter-
mined by a and b (or a itself when a = b).
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More generally, given n points ay, ..., a, € A’, for any
n reals \; € R such that

)\1-|—)\2-|—“‘—|-)\n:1,

the affine combination (or barycenter) of the points
ai,...,a, w.r.t. the weights Ay, ..., A, is the point

Aay + -+ Ay,

also denoted by
> A
i=1

of coordinates

n n n
2 : 1 E : 2 E : 3
1=1 1=1 1=1

where a; has the coordinates (a}, a?, a?).
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Barycenters can be characterized more geometrically as
follows:

Assume we have n weighted points, (a;, A;), where
St A = 1. For any choice of a point b € A% we can
form the point

It can be shown that g does not depend on the choice of
the point b.

This uniquely defined point, g, is the barycenter of the
weighted points (a;, \;).

If we set b = g, we see that g is characterized by the fact
that
Agai + -+ A\gag, = 0.

Intuitively , ¢ is “balances” the forces \;ga;,. We can
think of the \;’s as (normalized) electric charges.
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The case where \; = 1/n fori =1,...,n, corresponds to
the centroid (or center of gravity) of the points ay, . . ., a,.

The barycenter of n weighted points can be computed by
repeatedly computing barycenters of two points.

When \; > 0 for all ¢ (and, of course, " | \; = 1), the
affine combination Z?“:l A;ja; 1s called a convexr combi-
nation of the points a4, ..., a,.

Given any two points a, b, the set of all convex combina-
tions (1 — N)a + Ab (recall that 0 < XA < 1) is the line
segment with endpoints a and b, denoted |a, b].

A subset S of A3 is convez if it contains all affine com-
binations of (finitely many) points of .S.

It can be shown that this is equivalent to the fact that .S
contains all affine combinations of any pair of points of .9,
that is, whenever a,b € S, then the entire line segment
la, b] is contained in S,
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An affine frame in A" is a pair

— —
(CLO, (61 IR 6n)>7
where ag is the origin of the frame and (7, ..., &,) is a

basis of R". We also say that the n 4+ 1 points

(ao,al,...,an)

form an affine basis, where

a; = g + ?;7
fori=1,...,n.
We say that m + 1 (ordered) points ag, aq, ..., a,, are
affinely independent in A" iff the m vectors

apal, ..., apQm

are linearly independent in R".

Of course, this implies m < n + 1.
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An affine frame in A is any pair (r, s) of distinct numbers
r,s € R.

An affine frame in A? consists of any three points forming
a nondegenerate triangle.

An affine frame in A® consists of any four points forming
a nondegenerate tetrahedron.

Every point ¢ € A is expressed as
t=(1—-1t)0+tl

in terms of the affine frame (0, 1).

In term of an arbitrary frame (7, s),

(S—If) (t—r)
t = r—+ S.
sS—r sS—r
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An affine map f: AP — A7 is a function that preserves
affine combinations, i.e.,

/ <Z Aiaz) — Z Aif(a;)

for any n points a; € AP and any scalars \; such that
M+ + A, =1

A special case of an affine map is a translation. This is
the case of an affine map, ¢, for which there is a vector,

7, so that
tla)=a+ u
for all a € A3,

Note that affine maps are more general than linear maps,
because translations are not linear (unless u = 0).

It is easily shown that every affine map can be written as
the composition of a translation and of a linear map.

(Strictly speaking, instead of linear map, we should say
an affine map that has a fired point, i.e., a point a so

that f(a) = a.)
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Polynomial Curves and Spline Curves

19
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Chapter 2

Introduction to the Algorithmic
Geometry of Polynomial Curves

2.1 Parameterized Polynomial Curves

Recall that every point ¢ € A is expressed as
t=(1—-1t)0+1l

in terms of the affine frame (0, 1).

A parameterized polynomial curve is defined as follows.

21
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Definition 2.1.1 A (parameterized) polynomial curve,
F, of degree at most m is a map F:A — & (where
£ = R? or R?) such that there exists real polynomials
Py, P, (resp. Py, Py, P3), of degree at most m, so that for
every t € A,

Fi(t) = Pi(t)
Fy(t) = P(t)
Ey(t) = P(t)

(dropping F3 and P3 when defining a curve in A?).

Given any affine frame (r, s) for A with r < s, a (parame-
terized) polynomial curve segment F[r,s| of degree (at
most) m is the restriction F: |r,s] — & of a polynomial
curve I A — &£ of degree at most m.

The set of points F'(A) in £ is called the trace of the poly-
nomial curve F'; and similarly, the set of points F'([r, s])

in £ is called the trace of the polynomial curve segment
Fr, s].
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The definition can easily be extended to higher dimen-
sional spaces (if &€ = A", use n polynomials P, ..., P,
of degree at most m).

Intuitively, a polynomial curve is obtained by bending
and twisting the affine line A using a polynomial map.

It should be noted that the maximum degree d of the
polynomials P, ..., P, defining a polynomial curve F' of
degree m is not necessarily equal to m, and that it is only
required that d < m.

For notational simplicity, we also denote the polynomials
b by F;.

We will now try to gain some insight into polynomial
curves by determining the shape of the traces of plane
polynomial curves (curves living in £ = A?) of degree

m < 3. On the way, we will introduce a major technique
of CAGD, blossoming.
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We begin with m = 1. A polynomial curve F' of degree
< 1 1s of the form

(1)

y(t)

Fl(t) = alt + ao,
Fy(t) = b1t + by.

If both a; = by = 0, the trace of F' reduces to the single
point (ag, bg). Otherwise, a; # 0 or by # 0, and we can
eliminate ¢ between x and y, getting the implicit equation

a1y — bix + agby — a1bg = 0,

which is the equation of a straight line.
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Let us now consider m = 2, that is, quadratic curves. A
polynomial curve F' of degree < 2 is of the form

I’(t) — Fl(t) — CLQtQ + Cllt + ay,
y(t) = Fg(t) = bgt2 + blt + bo.

Since we already considered the case where ay = by = 0,
let us assume that ay # 0 or by # 0.

We first show that by a change of coordinates (amounting
to a rotation), we can always assume that either as = 0
or by = 0. If ay # 0 and by # 0, after a rotation and a
translations of the axes, and a change of parameter, we
get a parametric representation of the form

X(u) = au,
Y (u) = bu?,

with b > 0. The corresponding implicit equation is

b
Y = 5X°
a
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This is a parabola, passing through the origin, and hav-
ing the Y-axis as axis of symmetry. The diagram below
shows the parabola defined by the following parametric
equations

Fi(t) =2t,
Fy(t) = t*.

Figure 2.1: A parabola

Intuitively, the previous degenerate case (of a straight
line) corresponds to a—bQ = 00.
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Conversely, since by an appropriate change of coordi-
nates, every parabola is defined by the implicit equation
Y = aX?, every parabola can be defined as the paramet-
ric polynomial curve
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We now show that there is another way of specifying
quadratic polynomial curves which yields a very nice geo-
metric algorithm for constructing points on these curves.
The general philosophy is to linearize (or more exactly,
multilinearize) polynomials. As a warm up, let us begin
with straight lines.

In the case of an affine map F: A — A’ given any affine
frame (r, s) for A, where r # s, every point F'(¢) on the
line defined by F' is obtained by a single interpolation

step
P = (2=1) Py + (5=2) Flo)

as illustrated in the following diagram, where 2%7; =

1
3

Figure 2.2: Linear Interpolation
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We would like to generalize the idea of determining the
point F'(t) on the the line defined by F(r) and F'(s) by
an interpolation step, to determining the point F'(¢) on a
polynomial curve F', by several interpolation steps from
some (finite) set of given points related to the curve F.

For this, it is first necessary to turn the polynomials in-
volved in the definition of F'into multiaffine maps, that is,
maps that are affine in each of their arguments. We now
show how to turn a quadratic polynomial into a biaffine
map.
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As an example, consider the polynomial
F(X)=X?+2X —3.
Observe that the function of two variables
filx1, x9) = 109 + 2221 — 3

gives us back the polynomial F'(X) on the diagonal, in
the sense that F'(X) = f1(X, X), for all X € R, but f;
1s also athne in each of x; and x5. Note that

fg(iEl, £U2) — X1X9 + 21’2 —3

is also biaffine, and F'(X) = f5(X, X), for all X € R.



2.1. PARAMETERIZED POLYNOMIAL CURVES 31

It would be nicer if we could find a unique biafiine func-
tion f such that F(X) = f(X, X), for all X € R, and
of course, such a function should satisty some additional

property.

[t turns out that requiring f to be symmetric is just
what’s needed. We say that a function f of two argu-
ments is symmetric ift

f(xlv:U?) — f(va xl)?

for all x1,x5. To make f; (and f3) symmetric, simply
form

PR (G RGN

2

= 129+ X1+ T9 — 3.

The symmetric biafline function
f(:Cl, $2> =TT t+x1+39—3

is called the (affine) blossom, or polar form, of F.
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For an arbitrary polynomial
F(X)=aX*+bX +c

of degree < 2, we obtain a unique symmetric, biaffine

map
X1+ I9

2

such that F(X) = f(X,X), for all X € R, called the
polar form, or blossom, of F'.

f(x1,x9) = axqwe + b
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Note that the fact that f is symmetric allows us to view
the arguments of f as a multiset (the order of the argu-
ments x1, T is irrelevant).

Every t € A can be expressed uniquely as a barycentric

combination of r and s, say t = (1 — A\)r + As, where
A e R

Let us compute

f(tl,t2> = f((l — )\1)7" + )\18, (1 — )\2)7“ + )\28)

tl'—T
S—r

Flt1, o) = (Z:i}) (Z:t;) Frr)
EE) (=) () ()] e
) (5) e

Since \; = Cfor e =1,2, we get




34 CHAPTER 2. INTRODUCTION TO POLYNOMIAL CURVES

The coefficients of f(r,r), f(r,s) and f(s,s) are obvi-
ously symmetric biaffine functions, and they add up to 1,
as it is easily verified by expanding the product

s—1 t1—r s—1 to—r
(Eh ) (e
Ss—r Ss—r S—r S—r
Thus, we showed that every symmetric biaffine map
f:A? — A’ is completely determined by the sequence

of three points f(r,r), f(r,s) and f(s,s) in A®, where
r = s are elements of A.
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Conversely, it is clear that given any sequence of three
points a, b, ¢ € A3, the map

— 1 — 1
e ().
S—r S—r
A=) E=)- G =)
S—r S—r S—r S—r
_|_(t1—7“) (tQ—T>C
S—r S—r
is symmetric biaffine, and that f(r,r) = a, f(r,s) = b,
f(s,s) =c
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The points f(r,r), f(r,s) and f(s,s), are called control
points, or Bézier control points, and as we shall see,
they play a major role in the de Casteljau algorithm and
1ts extensions.

If welet r =0 and s =1, then t; = \; and 5 = A9, and
thus, the polynomial function corresponding to f(t1,t)
beeing obtained by letting t; =ty = ¢, we get

F(t) = f(t,t) =
(1 —1)£(0,0) +2(1 — 1)t £(0,1) +¢* f(1,1).
The polynomials
(1—1)% 2(1 —t)t, t*

are known as the Bernstein polynomaials of degree 2.
Thus, F(t) is also determined by the control points f(0, 0),
f(0,1), and f(1,1), and the Bernstein polynomials.
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Observe that the computation of
f(tl,tg) = f((l — )\1)7" + )\18, (1 — )\2)7" + )\28),

that we performed above, can be turned into an algo-
rithm, known as the de Casteljau algorithm.

Given any t € A, we will show how to construct geomet-
rically the point F'(t) = f(t,t) on the polynomial curve
F. Let t = (1 — AN)r + As. Then, f(t,t) is computed as
follows:

1 2
f(rr)
f(r,1)
f(r,s) f(t,t)
f(t, )
f(s,5)

The algorithm consists of two stages.
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Geometrically, the algorithm consists of a diagram con-
sisting of two polylines, the first one consisting of the two
line segments

(f(r,r), fr;s)) and  (f(r;s), f(s,s)),

and the second one of the single line segment

(f(t,r), f(t,9)),

with the desired point f(t,t) determined by A. Each
polyline given by the algorithm is called a shell, and the
resulting diagram is called a de Casteljau diagram.

f(r,s)

(t.r) : (t.5)
£(t.1)

fr,r) f(s,s)

Figure 2.3: A de Casteljau diagram
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The first polyline is also called a control polygon of the
curve. Note that the shells are nested nicely. Actually,
when ¢ is outside [r, s|, we still obtain two polylines and a
de Casteljau diagram, but the shells are not nicely nested.
The following diagram illustrates the de Casteljau algo-
rithm.

f(r,s)

Figure 2.4: The de Casteljau algorithm
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The above example shows the construction of the point
F'(t) corresponding to t = 1/2, on the curve F, for r = 0,
s = 1. It also shows the construction of another point on
the curve, assuming different control points.

The parabola of the previous example is actually given
by the parametric equations

Fi(t) = 2,
Fy(t) = —t°.

The polar forms are

fi(ty,to) = t1 + to,
folty, to) = —tits.



2.1. PARAMETERIZED POLYNOMIAL CURVES 41

The de Casteljau algorithm can also applied to compute
any polar value f(tq,t2):

1 2
frr)
f(Tv tl)
f(rv S) f(tla t2)
f<t17 S)
f(s,s)

The only difference is that we use different \’s during each
of the two stages.

A nice geometric interpretation of the polar value f(t1,t5)
can be obtained. For this, we need to look closely at the
intersection of two tangents to a parabola. Let us consider
the parabola given by

x(t) = at
y(t) = bt*.
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The equation of the tangent to the parabola at (z(t), y(t))
1S

7'(H)(y —y@t) —y'(H)(z — z(t)) = 0,
that is,
ay — 2btx + abt* = 0.

To find the intersection of the two tangents to the parabola
corresponding to t = t; and t = t9, we solve the system
of linear equations

ay — 2bt,x + abt] = 0
ay — 2btyx + abt; = 0,

and we easily find that
t1 4+ 1o
2 I
Yy = btltg.

r = a

Thus, the polar form f(t1,%s) of the polynomial function
defining a parabola gives precisely the intersection point
of the two tangents at F'(t1) and F'(t3) to the parabola.
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Let us now consider m = 3, that is, cubic curves.

A polynomial curve F' of degree < 3 is of the form

a:(t) — Fl(t> = CL3t3 + CLQ?fQ + Cblt + ay,
y(t) = FQ(t) = b3t3 + b2t2 + blt + bo.

Since we already considered the case where az = b3 = 0,
let us assume that ag # 0 or b3 # 0. If ag # 0 and
by # 0, let p = /a3 + b3, and consider the matrix R

given below:

SIS
|
S
N—
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Under the change of coordinates

(o)== ()

“eget
asbs — asb a1bs — asb aopbs — asb
$1(t) 2V3 32t2 1V3 31t 0v3 307
asaq ala anpa
y1<t) t3 203 23t2 143 13t 043 03.

The effect of this rotation is that the curve now “stands
straight up” (since p > 0).
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Case 1. asbs = asbs.

Then we have a degenerate case where x1(t) is equal to
a linear function. If a;bs = agb; also holds, then x(t)
is a constant and y(t) can be arbitrary, since its leading
term is pt?, and we get the straight line

Cbobg — Cbgbo

; .
If a1bs — agb; # 0, let us assume that a1b3 — agzb; > 0,
the other case being similar. Then, we can eliminate ¢

between x1(t) and y(t), and we get an implicit equation
of the form

X:

y=dz?+Ve*+de+d,
with ¢’ > 0. Using some change of coordinates, we get
the implicit equation
Y =aX®+bX,

with a > 0. This curve is symmetric with respect to the
Y -axis.
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[ts shape will depend on the variations of sign of its deriva-
tive

Y’ =3aX?+0.
Also, since Y = 6a X, and Y"(0) = 0, the origin is an
inflexion point.

[fb > 0, then Y'(X) is always strictly positive, and Y (X)
is strictly increasing with X. It has a flat S-shape, the
slope b of the tangent at the origin beeing positive.

If b =0, then Y'(0) = 0, and 0 is a double root of Y,
which means that the origin is an inflexion point. The
curve still has a flat S-shape, and the tangent at the
origin is the X-axis.
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If b <0, then Y'(X) has two roots,

[ — [—b
X = 3 —\ [ —.
a’ 3a

Then, Y (X) is increasing when X varies from —oo to X7,
decreasing when X varies from X7 to X5, and increasing
again when X varies from Xy to +00. The curve has an
S-shape, the slope b of the tangent at the origin beeing
negative.
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The following diagram shows the cubic of implicit equa-
tion
y = 3z° — 3.

Figure 2.5: “S-shaped” Cubic

In all three cases, note that a line parallel to the Y -axis
intersects the curve in a single point. This is the reason
why we get a parametric representation.

Case 2. asbs — agby # 0.

In this case, we say that we have a nondegenerate cubic
(recall that p > 0).
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Lemma 2.1.2 Given any nondegenerate cubic poly-
nomial curve F, 1.e., any polynomial curve of the
form

z(t) = Fi(t) = ast?,
y(t) = Fo(t) = bst® + byt* + byt,

where bs > 0, after the translation of the origin given
by

bias
- X - —=
xr = bg
b102
Y —
Yy = b3

the trace of F' satisfies the implicit equation

a9 by )2 bias

X = X3
bs
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Furthermore, if by < 0, then the curve defined by the
above implicit equation 1s equal to the trace of the poly-
nomial curve F', and when by > 0, the curve defined
by the above implicit equation, excluding the origin
(X,Y) = (0,0), is equal to the trace of the polyno-
mial curve . The origin (X, Y) = (0, 0) is called
a singular point of the curve defined by the tmplicit
equation.

Thus, lemma 2.1.2 shows that every nondegenerate poly-
nomial cubic is defined by some implicit equation of the
form

claY —bX)* +cdX* = X?,
with the exception that when d > 0, the singular point
(X, Y) = (0, 0) must be excluded from the trace of the
polynomial curve.

The case where d > 0 is another illustration of the mis-
match between the implicit and the explicit representa-
tion of curves. Again, this mismatch can be resolved if
we treat these curves as complex curves.



2.1. PARAMETERIZED POLYNOMIAL CURVES o1

The reason for choosing the origin at the singular point,
is that if we intersect the trace of the polynomial curve
with a line of slope m passing through the singular point,
we discover that we get a nice parametric representation
of the polynomial curve in terms of the parameter m.

Lemma 2.1.3 For every nondegenerate cubic polyno-
mial curve F', there is some parametric definition G
of the form

X(m) = clam — b)* + cd,
Y(m) = m(c(am — b)* + cd),
such that F' and G have the same trace, which s also
the set of points on the curve defined by the implicit
equation
claY —bX)* 4+ cdX? = X°,
excluding the origin (X, Y) = (0, 0), when d > 0.
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Furthermore, unless it s a tangent at the origin to the
trace of the polynomial curve F (which only happens
when d < 0), every line of slope m passing through
the origin (X, Y) = (0, 0) intersects the trace of the
polynomial curve F' in a single point other than the
singular point (X, Y) = (0, 0).

The line aY — bX = 0 is an axis of symmetry for the

curve, in the sense that for any two points (X, Y1) and
(X, Y3) such that

2b
Yi+Y,=—X,
a

(X, Y1) belongs to the trace of F iff (X,Y5) belongs to
the trace of F'. The tangent at the point

v (o)

of the trace of F' (also on the axis of symmetry) is
vertical.
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We can now specity more precisely what is the shape of
the trace of F', by studying the changes of sign of the
derivative of Y (m). We treat the case where ¢ > 0, the
case ¢ < 0 being similar.

Case 1: 3d > b

In this case, we must have d > 0, which means that the
singular point (X, Y') = (0, 0) is not on the trace of the
cubic.
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Cubic of equation 3(Y — X)? + 6X* = X*:

Figure 2.6: “Humpy” Cubic (3d > V?)
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Case 2: b*> > 3d > 0.

In this case, since d > 0, the singular point (X, Y) =
(0, 0) is not on the trace of the cubic either.
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Cubic of equation 3(Y — 2X)? 4+ 3X?% = X*:

Figure 2.7: “Humpy” Cubic (b* > 3d > 0)
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Case 3: d =0 (a cuspidal cubic).
In this case, we have b*> — 3d > 0.

Cubic of equation 3(Y — X)? = X3

Figure 2.8: Cuspidal Cubic (d = 0)

o7
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Case 4: d < 0 (a nodal cubic).

In this case, b* — 3d > 0, and Y’(m) has two roots my
and my. Furthermore, since d < 0, the singular point
(X, Y) = (0, 0) belongs to the trace of the cubic, Since
d < 0, the polynomial X(m) = c(am — b)? + cd, has
two distinct roots, and thus, the cubic is self-intersecting
at the singular point (X, Y') = (0, 0).
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Cubic of equation (Y — X)* 5 3X? = X*:

Figure 2.9: Nodal Cubic (d < 0)

One will observe the progression of the shape of the curve,
from “humpy” to “loopy”, through “cuspy”.
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Remark: The implicit equation
claY —bX)* +cdX* = X°

of a nondegenerate polynomial cubic (with the exception
of the singular point) is of the form

0a(X,Y) = X7,

where @o( X, Y) is a homogeneous polynomial in X and
Y of total degree 2 (in the case of a degenerate cubic of
equation y = aX? + bX? + c¢X + d, the singular point
is at infinity. To make this statement precise, projective
geometry is needed).

Using some algebraic geometry, it can be shown that the
(nondegenerate) cubics that can be represented by para-
metric rational curves of degree 3 (i.e., fractions of poly-
nomials of degree < 3) are exactly those cubics whose
implicit equation is of the form

pa( X, V) = p3(X,Y),

where o( X, Y) and 3(X,Y) are homogeneous polyno-
mial in X and Y of total degree respectively 2 and 3.
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These cubics have a singular point at the origin. Thus,

the polynomial case is obtained in the special case where
03(X,Y) = X,

Furthermore, there are some cubics that cannot be rep-
resented even as rational curves. For example, the cubics
defined by the implicit equation

Vi=X(X-1)(X =\,

where A # 0, 1, cannot be parameterized rationally. Such
cubics are elliptic curves.
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Returning to polynomial cubics, inspired by our treat-
ment of quadratic polynomials, we would like to extend
blossoming to polynomials of degree 3. First, we need
to define the polar form (or blossom) of a polynomial of
degree 3. Given any polynomial of degree < 3,

F(X)=aX’+bX*+cX +d,

the polar form of F' is a symmetric triaffine function
f:A® — A, that is, a function which takes the same
value for all permutations of x1, x9, x3, i.e., such that

f(x1, 20, 23) = f(22, 71, 23) = f(21, 23, 72) =
f(@a, w3, 1) = flas, 21, 22) = f(w3, 22, 1),
which is affine in each argument, and such that
F(X) = f(X, X, X),
for all X € R. We easily verify that f must be given by

f(xla X2, 333) —
T1T9 + T1T3 + ToX3 T+ To + T3

d.
3 c 3 *

ar1roxs + b
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Then, given a polynomial cubic curve F: A — A3, de-
termined by three polynomials F}, F5, F5 of degree < 3,
we can determine their polar forms fi, fo, f3, and we ob-

tain a symmetric triaffine map f: A% — A2 such that
F(X) = f(X, X, X), for all X € A. Again, let us pick
an affine basis (r, s) in A, with r # s, and let us compute

[t ta,t3) =
f((l — )\1)7” + )\18 (1 — )\2)7" + )\28 (1 — )\3)7“ + )\38)

Since \; =
ntats) - (Z:if) (=) (53 pomrr
(2;) () () () 65 ()
R VAEAT
AC) G C) () 9 ()
() ) ()l
(=) (=) (=) rem

1= 1,2,3, we get
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The coefficients of f(r,r,r), f(r,r,s), f(r,s,s), and
f(s, s, s), are obviously symmetric triaffine functions, and
they add up to 1, as it is easily verified by expanding the
product

s—1 ty—r s—1 to — 1 s—1 ts —1r
( 1+1 )( 2+2 )( 3+3 )_1.
S—r sS—r S—r S—r sS—r S—r

Thus, we showed that every symmetric triaffine map

f: A% — A3 is completely determined by the sequence of
four points f(r,r,r), f(r,r,s), f(r,s,s), and f(s,s,s)
in A, where r # s are elements of A.

Conversely, it is clear that given any sequence of four
points a, b, ¢, d € A3, the map
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—1 —1 —1
i () (24) (2)-
sS—r sS—r S—1T
—1 —1 ts — —1 to — —1
A=) 05) () ) 62)
S—7T S—7T S—T S—T S—7T S—7T
1 — —t —t
=) ) e
s—r s—r s—r
— 1 to — tg — 1 — —t tg —
A ) () () 65)
S—T S —T S—T S—T S —T S—T
1 — ty — —1
(=) (=) (=)0
S—T S—T S—T
t1 — to — ts —
(=) (=) (=)
S—T S—7T S—7T
is symmetric triaffine, and that

f(/]”’/]",/]") — a? f(?")?")S) — b? f(/]”’S’S) — C?
and f(s,s,s) =d.

The points f(r,r,r), f(r,r,s), f(r,s,s), and f(s,s,s),
are called control points, or Bézier control points. They
play a major role in the de Casteljau algorithm and its
extensions.
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Note that the polynomial curve defined by f passes through
the two points f(r,r,r) and f(s,s,s), but not through
the other control points. If we let »r = 0 and s = 1,
so that Ay = t1, Ay = 9, and A3 = t3, the polynomial
function associated with f (1, to, t3) is obtained by letting
t1 =ty =t3 =1, and we get

F(t) = f(t,t,t) = (1—1)° £(0,0,0)+3(1—1)% f£(0,0,1)
+3(1 = )t* £(0,1,1) +¢° £(1,1,1).

The polynomials
(1 —1)°, 3(1 — )%, 3(1 — t)t, ¢,

are the Bernstein polynomials of degree 3. They form
a basis of the vector space of polynomials of degree < 3.

Thus, the point F(¢) on the curve can be expressed in
terms of the control points f(r,r,r), f(r,r,s), f(r,s,s),
and f(s, s, s), and the Bernstein polynomials. However,
it is more useful to extend the de Casteljau algorithm.
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Lemma 2.1.4 Given any sequence of four points a, b,
c, din &, there is a unique polynomial curve F: A — &€
of degree 3, whose polar form f: A — & satisfies the
conditions f(r,r,r) = a, f(r,r,s) = b, f(r,s,s) = c,
and f(s,s,s) = d (where r,s € A, v # s). Further-
more, the polar form f of F' 1s giwen by the formula

=) (55) (=0)

() E) ) (0 (=) (=)
(D) (Y ()

A () () () (9 ()
(=D () (=)

(=) () ()
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[t is easy to generalize the de Casteljau algorithm to
polynomial cubic curves. Let us assume that the cubic
curve F' is specified by the control points f(r,r, 1) = by,
f(r,r,s) = by, f(r,s,8) =bg, and f(s, s, s) = bg (where
r,s € A r <s). Given any t € [r, s|, the computation
of F(t) can be arranged in a triangular array, as shown
below, consisting of three stages:

1 2 3

f(?") T? /'n)

f(/r.7 T? t)
f<T7 T, S) f<t7 t? /r.)

f(r.t,s) f(t,t,1)
f(r,s,s) f(t,t,s)

f(t7 87 8)
f(s,5,5)

The above computation is usually performed for ¢ € [r, s,
but it works just as well for any ¢ € A, even outside
[, s]. When t is outside [r, s|, we usually say that F(t) =
f(t,t,t) is computed by extrapolation.
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In order to describe the above computation more conve-
niently as an algorithm, let us denote the control points
by = f(r,r,r), by = f(r,r,s), by = f(r,s,s) and by =
f(s,8,5),as by, b1, bag, and bz o, and the intermediate
points f(r,r,t), f(r,t,s), f(t,s,s) as by1, b11, ba1, the
intermediate points f(¢,¢,r), f(¢,t,s) as by, b2, and
the point f(¢,¢,t) as byps. Note that in b;;, the index
j denotes the stage of the computation, and F(t) = by s.

Then the triangle representing the computation is as fol-
lows:

1 2 3
bo = bo
bo 1
b1 = b1 bo 2
b1 1 bo 3
by = b2 g b1 2
b2 1

bS — bS,O
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Then, we have the following inductive formula for com-
puting b; ;:

where 1 <73 <3, and 0 <7< 3— 7.
We have F'(t) = by 3.

As will shall see, the above formula generalizes to any
degree m. When r <t < s, each interpolation step com-
putes a convex combination, and b; ; lies between b; j_;
and b;y1-1. In this case, geometrically, the algorithm
constructs the three polylines

(b07 b1)7 (b17 b2)7 (627 b3)
(b0,17 b1,1)7 (bl,h 62,1)
(b0,27 bl,?)

called shells, and with the point by 3, they form a diagram
called a de Casteljau diagram.
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Figure 2.10: A de Casteljau diagram

Note that the shells are nested nicely. The polyline

(bo, b1), (b1, ba), (b2, b3)

is also called a control polygon of the curve. When A is
outside [r, s|, we still obtain three shells and a de Castel-
jau diagram, but the shells are not nicely nested. The
following diagram illustrates the de Casteljau algorithm
for computing the point F(t) on a cubic, where r = 0,
and s = 6:
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f(0,6,6)
£(0,3,6) |

f(0,0,3) f(3,6, 6)

F(0) = £(0,0,0)

F(6) = f(6,6,6)

Figure 2.11: The de Casteljau algorithm for ¢t = 3

The above example shows the construction of the point
F'(3) corresponding to t = 3, on the curve F.
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As in the quadratic case, the de Casteljau algorithm can
also be used to compute any polar value f(t1, t2, t3) (which
is not generally on the curve). All we have to do is to use
a different ratio of interpolation A; during phase j, given

by
_tj—’I“

A =

s—r
The computation can also be represented as a triangle:

1 2 3

f(ryr,r)

f(ﬁ r, tl)
f(rv r, S) f(tla t27 T)

f(T, tlvs) f(t17t27t3)
f(lra S, 8) f<t17t27 8)

f<t17873>
f(S,S,S)

This time, it is convenient to denote the intermediate
points f(r,r, t1), f(r,t1,s), f(t1,s,s)as by, b11, b1, the
intermediate points f(t1,ta,7), f(t1, %2, s) as by o, b1 2, and
the point f(¢1,%9,%3) as by 3. Note that in b; ;, the index
7 denotes the stage of the computation, and

f(tl, tg, t3) = bo)g.
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Then the triangle representing the computation is as fol-
lows:

1 2 3

bo = bo

bo 1
by = b1 bo 2

b1 1 bo 3
by = b2 b1 2

b2 1
bz = b3

We also have the following inductive formula for comput-
ing bi’ji

S —t; ti —r
b, . — 2N 1Y PP i1 i1,
L, (S_,r> t,J—1 (3—7“) i+1,5—-1

where 1 < 7 < 3, and 0 < 7 < 3 — 3. We have
f(t1,t2,t3) = by 3.

Thus, there is very little difference between this more
general version of de Casteljau algorithm computing polar
values, and the version computing the point F(t) on the
curve: just use a new ratio of interpolation at each stage.
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Ezxample 1. Consider the plane cubic defined as follows:

Fl(t) — Sta
Fy(t) = 3t° — 3t.

The polar forms of Fi(t) and Fj(t) are:

fl(t17t27 t3) — tl + tQ + t37
fg(tl, t9, tg) = 3t1t2t3 — <t1 + 1o + t3>.

With respect to the affine frame r = —1,s = 1, the
coordinates of the control points are:

by = (—3,0)

by = (—1,4)

by = (1,—4)

bs = (3,0)
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The curve has the following shape.

/\

Figure 2.12: Bezier Cubic 1

The above cubic is an example of degenerate “S-shaped”
cubic.
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Ezxample 2. Consider the plane cubic defined as follows:

Fi(t) =3t —1)* +6,
Fy(t) = 3t(t — 1)* + 6t.

Since

Fi(t) = 3t* — 6t +9,
Fy(t) = 3t° — 6t* + 9t,

we get the polar forms

f1 (tl, t9, t3) = (tth + 1113 + t2t3) — 2(t1 + 19 + t3> +9
fg(tl, ta, t3) = 3t1tots — 2(t1t2 + t1t3 + tgtg) + S(tl + 19 + t3).

With respect to the affine frame r = 0, s = 1, the coor-
dinates of the control points are:

N

)

I

—J
DD = W O
O T

b():(
by = (T,
bQZ(
by = (

6,
6

)
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The curve has the following shape.

Figure 2.13: Bezier Cubic 2

We leave as an exercise to verify that this cubic corre-
sponds to case 1, where 3d > b*. The axis of symmetry
IS Y = .
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Frample 3. Consider the plane cubic defined as follows:

Fi(t) =3(t —2)* + 3,
Fy(t) = 3t(t — 2)* + 3t.

Since

Fi(t) = 3t* — 12t + 15,
Fy(t) = 3t* — 12t* + 15,

we get the polar forms

Ji(ti,ta, ts) = (tite + tits + tots) — At + toa + t3) + 15
fg(tl, to, t3) = 3t1tots — 4(t1t2 + t1t3 + tgtg) + 5(t1 + 19 + t3).

With respect to the affine frame r = 0, s = 2, the coor-
dinates of the control points are:

by = (15, 0)

b — (7,10)
= (3,4)
= (3,6).
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The curve has the f}ollowing shape.

Figure 2.14: Bezier Cubic 3

We leave as an exercise to verify that this cubic corre-
sponds to case 2, where b*> > 3d > 0. The axis of sym-
metry 1s y = 2.
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[t is interesting to see which control points are obtained
with respect to the afline frame r =0, s = 1:

b6 = (15,0)
/1: (11,5)
/2: (876)
é: (6,6).

The second “hump” of the curve is outside the convex
hull of this new control polygon. This shows that it is
far from obvious, just by looking at some of the control
points, to predict what the shape of the entire curve will

be!



82 CHAPTER 2. INTRODUCTION TO POLYNOMIAL CURVES
Ezxample 4. Consider the plane cubic defined as follows:

Fy(t) = 3(t — 1),
Fy(t) = 3t(t — 1)~

Since
Fi(t) = 3t* — 6t + 3,
Fy(t) = 3t* — 6t° + 3¢,
we get the polar forms

fl(tl, ta, tg) = <t1t2 + 1113 + tgtg) — 2<t1 + 1o + t3> + 3
fg(tl, to, tg) = 3t1tots — 2(t1t2 + t1t3 + t2t3) + (tl + 19 + t3).

With respect to the affine frame r = 0, s = 2, the coor-
dinates of the control points are:

by = (3,0)
(_17 2)
(_17 _4)
3,6).

b1
ba
b3
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The curve has the following shape.

Figure 2.15: Bezier Cubic 4

We leave as an exercise to verify that this cubic corre-
sponds to case 3, where d = 0, a cubic with a cusp at the
origin. The axis of symmetry is y = .
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[t is interesting to see which control points are obtained
with respect to the afline frame r =0, s = 1:

b = (3,0)
b = (1,1)
b, = (0,0)
b, = (0,0)

Thus, b, = b3. This indicates that there is a cusp at the
origin.
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FErample 5. Consider the plane cubic defined as follows:
3

Fi(t) =J(t=1)7 =3,
3
Fy(t) = Zzf(t —1)* = 3t.
Since
3, 3.9
Fi(t)=~t*—t—°
NEREAE
Fy(t) = =t° — =t* — =t

we get the polar forms

1 1 o)
fl(tla to, t3) — 1(t1t2 + t1t3 + t2t3) — §(t1 + 19 + tg) — Z

3 1 3
fg(tl, ta, ?fg) = Ztltgtg — §(t1t2 + 1113 + t2t3) — Z(tl + 19 + ?fg).
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With respect to the affine frame r = —1,s = 3, the
coordinates of the control points are:
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The curve has\the following shape.

AN

{

Figure 2.16: Bezier Cubic 5

Note that by = bs.

87
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We leave as an exercise to verify that this cubic corre-
sponds to case 4, where d < 0, a cubic with a node at the
origin. The axis of symmetry is y = x. The two tangents
at the origin are y = —x, and y = 3x (this explains the
choice of r = —1, and s = 3). Here is a more global view
of the same cubic:

Figure 2.17: Nodal Cubic (d < 0)
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The above examples suggest that it may be interesting,
and even fun, to investigate which properties of the shape
of the control polygon (by, by, by, b3) determine the nature
of the plane cubic that it defines. Try it!

Challenge: Given a planar control polygon

(bg, b1, by, b3), is it possible to find the singular point ge-
ometrically? Is it possible to find the axis of symmetry
geometrically?
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Chapter 3

Polynomial Curves and Control Points

3.1 Polar Forms and Control Points

The purpose of this short chapter is to show how poly-
nomial curves of arbitrary degree are handled in terms of
control points.

As we observed in the case of polynomial curves of de-
gree < 3, the key to the treatment of polynomial curves
in terms of control points is that polynomials can be mul-
tilinearized.!

To be more precise, say that a map
F AT % o x AT — A" is multiaffine if it is affine in

“/”

m
each of its arguments.

IThe term “multilinearized” is technicaly incorrect, we should say “multiaffinized”!

91
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Amap frAYx - x AY — A" is symmetric if it does

~~

m
not depend on the order of its arguments, i.e.,

f(a’ﬁ(l)a s 7a7r(m)) — f(ala R a’m)

for all aq,...,a,,, and all permutations 7.

Then, for every polynomial F'(t) of degree m, there is a
unique symmetric and multiaffine map

frA x - x A — A such that

3

F(t)= f(t,...,t), forallte A

This is an old “folk theorem”, probably already known to
Newton. The proof is easy.

By linearity, it is enough to consider a monomial of the
form z*, where k < m.
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The unique symmetric multiaffine map corresponding to
k

" 18
O'k(tl, ce. ,tm)
- ;
(+)
where o(t1,...,t,) is the kth elementary symmetric

function in m variables, i.e.

O = Z (Hti).

IC{1l,...m} el
L=k

Recall that

(?) N /g!<mmi k)

a binomial coefficient (with 0 < k < m) where,
m!'=m-(m—1)---2-1,

called m-factorial.
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Given a polynomial curve F: A — A" of degree m

£Ul(t) = Fl(t),

Tn(t) = Fa(t),
where Fi(t), ..., F,(t) are polynomials of degree at most
m, the map F: A — A" arises from a unique symmetric

multiaffine map f: A™ — A", the polar form of F. such
that

for all t € A.

For example, consider the plane cubic defined as follows:

3 3 9 3 3 9
Fi(t)=t2 -t — = Fo(t) = 23 — 22 — 2.

We get the polar forms

1 1 9
f1 (tl, to, tg) = Z(tltz + 11t3 + tgtg) — §(t1 + 19 + tg) — Z

3 1 3
fg(tl, to, tg) = Zt1t2t3 — §(t1t2 + t1t3 + t2t3> — Z(tl + t9 + tg).
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Also, for r # s, the map f: A™ — A" is determined by
the m + 1 control points (by, ..., by,), where

bi:f(fa"'77;7§7"'7§)7

k=0  IUJ={1,...m} i€l je m—k k
INJ=0, card(J)=k

For example, with respect to the affine frame r = —1,
s = 3, the coordinates of the control points of the cubic
defined earlier are:
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Conversely, for every sequence of m~+1 points (b, . . . , b)),
there is a unique symmetric multiaffine map f such that

bi:f(ra"'a/’;7§7"'7§)7

“/”

m

> 2 HH ) Gt

k=0 TuJ={l,...m} i€l =y
INJ=0,card(J)= k

Thus, there is a bijection between the set of polynomial
curves of degree m and the set of sequences (by, . . ., by)
of m + 1 control points.

The upshot of all this is that for algorithmic purposes,
it is convenient to define polynomial curves in terms of
polar forms.
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Definition 3.1.1 A (parameterized) polynomial curve
wn polar form of degree m is an affine polynomial map
F:A — & of polar degree m, defined by its m-polar
form, which is some symmetric m-affine map f: A™ — &,
where A is the real affine line, and £ is any affine space
(of dimension at least 2).

Given any r,s € A with r < s, a (parameterized) poly-
nomial curve segment F([r, s|) in polar form of degree
m is the restriction F: |r, s] — & of an affine polynomial
curve F: A — &£ in polar form of degree m.

We define the trace of F as F(A), and the the trace of
Fr,s] as F([r, s]).

Typically, the affine space £ is the real affine space A? of
dimension 3.
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Remark: When defining polynomial curves, it is conve-
nient to denote the polynomial map defining the curve by
an upper-case letter, such as F: A — &, and the polar
form of F' by the same, but lower-case letter, f.

It would then be confusing to denote the affine space
which is the range of the maps F' and f also as F', and
thus, we denote it as € (or at least, we use a letter dif-
ferent from the letter used to denote the polynomial map
defining the curve).

Also note that we defined a polynomial curve in polar
form of degree at most m, rather than a polynomial curve
in polar form of degree exactly m, because an affine poly-
nomial map f of polar degree m may end up being de-
generate, in the sense that it could be equivalent to a
polynomial map of lower polar degree.

For convenience, we will allows ourselves the abuse of
language where we abbreviate “polynomial curve in polar
form” to “polynomial curve”.
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We summarize the relationship between control points
and polynomial curves in the following lemma.

Lemma 3.1.2 Given any sequence of m + 1 points
ag, . .., ay tn some affine space £, there 1s a unique
polynomial curve F:A — & of degree m, whose polar
form f: A" — & satisfies the conditions

f((a"'77;7§7"°7§):ak7
m—Fk )4

(where r,s € A, r#s).

Furthermore, the polar form f of F' s given by the
formula

flt, oot =Y > H(ij)ﬂ(?jf)ak,

k=0 IUJ={1,..m} i€l jed
INJ=0,|J|=k
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and F(t) is given by the formula

F(t) = Z B[, s|(t) ag,
k=0
where the polynomaials

O M L

S—7T S—T

are the Bernstein polynomials of degree m over |r, s|.

Note that since the polar form f of a polynomial curve
F' of degree m is symmetric, the order of the arguments
is irrelevant.
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Often, when argument are repeated, we also omit commas
between argument. For example, we abbreviate

flr,...,r,s,...,8) by fris?).

7 \G
~" ~~

t J

In the next section, we will abbreviate
ft,....tr,.. . r,s,...,8) by f(t/rm™"7s").

J m—i—j 1

3.2 The de Casteljau Algorithm

The definition of polynomial curves in terms of polar
forms leads to a very nice algorithm known as the de
Casteljau algorithm, to draw polynomial curves.

Using the de Casteljau algorithm, it is possible to de-
termine any point F(t) on the curve, by repeated affine
interpolations (see Farin [?, ?], Hoschek and Lasser |?],
Risler [?], or Gallier [?]).
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The example below shows F'(1/2).

Figure 3.1: A de Casteljau diagram for ¢t = 1/2
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In the general case where a curve F' is specified by m + 1
control points (b, ..., by,) w.r.t. to an interval [r, s|, let
us define the following points b; ; used during the compu-
tation of F(t) (where f is the polar form of F'):

b ifj=0,0<i<m,
T fWrmTtIs) 1< 5<m, 0< i< m— 7.

Then, we have the following equations:

s —1 t—r

bij = (——)bij—1 + (—)bip1-1-

S—7T S —T

The result is F'(t) = by .
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The computation can be conveniently represented in the
following triangular form:

0 1
b0,0
bO,l
bl,O
bm—k—l,l
bm—k,O
bm—l,O
bm—l,l
bm,O

bi,j—1
biy1,j—1

bm—k—j+1,j-1

bim—j+1,5-1

bm—jj

m—k ... m
bo,m—k

bO,m
br.m—k

When r <t < s, each interpolation step computes a con-
vex combination, and b; ; lies between b; ;1 and b1 1.
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In this case, geometrically, the algorithm consists of a
diagram consisting of the m polylines

(b0.0, b1.0), (b1.0, b20), (D20, b30), (D30, bag), - (bm—10, Do)
<b0,17 bl,l)) <b1,17 b2,1)7 (b2,17 b3,1)7 SR (bm—2,17 bm—l,l)
<b0,27 b1,2>7 (b1,27 b2,2)7 RIS (bm—3,27 bm—2,2>

(bO,m—Qa bl,m—Q)a (bl,m—Qa b2,m—2)
(bom—1, b1.m—1)

called shells, and with the point by ,,, they form the de
Casteljau diagram.

Note that the shells are nested nicely. The polyline
(bO) bl)) (b17 b2)7 (bQJ 63)7 (b37 64)7 SR (bm—la bm)

is also called a control polygon of the curve. When t is
outside [r, s], we still obtain m shells and a de Casteljau
diagram, but the shells are not nicely nested.

One of the best features of the de Casteljau algorithm is
that it lends itself very well to recursion.
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Indeed, going back to the case of a cubic curve, it is easy
to show that the sequences of points (b, by 1, by 2, bo 3) and
(bo.3, b1.2,b21, b3) are also control polygons for the exact
same curve.

Thus, we can compute the points corresponding to
t = 1/2 with respect to the control polygons

(bo, bo1,b02,b03) and (bgs,b12,b21,03),

and this yields a recursive method for approximating the
curve. This method called the subdivision method ap-
plies to polynomial curves of any degree and can be used
to render efficiently a curve segment F' over |r, s|.

Figure 3.2: Approximating a curve using subdivision



Chapter 4

Polynomial Surfaces

4.1 Polar Forms

The purpose of this short chapter is to show how polyno-
mial surfaces are handled in terms of control points.

As in Chapter 3, this chapter is just a brief introduction
The deep reason why polynomial surfaces can be effec-

tively handled in terms of control points is that multivari-
ate polynomials arise from multiaffine symmetric maps.

107
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Denoting the affine plane A? as P, traditionally, a poly-
nomaial surface in A" is a function F: P — A", defined
such that

r1 = Fi(u,v),

Tp = Fn(ua U)v

for all (u,v) € A® where Fi(U,V),...,F,(U,V) are
polynomials in R[U, V.

There are two natural ways to polarize the polynomials
defining F'.

The first way is to polarize separately in u and v.
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If p is the highest degree in u and ¢ is the highest degree
in v, we get a unique multiaffine map

£ (AP x (A)? — A"

of degree (p 4+ q) which is symmetric in its first p argu-
ments and symmetric in its last ¢ arguments, such that

Flu,v) = f(u,...,wv,...,0).
Vv Vv

p q

We get what is traditionally called a tensor product sur-
face, or as we prefer to call it, a bipolynomial surface of
bidegree (p,q) (or a rectangular surface patch).

We also say that the multiaffine maps arising in polarizing
separately in u and v are (p, q)-symmetric.
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The second way to polarize is to treat the variables v and
v as a whole.

This way, if F'is a polynomial surface such that the maxi-
mum total degree of the monomials is m, we get a unique
symmetric degree m multiaffine map

f: (A2)m — A",
such that
Flu,v) = f((u,v), .., (u,v))

7

v~
m

We get what is called a total degree surface (or a trian-
gular surface patch).
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Let us go back to the first case. Using linearity, it is clear
that all we have to do is to polarize a monomial uv".

[t is easily verified that the unique (p, ¢)-symmetric mul-
tiafline polar form of degree p 4 ¢

i .
h’k(ul, ey U ULy e, V)
of the monomial u"v* is given by
Py . _
h,k(ub ey U UL, e, V) =

h JC{1,.,q}, T | =k

(n) (1)

1s the number of terms in the above sum.

.50

The denominator

Recall that

ny\ n
k) kl(n—k)V
a binomial coefficient, where
nl=n-(n—1)---2-1,

called n factorial.
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It is also easily verified that in the second case, the unique
symmetric multiaffine polar form of degree m

f}Tk((ub Ul)a SRR (Um, Um))
of the monomial u"v* is given by
f}Tk((ula Ul)) SR (Um, Um)) —

h k |I|=h,|J|=k,INJ=0

The denominator

(1) (") = (w0

is the number of terms in the above sum.
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As an example, consider the following surface known as

Enneper’s surface:

Fi(U,V)

We get the polar forms

[1((U, V1), (Us, Va), (U3, V3)) =

f2((U, V1), (Us, Vo), (U3, V3)) =

f3((U1, V1), (Us, V), (Us, V3)) =

3
:U—%JrUVQ
VS
:V—?+U2V

= U -V~

Ui+ U+ Us B U1UUs

3 3
+M%%+%%%+%W%

3
i+ Va4V TLVG

3 3
N UU V3 + U UsVa + UsUsVy

3
UhUs + DU + DhUs - iV + ViV + 1514

3 3
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)
S
2.5
z 0
-2.5
-5
-5 0 5
y

Figure 4.1: The Enneper surface
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4.2 Control Points For Triangular Surfaces

Given an affine frame Arst in the plane (wherer, s,t € P
are affinely independent points), it turns out that any
symmetric multiaffine map f: P™ — &€ is uniquely deter-
mined by a family of (m+1)2(m+2) points (where £ is any
affine space, say A"). Let

Ap={0,5,k)eN’|i+j+k=m)

The following lemma is easily shown (see Ramshaw [?] or

Gallier [?]).
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Lemma 4.2.1 Given a reference triangle Arst in the

affine plane P, gwen any family (b; j i) jren, of
(m+1)2(m+2) points in £, there is a unique surface
F:P — & of total degree m, defined by a symmetric

m-affine polar form f:P™ — &, such that

f((a'"7C7§7"'7§7£7"'7é) :bi,j,ka

~~ ~~ ~~

1 J k

for all (i,7,k) € A,,. Furthermore, f is given by the
ETPTESSILON

f(ala"'aam):

> QT2 (] )

IUJUK={1,...m} il jeJ ke K
I1,J. K pairwise disjoint

1] /] K|

where a; = \r + w;s + vit, with \; + u; +v; = 1, and
1 << m.
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A point F(a) on the surface F can be expressed in
terms of the Bernstein polynomz'als

AVSlaals
n (U V,T) = Z']'k'UVT
as
F(0) = Jlges .0) =

Z B,jk)\ pov) flry...,r, 8,8t ..., 1),

(4,7, k)EA i J k

wherea:)\r—l—,us—l—ut, with A+ p+v = 1.
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For example, with respect to the standard frame
Arst = ((1,0,0),(0,1,0), (0,0, 1)), we obtain the follow-
ing 10 control points for the Enneper surface:

f(r,rr)
)
fr,r.t) f(rrs)
(503) (553)
f(rt,t) f(r, st f(r,s,s)
(500) (550) (555)
Ft,t,t) f(s,t,1) f(s:s,) f(s,s,s)
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A family N = (b; j 1) i.jk)en,, of (m+1)2(m+2) points in & is

called a (triangular) control net, or Bézier net. Note
that the points in

Np =1, j, k) eN’|i+j+k=m}

can be thought of as a triangular grid of points in P. For
example, when m = 5, we have the following grid of 21
points:

500
401 410
302 311 320
203 212 221 230
104 113 122 131 140
005 014 023 032 041 050

We intentionally let ¢ be the row index, starting from
the left lower corner, and j be the column index, also
starting from the left lower corner. The control net N' =
(bi,j.x)i.jk)en,, can be viewed as an image of the trian-
cular grid A,, in the affine space &.
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It follows from lemma 9.4.2 that there is a bijection be-
tween polynomial surfaces of degree m and control nets

N = (bij.k).jk)edm:
4.3 Control Points For Rectangular Surfaces

Given any two affine frames (71,51) and (72, S2) for the
affine line A, it turns out that a (p, ¢)-symmetric multi-
affine map
(AP x (A — &
is completely determined by the family of (p +1)(q + 1)
points in &
bz’,j — f(fla “. ,Fy?l, c. ,_L;TQ, c. ,7“2,?2, c. ,EJ),

“/” “/” “/”

p—1i 1 q—J J

where 0 < ¢ < pand 0 < j < q. The following lemma is
easily shown (see Ramshaw [?] or Gallier |?]).
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Lemma 4.3.1 Let (71,51) and (T2, 52) be any two affine
frames for the affine line A, and let £ be an affine

space (of finite dimension n > 3). For any nat-

ural numbers p,q, for any family (b; ;)o<i<p.o<j<q Of
(p+1)(qg+ 1) points in &, there is a unique bipolyno-

mial surface F: A x A — & of degree (p,q), with polar

form the (p + q)-multiaffine (p, q)-symmetric map

FAAY X (A) 5 €,
such that

f(fh""?;’?l’ . ,EJ;TQ, c. ,7“2,?2,...,5;) = bz’,j;
p—i [ q—J J
forallt,1 <1 <pandall 3,1 <75 <q. Furthermore,
f 1s given by the expression

f@y, ..., Uy, ..., D)
S DR () | (s
S1 — T S1—T
nj=o el 1 1j€J 1"
TuJ={1,....p}
KNL=(
KUuL={1,....q}

IEERIET
—— 71,12
eL

ke K
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A point F(u,v) on the surface F' can be expressed in
terms of the Bernstein polynomials B;[ry, s1](u) and
B, s)(v), 05

F(u,0) = Y B[ry,s1](u) Bllrs, 5] (v)

0<:<p

0<j=<q

f(Tl, R 77951, ce ’_L;TQ’ ce ,Fg,?g, ce ,gj).
p—i U q—J J
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A family N = (b;,j)o<i<p.0<j<q of (p+1)(¢+ 1) points in
£, is often called a (rectangular) control net, or Bézier
net. Note that we can view the set of pairs

0, =1{01,7) EN? | 0<i<p, 0< 75 <q},

as a rectangular grid of (p + 1)(¢ + 1) points in A x A.
The control net N = (b; ;)i jjen,,» can be viewed as an
image of the rectangular grid o, , in the affine space &.
The portion of the surface F' corresponding to the points
F'(w,v) for which the parameters u, v satisfy the inequal-
ities 11 < u < s1 and 7y < v < 89, 18 called a rectangu-
lar (surface) patch, or rectangular Bézier patch, and
F([F1,51], [Fa, S2]) is the trace of the rectangular patch.
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As an example, the monkey saddle is the surface defined
by the equation

2=z — 3xy2.

[t is easily shown that the monkey saddle is specified by

the following rectangular control net of degree (3,2) over
0, 1] x [0, 1]:

sgmonknetl = {{0, 0, o}, {0, 1/2, 0}, {0, 1, 0}, {1/3, O, O},
{1/3, 1/2, 0}, {1/3, 1, -1}, {2/3, 0, 0}, {2/3, 1/2, 0},
{2/3, 1, -2}, {1, o, 1}, {1, 1/2, 1}, {1, 1, -2}}
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1 X

Figure 4.2: A monkey saddle, rectangular subdivision
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Chapter 5

Affine Geometry

5.1 Affine Spaces

For simplicity, it is assumed that all vector spaces under
consideration are defined over the field IR of real numbers.

It is also assumed that all families (\;);c; of scalars have
finite support. Recall that a family (););e; of scalars has
finite support it

Ni=0foralli el —J,
where J is a finite subset of 1.
Obviously, finite families of scalars have finite support,

and for simplicity, the reader may assume that all families
are finite.

127
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Definition 5.1.1 An affine space is either the empty
%
set or a triple (F, E ,+) consisting of a nonempty set E
%
(of points), a vector space E (of translations, or free

%
vectors), and an action +: F x E — FE. satisfying the
following conditions:

%
(AF1) a+ 0 =a, for every a € E;

(AF2) (a+ W)+ VU =a+ (T + V), for every a € E, and
— — _ .
every u, v € E;

AF3) For any two points a.b € E. there is a unique T S
( y two p , , q

— —
E such that a+ @ = b. The unique vector W € E

such that @ + @ = b is denoted as %, or sometimes
as b — a. Thus, we also write

b:a-l—%
(oreven b=a+ (b —a)).

%
The dimension of the affine space (E, E ,+) is the di-
%
E

%
mension dim( £ ) of the vector space E . For simplicity,

it is denoted as dim(FE).
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Conditions (AF1) and (AF2) say that the (abelian) group

— . —
E acts on E, and condition (AF3) says that E acts
transitively and faithfully on E.

Note that X
ala+ V) =T
N >
for all @ € E and all @ € E, since a a+7\>) is the
unique vector such that a + 0 = a + ala + 7)

Thus, b =a + T s equivalent to % e

It is natural to think of all vectors as having the same
origin, the null vector.

Figure 5.1: Intuitive picture of an affine space
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%
For every a € E. consider the mapping from E to E:

7|—>a—|—7,

— _ % . . —
where u € E', and consider the mapping from E to E :

b+—>£,

where b € F.

The composition of the first mapping with the second is

\
4

U a+ W ala+ W),

which, in view of (AF3), yields .

The composition of the second with the first mapping is
b — % — a + %,
which, in view of (AF3), yields b.

— =
Thus, these compositions are the identity from E to E
and the identity from E to E/, and the mappings are both
bijections.
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%
When we identity E to E via the mapping b — %,
we say that we consider E as the vector space obtained
by taking a as the origin in E, and we denote it as

%
E,. Thus, an affine space (E, E ,+) is a way of defining
a vector space structure on a set of points E, without
making a commitment to a fixed origin in E.

For notational simplicity, we will often denote an affine
— —
space (E, E,+) as (E, E), or even as E. The vector

%
space F is called the vector space associated with E.
One should be caretul about the overloading of the ad-
dition symbol +. Addition is well-defined on vectors,
as in u + 7, the translate a + @ of a point a € E

%
by a vector W € E is also well-defined, but addition of
points a + b does not make sense.

In this respect, the notation b — a for the unique vector

o such that b = a + 7, is somewhat confusing, since it
suggests that points can be substracted (but not added!).
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%
Any vector space E has an affine space structure spec-

%
ified by choosing £ = E ', and letting 4+ be addition in
%
the vector space E. We will refer to this affine space

— =
(E, E,+) as the canonical (or natural) affine struc-

%
ture on E .

In particular, the vector space R" can be viewed as an
affine space (R",R", +) denoted as A". In order to dis-
tinguish between the double role played by members of
R", points and vectors, we will denote points as row vec-
tors, and vectors as column vectors. Thus, the action of
the vector space R" over the set R” simply viewed as a
set of points, is given by

(03]

(a1, ...,an)+ | ¢ | =(a1+up,...,a, + up).
un

The affine space A" is called the real affine space of
dimenston n. In most cases, we will consider n =1, 2, 3.
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For a slightly wilder example, consider the subset P of A?
consisting of all points (x, ¥y, z) satisfying the equation

T+ y2 — 2z = 0.
The set P is paraboloid of revolution, with axis Oz.

The surface P can be made into an official affine space
by defining the action

- PxR? = P
of R? on P defined such that for every point (z, ¥, xQ-l—yQ)
on P and any (g) c R?

(z,y, 2° +y°)+ (z) = (z4u,y+v, (x+u)*+(y+v)?).

Affine spaces not already equipped with an obvious vector
space structure arise in projective geometry.
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Given any three points a,b,¢ € E, since ¢ = a + at,
b:a+£, andc:b+%, we get
mﬁ+%:mﬂﬁ+%:wﬂﬁ+%)
by (AF2), and thus, by (AF3),
ab + be — at,

which is known as Chasles’ identity.

Figure 5.2: Points and corresponding vectors in affine geometry
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5.2 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a lin-
ear combination. The corresponding concept in affine
geometry is that of an affine combination, also called a
barycenter.

However, there is a problem with the naive approach in-
volving a coordinate system. The problem is that the sum
a + b may correspond to two different points depending
on which coordinate system is used for its computation!

Thus, some extra condition is needed in order for affine
combinations to make sense. It turns out that if the
scalars sum up to 1, the definition is intrinsic, as the
following lemma shows.



136 CHAPTER 5. AFFINE GEOMETRY

Lemma 5.2.1 Given an affine space E, let (a;)icr be
a family of points in E, and let (\;)ier be a family of
scalars. For any two points a,b € E, the following
properties hold:

(1) If > .. hi =1, then
a+Z)\¢m:b+ZME—.

iel iel
(2) If > .. Ai =0, then

> nad; =y Aba

el el

Thus, by lemma 5.2.1, for any family of points (a;);e; in
E, for any family (\;);er of scalars such that > ., \; = 1,

the point
r=a-++ Z \ad,
iel
is independent of the choice of the origin a € F.

el
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The unique point x is called the barycenter (or barycen-
tric combination, or affine combination) of the points
a; assigned the weights A;. and it is denoted as

Z )\iai-

In dealing with barycenters, it is convenient to introduce
the notion of a weighted point, which is just a pair (a, A),
where a € F is a point, and A € R is a scalar.

Then, given a family of weighted points ((a;, A;))ier, where
> g Ai = 1, we also say that the point

Z )\iai

is the barycenter of the family of weighted points
((ai, Ai) ier-
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Note that the barycenter x of the family of weighted
points ((a;, A;))ier is also the unique point such that

at = Z Nad, for every a € I,
i€l

and setting a = x, the point x is the unique point such

that R
Z \NTd = 0.

el

In physical terms, the barycenter is the center of mass
of the family of weighted points ((a;, \;))ier (Where the
masses have been normalized, so that ) ,_; A\; = 1, and
negative masses are allowed).
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The figure below illustrates the geometric construction of

the barycenters g; and go of the weighted points (a 1),

(b 1), and (c, %), and (a,—1), (b,1), and (¢, 1).

' 4
' 4
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5.3 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized
as a nonempty subset of a vector space closed under linear
combinations. In affine spaces, the notion corresponding
to the notion of (linear) subspace is the notion of affine
subspace.

[t is natural to define an affine subspace as a subset of an
affine space closed under affine combinations.

Definition 5.3.1 Given an affine space (F, ﬁﬂr), a
subset V' of E is an affine subspace if for every family of
points (a;);e; in V, for any family (\;);e; of scalars such
that > .., A = 1, the barycenter ) . ; Aia; belongs to
V.

el

An affine subspace is also called a flat by some authors.
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According to definition 5.3.1, the empty set is trivially an
affine subspace, and every intersection of affine subspaces
is an affine subspace.

As an example, consider the subset U of A? defined by
U={(z,y) € R? | ax + by = c},
i.e. the set of solutions of the equation
ax + by = c,
where it is assumed that a # 0 or b # 0.

Given any m points (z;,y;) € U and any m scalars )\
such that A\ +---+ A\,, = 1, we claim that

m

> Xilwi i) € U

1=1

Thus, U is an affine subspace of A%. In fact, it is just a
usual line in A2,
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It turns out that U is closely related to the subset of R?
defined by

_>
U ={(z,y) €R* | az + by = 0},

i.e. the set of solution of the homogeneous equation
axr + by =0

obtained by setting the right-hand side of ax + by = ¢ to
Z€er0.

Indeed, for any m scalars A;, the same calculation as
above yields that

~ —

i=1
this time without any restriction on the \;, since
the right-hand side of the equation is null.
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rrd 5 =7 . .
Thus, U isasubspace of R*. Infact, U is one-dimensional,
and it is just a usual line in R?.

This line can be identified with a line passing through
the origin of A2 line which is parallel to the line U of
equation ax + by = c.

Now, if (xg, yo) is any point in U, we claim that

%
U= (x0,y0) + U,

where

— —
(foayo) + U = {(fo + U1, Yo -|-U2) | (U17U2) S U}-
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The above example shows that the affine line U defined
by the equation
axr + by = c

%
is obtained by “translating” the parallel line U of equa-
tion
ax + by =0

passing through the origin.
In fact, given any point (zg, y0) € U,

SN
U = ($07y0) + U

N\

AN

Figure 5.4: An affine line U and its direction
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More generally, it is easy to prove the following fact.
Given any m X n matrix A and any vector ¢ € R™,

the subset U of A" defined by
U={reR"| Az = ¢}
is an affine subspace of A",

Furthermore, if we consider the corresponding homoge-
neous equation Axr = 0, the set

7:{x€R”\A$:O}

is a subspace of R", and for any xy € U, we have

%
U=xy+ U.
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This is a general situation. Affine subspaces can also be

%
characterized in terms of subspaces of E .

— =
Given any point @ € E and any subspace V' of E | let
%
a + V denote the following subset of E:

— —
a+V ={a+7 | T eV}
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%
Lemma 5.3.2 Let (E, E',+) be an affine space.

(1) A nonempty subset V of E is an affine subspace
iff, for every point a € V', the set

V. —{@ |z V)

| - —>
1s a subspace of E . Consequently, V = a + V.

Furthermore,
%
V ={77 | 2,y eV}

| — "
15 a subspace of £ and V, = V for all a € E.
%

Thus, V=a+ V.

- =
(2) For any subspace V. of E |, for any a € E, the set

%
V =a+ V s an affine subspace.

%
The subspace V' associated with an afline subspace V' is
called the direction of V.
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%
It is clear that the map +:V x V — V induced by
— —
+: Ex E — FE confers to (V, V' | +) an affine structure.

E E

_>
Figure 5.5: An affine subspace V and its direction V'

By the dimension of the subspace V', we mean the dimen-

_ —
sion of V.

An affine subspace of dimension 1 is called a line, and an
affine subspace of dimension 2 is called a plane.
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An affine subspace of codimension 1 is called an hyper-
plane.

We say that two affine subspaces U and V' are parallel

%
if their directions are identical. Equivalently, since U =

— — —
V wehave U =a+ U ,and V =0+ U ,foranya € U
and any b € V', and thus, V is obtained from U by the
translation %.

In general, when we talk about n points a4,...,a,, we
mean the sequence (ay, . . ., a,), and not the set {ay, ..., a,}
(the a;’'s need not be distinct).

We sa% that three points a, b, ¢ are collinear, if the vec-

tors ab and @¢ are linearly dependent.

If two of the points a, b, ¢ are distinct, say a # b, then
there is a unique A € R, such that a¢ = Aab, and we

define the ratio % = \.
a

We S&% that four points a, b, ¢, d are coplanar, if the vec-
a Y

— :
tors at, and ad, are linearly dependent.
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Lemma 5.3.3 Given an affine space (F, ﬁ,—l—), for
any family (a;)ier of points in E, the set V' of barycen-
ters > .. Nia; (where Y .. N\ = 1) is the smallest
affine subspace containing (a;)ic;.

Given a nonempty subset S of E/, the smallest affine sub-
space of E generated by S is often denoted as (S). For
example, a line specified by two distinct points a and b is
denoted as (a, b), or even (a,b), and similarly for planes,
ete.

Remarks: Since it can be shown that the barycenter of
n weighted points can be obtained by repeated computa-
tions of barycenters of two weighted points, a nonempty
subset V' of F is an affine subspace iff for every two points
a,b € V', the set V contains all barycentric combinations
of a and b.

If V' contains at least two points, V' is an affine subspace
iff for any two distinct points a, b € V', the set V' contains
the line determined by a and b, that is, the set of all points
(1—=Xa+ b, A € R.
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5.4 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in
vector spaces, we have the notion of affine independence.

Given a family (a;);e; of points in an affine space E, we
will reduce the notion of (affine) independence of these
points to the (linear) independence of the families

(m) je(r—{iy) of vectors obtained by choosing any a; as
an origin.

First, the following lemma shows that it sufficient to con-
sider only one of these families.

Lemma 5.4.1 Given an affine space <E,E>,-I—>, let
(a;)icr be a family of points in E. If the family
(cﬁaj)je( _giy) 18 linearly independent for some i € I,
then (CLZCL]>]E -y 18 linearly independent for every
iel.
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%
Definition 5.4.2 Given an affine space (E, E,+), a
family (a;);e; of points in E is affinely independent if
the family (cTaj) je(I—{iy) 1s linearly independent for some
1€ 1.

Definition 5.4.2 is reasonable, since by Lemma 5.4.1, the
independence of the family (@;a});e(7—g) does not de-
pend on the choice of a;.

A crucial property of linearly independent vectors
(Ui, ..., upy) is that if a vector v is a linear combination

m
7=y AW
1=1

of the E?, then the A; are unique. A similar result holds
for affinely independent points.
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Lemma 5.4.3 Given an affine space <E,E>,-I—>, let
(ag, ..., an) be a family of m+1 points in E. Let x €
E, and assume that x =Y "  Nia;, where > " A = 1.
Then, the family (X, ..., Ap) such that x =" Na;

is unique iff the family (agal, . .., aoay,) is linearly in-
dependent.
E E

Figure 5.6: Affine independence and linear independence

Lemma 5.4.3 suggests the notion of affine frame.
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%
Let (E, E',+) be a nonempty affine space, and let
(ag, ..., an,) be a family of m + 1 points in E. The

family (ao, ..., a;) determines the family of m vectors
; =
(CL()CLl, Cee Cloam) in F.

Conversely, given a point ag in £ and a family of m

%
vectors (u_f, L ,u_>m) in E, we obtain the family of m+1
points (aq, . . ., @) in E, where a; = a0+U¢>, 1 <7< m.

Thus, for any m > 1, it is equivalent to consider a
family of m + 1 points (ag,...,a,) in E, and a pair

=
(ay, (u_f, L ,u_,fl)), where the . are vectors in E .
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%
When (agal, . .., aoay) is a basis of E, then, for every
x € FE, since x = ag + aﬁ, there is a unique family
(21, ...,x,) of scalars, such that

Tr = ag+ xlaoai + -0+ wmaoa,% :

The scalars (x4, ..., x,;,) are coordinates with respect to
(ag, (@pai, .. ., agay,)). Since

m m m
Tr = ag+ E riapa; it x = (1 — E ZCZ')CL() + E T;a;,
i—1 i=1 i=1

x € E can also be expressed uniquely as

m
r = E )\iai
1=0

with Y " A = 1, and where A\g = 1 — > ", ;, and
A=z for 1 <7 <m.

The scalars (Ag, ..., Ay) are also certain kinds of coordi-
nates with respect to (ag, ..., an).
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%
Definition 5.4.4 Given an affine space (E, E,+), an

affine frame with origin ag is a family (ag, ..., a,,) of

m —+ 1 points in E such that (apaf, . .., Goay) is a basis

%
of E. The pair (aq, (@ai, . .., aoa,)) is also called an
affine frame with origin ay.

Then, every x € E can be expressed as

Tr = ag+ Tri1apa1 + -+ TypQoQy,

for a unique family (z1, ..., x,,) of scalars, called the co-
ordinates of x w.r.t. the affine frame

(CL(), (M) SR CL()CLm)).

Furthermore, every x € E can be written as
I':)\oao—l-"'—l-)\mam

for some unique family (g, ..., Ay,) of scalars such that
Ao+ -+ Ay = 1 called the barycentric coordinates of
x with respect to the affine frame (ag, ..., ap).
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The coordinates (xy,...,x,,) and the barycentric coor-
dinates (A, ..., Ap) are related by the equations Ay =
1—=>"" x;and \; = x;, for 1 <@ < m.

An affine frame is called an affine basis by some authors.
The figure below shows affine frames for || = 0,1, 2, 3.

a2

o dg Qo aq

ag o— o (]

a1

Figure 5.7: Examples of affine frames.
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A family of two points (a, b) in E is affinely independent

%
i ab # 0, it a # 0. If a # b, the affine subspace
generated by a and b is the set of all points (1 — X\)a + Ab,
which is the unique line passing through a and b.

A family of three points (a, b, ¢) in E is affinely indepen-
dent iff % and a¢ are linearly independent, which means
that a, b, and ¢ are not on a same line (they are not
collinear). In this case, the affine subspace generated by
(a,b, c) is the set of all points (1 — X\ — p)a + Ab + puc,
which is the unique plane containing a, b, and c.

A family of four points (a, b, ¢, d) in E is affinely indepen-
dent iff %, at, and 671 are linearly independent, which
means that a, b, ¢, and d are not in a same plane (they
are not coplanar). In this case, a, b, ¢, and d, are the
vertices of a tetrahedron.
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Given n + 1 affinely independent points (ag, ..., a,) in
E, we can consider the set of points A\gag + - - - + A,an,
where \g+---+ X, =1 and \; > 0, \; € R. Such affine
combinations are called conver combinations. This set
is called the conver hull of (ag,...,a,) (or n-simplex
spanned by (ag, ..., a,)).

When n = 1, we get the segment between ag and aq,
including ag and a;.

When n = 2, we get the interior of the triangle whose ver-
tices are ag, ay, as, including boundary points (the edges).

When n = 3, we get the interior of the tetrahedron whose
vertices are ay, a1, s, ag, including boundary points (faces
and edges).
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The set
{ag+Maoai+- - -+ Maoa;, | where 0 < A < 1 () € R)},

is called the parallelotope spanned by (ag, . .., a,). When
FE has dimension 2, a parallelotope is also called a paral-
lelogram, and when E has dimension 3, a parallelepiped.

A parallelotope is shown in figure 5.8: it consists of the
points inside of the parallelogram (ag, ai, as, d), including
its boundary.

Qo d

_—

Qo a1

Figure 5.8: A parallelotope

More generally, we say that a subset V' of E is conver,

if for any two points a,b € V, we have ¢ € V for every
point ¢ = (1 — A)a+ Ab, with 0 < A <1 (X eR).
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5.5 Affine Maps

Corresponding to linear maps, we have the notion of an
affine map.

%
Definition 5.5.1 Given two affine spaces (F, E', +) and

%
(E', E',+), a function f: E — E’is an affine map iff
for every family (a;);e; of points in E| for every family
(A;)ier of scalars such that > . A\; = 1, we have

el
f <Z )\z’ai) = Z Aif (@),
icl icl

In other words, f preserves affine combinations (barycen-
ters).

Affine maps can be obtained from linear maps as follows.
For simplicity of notation, the same symbol + is used for
both affine spaces (instead of using both + and +').
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Given any point a € E, any point b € E’, and any linear

map h: ﬁ o ﬁ, the map f: E — E’ defined such that
Fla+ V) =b+h(7V)

is an affine map.

As a more concrete example, the map

() (o 1) () ()

defines an affine map in A?. It is a “shear” followed
by a translation. The effect of this shear on the square
(a, b, c,d) is shown in figure 5.9. The image of the square
(a,b, c,d) is the parallelogram (a’, ', ¢, d").

Figure 5.9: The effect of a shear

Let us consider one more example.
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()= (a) () 0)

is an affine map.

The map

Since we can write

11:\@?—@ 1 2
1 3 vz 2 0 1)

this affine map is the composition of a shear, followed by a
rotation of angle 7 /4, followed by a magnification of ratio
V2, followed by a translation. The effect of this map on
the square (a, b, ¢, d) is shown in figure 5.10. The image
of the square (a, b, ¢, d) is the parallelogram (a’, v/, ¢, d').

C/

b/

a b CL/

Figure 5.10: The effect of an affine map
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The following lemma shows the converse of what we just
showed. Every affine map is determined by the image of
any point and a linear map.

Lemma 5.5.2 Given an affine map f: E — E', there
72

is a unique linear map [ E — E’, such that
—> =
fla+v") = fla)+ [ (V)
=
for every a € E and every v € E.

The unique linear map f: EF — FE' given by lemma

5.5.2 is the linear map associated with the affine map

f.



5.5. AFFINE MAPS 165

Note that the condition
fla+7) = f(a)

—
(%

%
+ (),
— .

€ I, can be stated equiv-

for every a € E and every
alently as

\

f@) = fla)+ f (@), o fla)f(z)= f (@)

for all a,x € F.

Figure 5.11: An affine map f and its associated linear map f
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Lemma 5.5.2 shows that for any affine map f: £ — E’.

there are points @ € E, b € E’, and a unique linear map

— = =
f: E — E" such that

%
fla+7)=b+ f(7),
%
for all o € E (just let b= f(a), for any a € E).

Since an affine map preserves barycenters, and since an
affine subspace V' is closed under barycentric combina-
tions, the image f(V') of V is an affine subspace in F'.

So, for example, the image of a line is a point or a line,
the image of a plane is either a point, a line, or a plane.

%
Affine maps for which f 1is the identity map are called

%
translations. Indeed, it f = id, it is easy to show that
for any two points a,xz € I,

f(x) = @+ af(a)
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It is easily verified that the composition of two affine maps
is an affine map.

Also, given affine maps f: E — E' and g: E' — E" we
have

g(f(at+ D) = g(f(a)+ £ (7)) = g(f(a)+ 7 (F (D)),
| — ., =
which shows that (go f)= ¢ o f.

It is easy to show that an affine map f: £ — E’ is injec-
tive iff f: E — E' is injective, and that f: £ — E' is
surjective ift f: B — E' is surjective.

) e S
An affine map f: E — E'is constant iff f: EF — E'is

— —
the null (constant) linear map equal to 0" forall @ € E .
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If F is an affine space of dimension m, and (ag, ay, - . . , )
is an affine frame for F/, for any other affine space F’., for
any sequence (bg, by, ..., by) of m+ 1 points in F', there
is a unique affine map f: £ — F such that f(a;) = b,
for 0 < < m.

The following diagram illustrates the above result when
m = 2.

bl b2

a2

° )\0b0 )\1[)1 + )\ng

° )\0@0 )\1@1 + )\2@2

ap e ° (1]

Figure 5.12: An affine map mapping ag, ai, as to by, by, bs.

Using affine frames, affine maps can be represented in
terms of matrices.
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We explain how an affine map f: £ — FE is represented
with respect to a frame (ay, ..., a,) in E.

Since N
flap+ ) = flao) + f ()

%
for all 7 € E . we have

aof(ag+ ) = aof(aoa + ?(?)

Since 7, aof(aoi, and aof(ag+ ), can be expressed

as

= 2100Q1 T+ * T TpAGy,

%

X
3 — —
CLQf(CL()\ = b1a0&1 + -+ bnaoan,

aof(ap+ ") = yiapal + - - - + ypaoan,,

%
if A= (a;;)Iis the n X n-matrix of the linear map f over

the basis (aoai, . aoan) letting x, y, and b denote the
column vectors of components (1, xn), (Y1, Yn),

and (bl, Ce ey bn),
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aof( a0+ —aof aOS"‘ f

is equivalent to

y = Az + 0.

Note that b # 0 unless f(ag) = ag. Thus, f is generally
not a linear transformation, unless it has a fized point,
i.e., there is a point ag such that f(ag) = ag. The vector
b is the “translation part” of the affine map.

Affine maps do not always have a fixed point. Obviously,
nonnull translations have no fixed point. A less trivial
example is given by the affine map

| — 1 0 | 4 1

I9 0 —1 T9 0 '
This map is a reflection about the z-axis followed by a
translation along the z-axis.
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The affine map

()= (2 7))+ 0)

can also be written as

E)-6 G @0

which shows that it is the composition of a rotation of
angle 7 /3, followed by a stretch (by a factor of 2 along the
r-axis, and by a factor of 1/2 along the y-axis), followed
by a translation. It is easy to show that this affine map
has a unique fixed point.
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On the other hand, the affine map

()= (2 9)E) ()

has no fixed point, even though

8§ _6 4 _3
()60 )
10 5 2 5 5

and the second matrix is a rotation of angle 6 such that

cos ) = % and sin 0 = %
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There is a useful trick to convert the equation y = Ax+b
into what looks like a linear equation. The trick is to
consider an (n + 1) x (n + 1)-matrix. We add 1 as the
(n+ 1)th component to the vectors z, y, and b, and form
the (n + 1) X (n 4+ 1)-matrix

(5 7)

so that y = Ax + b is equivalent to

y\ (A b T
1) \0 1 1/
This trick is very useful in kinematics and dynamics,

where A is a rotation matrix. Such affine maps are called
rigid motions.
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If f:E — E'is a bijective affine map, given any three
collinear points a, b, c in E, with a # b, where say, ¢ =
(1 — X)a + Ab, since f preserves barycenters, we have

f(c) = (1=X)f(a)+Af(b), which shows that f(a), f(b), f(c)

are collinear in E’.

There is a converse to this property, which is simpler to
state when the ground field is K = R.

The converse states that given any bijective function
f:E — E' between two real affine spaces of the same
dimension n > 2. if f maps any three collinear points to
collinear points, then f is affine. The proof is rather long
(see Berger [?] or Samuel |?]).
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Given three collinear points where a, b, ¢, where a # c,
we have b = (1 — B)a + B¢ for some unique 3, and we
define the ratio of the sequence a,b, c, as

B ab
(1=8) b
provided that g # 1, i.e. that b # ¢. When b = ¢, we
agree that ratio(a, b, ¢) = 0.

ratio(a, b, ¢) =

We warn our readers that oi};er authors define the ratio of

a,b, cas —ratio(a, b, c) = b;a. Since affine maps preserves

c
barycenters, it is clear that affine maps preserve the ratio
of three points.



176 CHAPTER 5. AFFINE GEOMETRY

5.6 Affine Groups

We now take a quick look at the bijective affine maps.

Given an affine space E, the set of affine bijections
f:E — E is clearly a group, called the affine group of
FE, and denoted as GA(F).

Recall that the group of bijective linear maps of the vector
— — b
space E is denoted as GL( E'). Then, the map f — f

%
defines a group homomorphism L: GA(F) — GL(FE).
The kernel of this map is the set of translations on F.

The subset of all linear maps of the form Aidg, where

. — .
A € R—{0}, is a subgroup of GL( £'), and is denoted as
R*idg.
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The subgroup DIL(E) = L™ (R*idg) of GA(FE) is par-
ticularly interesting. It turns out that it is the disjoint
union of the translations and of the dilatations of ratio

N£ 1

The elements of DIL(FE) are called affine dilatations (or
dilations).

Given any point a € E, and any scalar A € R, a dilata-
tion (or central dilatation, or magnification, or ho-
mothety) of center a and ratio A, is a map H, ) defined
such that

Ha’)\(x) =a+ )\Cﬁ,

for every x € E.

Observe that H, \(a) = a, and when A\ # 0 and x # a,
H, \(z) is on the line defined by a and x, and is obtained
by “scaling” az by A. When \ = 1, H, 1 1s the identity.
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—
Note that H, ) = Aidg. When A # 0, it is clear that
H,  is an affine bijection.

[t is immediately verified that

Ha,)\ O Ha,,u — Idg \py-

We have the following useful result.

Lemma 5.6.1 Given any affine space E, for any affine

%
bijection f € GA(E), if f = Aidg, for some A € R*
with A # 1, then there 1s a unique point ¢ € E such
that f — Hc,)\.

%
Clearly, if f = idg, the affine map f is a translation.

Thus, the group of affine dilatations DIL(E) is the dis-
joint union of the translations and of the dilatations of
ratio A # 0,1. Affine dilatations can be given a purely
geometric characterization.
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5.7 Affine Hyperplanes

In section 5.3, we observed that the set L of solutions of
an equation
axr + by = c

is an affine subspace of A? of dimension 1, in fact a line
(provided that a and b are not both null).

It would be equally easy to show that the set P of solu-
tions of an equation

ar +by+cz=d
is an affine subspace of A? of dimension 2, in fact a plane

(provided that a, b, ¢ are not all null).

More generally, the set H of solutions of an equation
)\1$l+""|—)\m$m:,u

is an affine subspace of A", and if A\{,..., \,, are not all
null, it turns out that it is a subspace of dimension m — 1
called a hyperplane.
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We can interpret the equation
ML+ AT =
in terms of the map f:R™ — R defined such that
flxy,...,xm) = X1+ -+ ATy —
for all (z1,...,2,) € R™
It is immediately verified that this map is affine, and the
set. H of solutions of the equation
MTL+ -+ AT = U

is the null set, or kernel, of the affine map f: A" — R,
in the sense that

H=f7'(0)={z € A" | f(z) = 0},

where x = (1,...,2Tn).

Thus, it is interesting to consider affine forms, which are
just affine maps f: E — R from an affine space to R.
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Unlike linear forms f*, for which Ker f* is never empty

%
(since it always contains the vector 0 ), it is possible that
f740) =0, for an affine form f.

Recall the characterization of hyperplanes in terms of lin-
ear forms.

Given a vector space E, a linear map f: £ — R is called
a linear form. The set of all linear forms f: £ — R is a

vector space called the dual space of E. and denoted as
E*.

Hyperplanes are precisely the Kernels of nonnull linear
forms.
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Lemma 5.7.1 Let E be a vector space. The following
properties hold:

(a) Given any nonnull linear form f € E*, its kernel
H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f € E* such that H = Ker f.

(c) Given any hyperplane H in E and any (nonnull)
linear form f € E* such that H = Ker f, for every
linear form g € E*, H = Kergqg iff g = A\f for some
A #0in R.

Going back to an affine space E, given an affine map
f:E — R, we also denote f~1(0) as Ker f, and we call
it the kernel of f. Recall that an (affine) hyperplane is
an afline subspace of codimension 1.

Affine hyperplanes are precisely the Kernels of noncon-
stant affine forms.
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Lemma 5.7.2 Let E be an affine space. The follow-
ing properties hold:

(a) Given any nonconstant affine form f: E — R, its
kernel H = Ker f s a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant
affine form f: E — R such that H = Ker f. For
any other affine form g:E — R such that H =
Ker g, there is some A € R such that g = \f (with

A#£0).
(c) Given any hyperplane H in E and any (noncon-
stant) affine form f: E — R such that H = Ker f,

every hyperplane H' parallel to H is defined by a

nonconstant affine form g such that g(a) = f(a) —
A, for all a € E, for some \ € R.
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Chapter 6

Multiaffine Maps and Polar Forms

6.1 Multiaffine Maps

Let Ey,...,E,, and F', be vector spaces over R, where
m > 1.

Definition 6.1.1 A function f: B} X ... X E,, — F'is
a multilinear map (or an m-linear map), iff it is linear
in each argument, holding the others fixed.

Having reviewed the definition of a multilinear map, we
define multiaffine maps. Let Ei, ..., E,,, and F', be affine
spaces over R, where m > 1 (you may assume that the
E;’s and F' are of the form A", for some n > 0. Also, we

%
use the notation £ for the vector space R" associated
with the affine space £ = A"™.)

185
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Definition 6.1.2 A function f: By X ... X E,, — F'is
a multiaffine map (or an m-affine map), iff it is affine
in each argument, that is, for every ¢, 1 < ¢ < m, for
all a1 € E4,...,a;.1 € E;_1,a;01 € Eiy1,...,am €
E,,,a € E; the map

CL|—>f(CLl,...,CLi_l,CL,CLH_l,...,CLm)

is an affine map, i.e. iff it preserves barycentric combina-
tions.

An arbitrary function f: E™ — F'is symmetric (where E
and F' are arbitrary sets, not just vector spaces or affine
spaces), iff

f@rqys s Tam)) = (@1, Tm),

for every permutation 7w: {1,...,m} — {1,...,m}.

[t is immediately verified that a multilinear map is also
a multiaffine map (viewing a vector space as an affine
space).
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A good example of n-affine forms is the elementary sym-
metric functions. Given n variables z1, ..., x,, for each
k, 0 < k < n, we define the k-th elementary symmetric
function op(x1,. .., xz,), for short, oy, as follows:

09 = T1T9 + 13+ +T1Ty, + ToX3 + + -+ + Tpo1Tp;

Ok = Zl§i1<...<ik§n Lip + " Ly

Op — X1X9 " Tp.
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A concise way to express oy, is as follows:
o E <| | xz> :

IC{1,....,n} el
|[I|=k

n

Note that o} consists of a sum of ( k) — Wlk), terms

of the form x;, - - - ;.. As a consequence,

Clearly, each o} is symmetric.

Multiaffine maps can be characterized in terms of multi-
linear maps. This is a generalization of lemma 5.5.2,

The proof is more complicated than we originally ex-
pected. It uses an adaptation of Cartan’s use of “suc-
cessive differences.”

We will not present this result here, and instead, give a
special version later that will be enough for our purposes

(see Lemma 6.2.3).
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6.2 Affine Polynomials, and Polar Forms

The beauty and usefulness of symmetric affine maps lies is
the fact that these maps can be used to define the notion
of a polynomial function from an affine (or vector) space
E of any dimension to an affine (or vector) space F' of
any dimension.

Definition 6.2.1 Given two affine spaces £/ and F', an

affine polynomial function of polar degree m, for short,

an affine polynomial of polar degree m, is a map

h: E — F'. such that there is some symmetric m-affine

map f: E™ — F', called the m-polar form of h, with
h(a) = f(a,...,a),

N —

m

for all a € F.

Remark: Note that Definition 6.2.1 only asks for the
eristence of a symmetric multiafine map f. Thus, it
is a priori possible that there exists distinct symmetric
multiaffine maps f and ¢ so that

f(a,oo-,a):g(a,o--,a)

for all @ € E. In fact, this is not so! We will prove
uniqueness of the symmetric multiafine map f defining
an affine polynomial map h.
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A homogeneous polynomial function of degree m, is a
e _

map h: £ — F', such that there is some nonnull sym-

— =
metric m-linear map f: K" — [I', called the polar form
of h, with

%
forall v € E .

A polynomial function of polar degree m, is a map

— — . .
h: E — F', such that there are m symmetric k-linear

= —
map fr: E* — F ., 1<k <m, and some fy € F', with
WV) = [l )+
fm—l(?aa?)—l__l_fl(?)—'_f(b
mtl

%
forall v € E.
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& Instead of defining polynomial maps of degree exactly
m (as Cartan does), we define polynomial maps of de-

— —

oree at most m. For example, if &© = R" and F' = R,
we have the bilinear map f: (R")? — R (inner product),
defined such that

[z, xn), (Y1, -5 Yn) = Ty + 2oy + - + Y.
The corresponding polynomial h: R" — R, such that
h(xy,...,xn) =25 + 254+ - +2°,

is a polynomial of total degree 2 in n variables.

However the triaffine map f:R? — R defined such that
flx,y,2) =2y +yz+ xz,
induces the polynomial A: R — R such that
h(z) = 32,

which is of polar degree 3, but a polynomial of degree 2
n x.
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Let us see what are the homogeneous polynomials of de-
oree m, when ﬁ is a vector space of finite dimension n,
and ? is a vector space (readers who are nervous, may

assume for simplicity that F' = R).

%
Let (ef,..., e,) be a basis of E .

%
Lemma 6.2.2 Given any vector space E of finite
%
dimension n, and any vector space F', for any ba-
sis (e1,...,ey) of E, for any symmetric multilinear

— =
map f: E" — F', for any m vectors

— —> — %
v =v1 €1+t v, e, € B,
we have
— —5\
f(vla' 7Um)_

> (o ) e

]Z'ﬂfj:@,i%j
1<4,5<n
— — — —
f(ela y €15+ En, 76@)7




6.2. AFFINE POLYNOMIALS, AND POLAR FORMS 193

%
and for any T € E , the homogeneous polynomaial
function h associated with f is given by

— m
W)= 3 (kl...kn)vf““”i”

ki1+-+kp=m
0<k;, 1<i<n
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Thus, lemma 6.2.2 shows that we can write h(7') as

W0 = Z R

k14-+knp=m
ngi, 1§i§n

. — .
for some “coefficients” ¢y, ., € F', which are vectors.

When ? = R, the homogeneous polynomial function A
of degree m in n arguments vy,...,v, agrees with the
notion of polynomial function defined by a homogeneous
polynomial. Indeed, h is the homogeneous polynomial
function induced by the homogeneous polynomial of de-
gree m in the variables X1, ..., X,

k1 k
E : Ckl,m,anl e 'Xnn'

(klr")kn)) ]{]20
ki+-+kp=m

— —
Thus, when E = R" and F' = R, the notion of (affine)
polynomial of polar degree m in n arguments, agrees with
the notion of polynomial function induced by a polyno-
mial of degree < m in n variables (X1, ..., X,).
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Lemma 6.2.3 Given any affine space E of finite di-
mension n, and any affine space F, for any basis

- . .
(e_f, o e_n>) of £, for any symmetric multiaffine map
f:E"™ — F, for any m vectors
— — —
v =v €1+t v, e, € B,
for any points aq,...,a, € E, we have
flar + 01, am +0m) =b+
Z Z H ,Ul’il T H ,Un’in w\h\aﬂﬂ’
I<p<m nLU..UI,={1,...,p} \411€l; in€ly
Iiﬁfj:(b,i#j
1<i,j<n

_ —
Jor some b € F, and some W 1, € F, and for

%
any a € F, and € E , the affine polynomial func-
tion h associated with f is given by

ha+ ) =b+ > Y Wl W,

1<p<m ki+--+kp=p
0<k;,1<i<n

N —
for some b € I, and some Wy, 1, € F'.
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Lemma 6.2.3 shows the crucial role played by homoge-
neous polynomials. We could have taken the form of an
affine map given by this lemma as a definition, when £
is of finite dimension.

Recall that the canonical affine space associated with the
field R is denoted as A.

Definition 6.2.4 A (parameterized) polynomial curve
in polar form of degree m is an affine polynomial map
F:A — & of polar degree m, defined by its polar form
which is some symmetric m-affine map f: A™ — £, where
A is the real affine line, and &€ is any affine space (of
dimension at least 2).

Given any 7, s € A, with r < s, a (parameterized) poly-
nomial curve segment F(|r, s|) in polar form of degree
m is the restriction F: [r, s] — £ of an affine polynomial
curve F: A — & in polar form of degree m. We define
the trace of F' as F'(A), and the the trace of F|r, s| as
F([r, s]).
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Lemma 6.2.5 Given any sequence of m + 1 points
ap, ...,y N some affine space &, there is a unique
polynomial curve F: A — & of degree m, whose polar
form f: A"™ — & satisfies the conditions

f(f,...,’c,§,...,§):&]€,

m—k 4

(where r,s € A, r # s). Furthermore, the polar form
f of ' is given by the formula

f(ty, ... tm) =
k=m
S — Ifi tj — T
Sy T(EH)U()
k=0 1UJ={1,...m} i€l jeJ
INJ=0,|J|=k

and F(t) is given by the formula

k=m
F(t) =Y Bl'rs|(t) a

k=0

where the polynomaials

s (7) (20 (25

are the Bernstein polynomials of degree m over |r, s|.
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Remarkably, we can prove in full generality, that the polar
form f defining an affine polynomial h of degree m is
unique. All the ingredients to prove this result are in
Bourbaki [?] (chapter A.l, section §8.2, proposition 2),
and [?] (chapter A.IV, section §5.4, proposition 3), but
they are deeply buried!

Before plunging into the proot of lemma 6.2.6, you may
want to verify that for a polynomial h(X) of degree 2,
the polar form is given by the identity

T+ X9

Fla, x9) = % 4 (2572) — h(w) — h(e)

You may also want to try working out on your own, a
formula giving the polar form for a polynomial h(X) of
degree 3. Note that when h(X) is a homogeneous poly-
nomial of degree 2, the above identity reduces to the (per-
haps more familiar) identity

1

f(@1,22) = 5 [A(z1 + 22) — h(z1) — h(22)],

used for passing from a quadratic form to a bilinear form.
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Lemma 6.2.6 Given two affine spaces E and F', for
any polynomial function h of degree m, the polar form
f:E™ — F of h is unique, and 1s given by the follow-
NG exPression:

flan ) = |30 (e ()

HCA{L,...m}
| k= |H|, k>1

It should be noted that lemma 6.2.6 is very general, since
it applies to arbitrary affine spaces, even of infinite di-
mension (for example, Hilbert spaces). The expression
of lemma 6.2.6 is far from being economical, since it con-
tains 2" — 1 terms. In particular cases, it is often possible
to reduce the number of terms.

We now use lemma 6.2.6 to show that polynomials in one
or several variables are uniquely defined by polar forms
which are multiafline maps.
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Lemma 6.2.7 The following properties hold.

(1) For every polynomial p(X) € R|X], of degree < m,
there is a symmetric m-affine form f:R"™ — R,
such that

plx) = flx,x,...,x)
for all x € R. If p(X) € R[X] is a homogeneous
polynomial of degree exactly m, then the symmet-
ric m-affine form f is multilinear.

(2) For every polynomial p(Xy, ..., X,) €

R[X1, ..., X,|, of total degree < m, there is a sym-
metric m-affine form f: (R")" — R, such that

plxy,...,x,) = flo,x,...,x),

for all x = (z1,...,2,) € R". Ifp(Xy,...,X,) €
R[X1,...,X,] is a homogeneous polynomial of to-
tal degree exactly m, then the symmetric m-affine
form f is multilinear.
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Proof. (1) It is enough to prove it for a monomial of the
form X*, k < m. Clearly,

kl(m — k)!

[, o om) = )l o

is a symmetric m-affine form satisfying the lemma (where
0} 18 the k-th elementary symmetric function, which con-

m |
i 7 terms), and when & = m, we

k — Kl(m—k)!

get a multilinear map.

sists of

(2) It is enough to prove it for a homogeneous monomial
of the form Xfl . onf", where k; > 0, and k1+- - -+k, =
d < m. Let

i@, mn), s @ms - Tnym)) =

kil Ryl (m — d)!
s ) (1)

IlUUIng{l ..... m} 21611 'Lneln
]Z'ﬁfj:@, 17, |Ij‘:kj

The idea is to split any subset of {1, ..., m} consisting of
d < m elements into n disjoint subsets Iy, ..., I,, where
I; is of size k; (and with k) +--- + k, = d).
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As an example, if
_ w3 2
p(X)=X"+3X"+5X —1,
we get

fx1, 10, 23) =

T1T9x3 + T1T9 + T1X3 + Tox3 + g(iﬂl + X9 + ZE3) — 1.

When n = 2, which corresponds to the case of surfaces,
we can give an expression which is easier to understand.
Writing U = X7 and V' = X5, to minimize the number
of subscripts, given the monomial U"V*, with h + k =
d < m, we get

fl(ug,v1), ..y (U, V) =

RE(m — (h+k))!
s (1) (T

JUJC{l,..m} \iel jed

InJ=0
[ I|=h, |J|=Fk
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For a concrete example involving two variables, if
p(UV)=UV+U*+ V>,

we get

U1V9 + U921

f((ur,v1), (ug,v9)) = + U + V102.

2

203
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Theorem 6.2.8 There is an equivalence between poly-
nomials p(X1,...,X,) € R[Xy,..., X,], of total de-
gree < m, and symmetric m-affine maps

f:(R")™ — R, in the following sense:

(1) If f:(R")"™ — R is a symmetric m-affine map,
then the function p:R" — R defined such that
plxy,...,z,) = flx,x,...,2)

for all v = (x1,...,2,) € R", is a polynomial
(function) corresponding to a unique polynomial
p(Xy,..., X, € RIXy,...,X,] of total degree <
m.
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(2) For every polynomial p(Xy, ..., X,) €
R[X1,...,X,], of total degree < m, there is a unique
symmetric m-affine map f: (R")™ — R, such that

p(xy,...,zp) = flx,x,...,2)
for all x = (x1,...,x,) € R™.
Furthermore, when p(Xy,...,X,) € R[Xq,...,X,] is

a homogeneous polynomial of total degree exactly m,
the symmetric m-affine map f is multilinear, and con-
versely.
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We conclude this section by proving that the Bernstein
polynomials Bj'(t), ... ,B/(t) also form a basis of the
polynomials of degree < m . For this, we express each ¢,
0 <@ < m, in terms of the Bernstein polynomials B (t)
(over [0, 1]).




Chapter 7

Polynomial Curves as Bézier Curves

7.1 The de Casteljau Algorithm For Polynomial Curves

An affine polynomial curve F: A — & of degree m, de-
fined by its m-polar form f: A" — &£ is completely deter-
mined by the sequence of m + 1 points b, = f(r™ =% s¥),
where r,s € A, r #£ s, 0 < k < m, and we showed that

k=m
Fltrotm) = pelty, o) f(F 885,
k=0

where the coeflicient

et 2 TEE)EES)

TUJ={1,..m} iel jed
INJ=0, card(J)=k

of f(r"™*s"), is a symmetric m-affine function.

207
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The de Casteljau algorithm gives a geometric iterative
method for determining any point F'(t) = f(t,...,t) on
the curve F' specified by the sequence of control points
by, b1, ..., by, wheret € A.

What'’s good about the algorithm is that it does not as-
sume any prior knowledge of the curve. All that is given
is the sequence by, b1, . . ., b,, of m+ 1 control points, and
the idea is that we are trying to approximate the shape
of the polygonal line consisting of the m line segments

(607 b1)7 (bla b2)7 RS (bm—17 bm)

Let us review the case of polynomial cubic curves.
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As we observed, the computation of the point F'(¢) on a
polynomial cubic curve F' can be arranged in a triangular
array, as shown below:

1 2 3

flryr,r)

f<r7 T? t)
f(r,r,s) f(t,t,r)

f(r,t,s) f(t,t,t)
f(r,s,s) f(t,t,s)

f(t,s,s)
f(87 87 S)

The following diagram shows an example of the de Castel-
jau algorithm for computing the point F'(¢) on a cubic,
where r, s, and t, are arbitrary:
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f(r7 87 8)
f(r7 t’ 8) \

f(r,r,t) f(t,s,s)

F(r)= (r, r,T)
F(s) = (3, s, )

Figure 7.1: The de Casteljau algorithm

The general case for computing the point F(¢) on the
curve F' determined by the sequence of control points

bo, - - ., by, where by, = f(r™ " s%), is shown below. We
will abbreviate

as f(t'r/s¥), where i +j + k = m.
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The point f (/7™ *"7s') is obtained at step 4 of phase j,
for 1 <7 <m,0<17<m—7j, by the interpolation step

FErm s =

(s — t) F(FLpm—izitlgh g (t — 7“) FIpmeisigitly,

S—7T S—7T

In order to make the triangular array a bit more readable,
let us define the following points b; ;, used during the
computation:

,_[b if j=0,0<i<m,
T f@E TS i 1< <m, 0<i<m—J.

Then, we have the following equations:

s—1 t—r
bij = (:) bi j—1 + (s — 7“) Div1,j—1-
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By lemma 6.2.5, we have an explicit formula giving any
point F'(t) associated with a parameter ¢ € A, on the
unique polynomial curve F: A — & of degree m deter-
mined by the sequence of control points by, ..., b,. The
point F(t) is given by the formula

iB bkv

k=0

where the polynomials

srvio- (1) () ()

are the Bernstein polynomials of degree m over |r, s|.

Thus, the de Casteljau algorithm provides an iterative
method for computing F(t), without actually using the
Bernstein polynomials. This can be advantageous for nu-
merical stability.
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The de Casteljau algorithm is very easy to implement,
and we give below several versions in Mathematica.

The function badecas simply computes the point F'(t)
on a polynomial curve F' specified by a control polygon
cpoly (over [r, s]). The result is the point F'(t).

The function decas computes the point F'(t) on a polyno-
mial curve F' specified by a control polygon cpoly (over
[, s]), but also the shells of the de Casteljau diagram.
The output is a list consisting of two sublists, the first
one being the shells of the de Casteljau diagram, and the
second one being F(t) itself.

(* Performs general affine interpolation
between two points pl, p2 *)

(* w.r.t. affine basis [r, s], and
interpolating value t  *)

lerp[p_List,q_List,r_,s_,t_] :=
(s -t)/(s-1) p+(t-1r)/(s-1)q;
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(* computes a point F(t) on a curve using
the de Casteljau algorithm *)
(* this is the simplest version of de Casteljau *)
(* the auxiliary points involved in the algorithm
are not computed *)

badecas [{cpoly__}, r_, s_, t_] :=
Block[

{bb = {cpoly}, b = {}, m, i, j},
(m = Length[bb] - 1;

Dol

Do [

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, tl],
{i, 1, m - j + 1}
1; bb = b; b ={}, {j, 1, m}

1;
bb[[1]]
)

1;
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(* computes the point F(t) and the line segments involved in
computing F(t) using the de Casteljau algorithm *)

decas[{cpoly__}, r_, s_, t_] :=
Block[

{bb = {cpoly}, b = {3},

m, i, j, lseg = {}, res},

(m = Length[bb] - 1;

Do [
Do [
b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, tl];
If[i > 1, 1seg = Append[lseg, {b[[i - 111, b[[i]11}]1]
, {i, 1, m - j + 1}
1; bb = b; b ={}, {j, 1, m}
1;
res := Append[lseg, bb[[1]]];
res

)
1;
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The following function pdecas creates a list consisting of Mathematica line
segments and of the point of the curve, ready for display.

(* this function calls decas, and computes the line segments
in Mathematica, with colors  *)

pdecas[{cpoly__}, r_, s_, t_] :=

Block[

{bb = {cpoly}, pt, 11, res, i, 11, edge, 1lt, rt},
res = decas[bb, r, s, tl;

pt = Last[res]; res = Droplres, -1];

11 = Lengthl[res];
11 = {};
Do [

edge = res[[i]]; 1t = edgel[1]];
rt = edgel[[2]]; edge = {1t, rt};
11 = Append[1l1l, Lineledge]], {i, 1, 11}
1;
res = Append[11l, {RGBColor[1,0,0], PointSize[0.01], Point[ptl]l}];
res
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7.2 Subdivision Algorithms for Polynomial Curves

We now consider the subdivision method. As we will see,
subdivision can be used to approximate a curve segment
using a polygon, and the convergence is very fast. Given
a sequence of control points by, ..., b,,, and an interval
r, s], for every t € A, we saw how the de Casteljau
algorithm gives a way of computing the point by, on the
Bézier curve, and the computation can be conveniently
represented in triangular form:

Let us now assume that r < t < s. Observe that the two
diagonals

b(),(), bO,l; Ce e bo,j, Cey bO,m;
and
bo,m, bl,m—l; e 7bm—j,j7 Cey bm,(),
consist of m + 1 points.

We claim that these two sequences of control points spec-
ify the original curve.
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Indeed, if f is the polar form associated with the Bézier
curve specified by the sequence of control points by, ...,
by, over [r,s], g is the polar form associated with the
Bézier curve specified by the sequence of control points
bo.o, - - boj, - -, bom over [, t], and h is the polar form
associated with the Bézier curve specified by the sequence
of control points by, - - -, bm—j j, - - -, b Over [¢, s}, since
f and g agree on the sequence of m + 1 points

b0,0; RN bO,j7 SR 7bO,m7
and f and h agree on the sequence of m + 1 points
boms s bm—jjy - s bmoo,s

by lemma 6.2.5, we have f = g = h.
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The subdivision method can easily be implemented. Given
a polynomial curve F' defined by a control polygon B =
(bg, - - ., by,) over an affine frame [r, s], for every t € A,
we denote as By, the control polygon
b()’(), bO,l; Cey bO,j; Cey bO,m;

and as By 4 the control polygon

bO,m; bl,m—l; Ce 7bm—j,j7 Ce bm,().
The following Mathematica function returns a pair con-
sisting of B,y and By 4, from an input control polygon
cpoly.
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(x Performs a single subdivision step

using the de Casteljau algorithm *)
(* Returns the control poly (f(r,...,r, t, ..., t)) and *)
(x (&, ..., t, 8, ..., 8)) *)

subdecas [{cpoly__}, r_, s_, t_] :=
Block[
{bb = {cpoly}, b = {}, ud = {3}, 1d = {3,
m, i, j, res},
(m = Length[bb] - 1; ud = {bb[[1]]}; 1d = {bb[[m + 1]113};
Do[

Dol

b = Append[b, lerp[bb[[i]], bb[[i+1]], r, s, tl],
{i, 1, m - j + 1}

1;
ud = Append[ud, b[[1]]1];
1d = Prepend[1d, b[[m - j + 1]1];
bb = b; b =1{}, {j, 1, m}
1;
res := Join[{ud},{1d}];
res
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In order to approximate the curve segment over [r, s|, we
recursively apply subdivision to a list consisting originally
of a single control polygon. The function subdivstep
subdivides each control polygon in a list of control poly-
gons. The function subdiv performsn calls to subdivstep.
Finally, in order to display the resulting curve, the func-
tion makedgelis makes a list of Mathematica line seg-
ments from a list of control polygons.

(* subdivides each control polygon in a list
of control polygons *)
(* using subdecas. Uses t = (r + s8)/2 %)

subdivstep[{poly__}, r_, s_] :=
Block[
{cpoly = {poly}, lpoly = {}, t, 1, i},
(1 = Length[cpolyl; t = (r + s)/2;
Do [
lpoly = Join[lpoly, subdecas([cpoly[[il], r, s, tl] ,
{i, 1, 1}
13
lpoly
)
15
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(* calls subdivstep n times *)

subdiv[{poly__}, r_, s_, n_] :=

Block[

{poll = {poly}, newp = {}, i},

(

newp = {poll};

Do [
newp = subdivstep[newp, r, s], {i, 1, n}
1;

newp

)

(* To create a list of line segments from a list
of control polygons *)

makedgelis [{poly__}] :=
Block([
{res, sl, newsl = {poly},

i, j, 11, 123,

(11 = Length[newsl]; res = {};

Do [

sl = newsl[[i]l]; 12 = Lengthl[sl];
Do[If[j > 1, res = Append[res, Line[{s1[[j-111, s1[[j]11}11],
{j, 1, 12}
1, {i, 1, 11}
1;

res
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The subdivision method is illustrated by the following ex-
ample of a curve of degree 4 given by the control polygon

cpoly = ((0, —4), (10, 30), (5, —20), (0, 30), (10, —4)).

The following 6 pictures show polygonal approximations
of the curve segment over |0, 1] using subdiv, for n =
1,2,3,4,5,0.
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Figure 7.2: Subdivision, 1 iteration
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Figure 7.3: Subdivision, 2 iterations
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Figure 7.4: Subdivision, 3 iterations
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Figure 7.5: Subdivision, 4 iterations
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Figure 7.6: Subdivision, 5 iterations
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Figure 7.7: Subdivision, 6 iterations
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Another nice application of the subdivision method is
that we can compute very cheaply the control polygon
Bjo over a new affine frame [a, b] of a polynomial curve
given by a control polygon B over |r, s]. Indeed, assuming
a # r, by subdividing once w.r.t. [r, s| using the param-
eter a, we get the control polygon By, ,, and then we
reverse this control polygon and subdivide again w.r.t.
la, 7] using b, to get Bj,p. When r = a, we subdivide
w.r.t. [r, s, using b.
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(* Computes the control polygon wrt new affine frame (a, b)
(* Assumes that a = (1 - lambda) r + lambda t and

(* that b= (1 - mu) r + mu t, wrt original frame (s, t

(* Returns control poly (f(a, ..., a, b, ..., b))

newcpoly [{cpoly__}, r_, s_, a_, b_] :=
Block[
{poly = {cpoly}, m, i, poll, pola, pol2, npoly, pt},
(
If[a =!= r, poll = subdecas[poly, r, s, al;
pola = poli[[1]]; pol2 = {};
m = Length[pola];
Do [
pt = polal[[il];
pol2 = Prepend[pol2, pt], {i, 1, m}

1;
npoly = subdecas[pol2, a, r, b],
€ Print[" npoly: ", npoly]  *)
npoly = subdecas[poly, r, s, b]
1;
npoly[[1]]

)

231

*)
*)
*)
*)

The above function can be used to render curve segments
over intervals [a, b] different from the interval |r, s| over

which the original control polygon is defined.
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We consider one more property of Bézier curves, degree
ratsing. Given a Bézier curve F' of polar degree m, and
specified by a sequence of m+1 control points by, . . ., b,
it is sometimes necessary to view F' as a curve of polar
degree m + 1. For example, certain algorithms can only
be applied to curve segments of the same degree. Or a
system may only accept curves of a specified degree, say
3, and thus, in order to use such a system on a curve of
lower degree, for example, a curve of degree 2, it may be
necessary to raise the (polar) degree of the curve.

Indeed, if F'is defined by the polar form f: A™ — &, the
polar form ¢g: A1 — &€ that will yield the same curve
F', in the sense that

is necessarily

1
g(tla---atm+1):— Z f(tip"'vtim)

m + 1 . :
1< <. <i;<m—+1
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Instead of the above notation, the following notation is
often used,

1 1=m+1
g(tla"'atm+1):— Z f(tla"'atia"'atm+1>7
m + 1 pa

where the hat over the argument t; indicates that this
argument is omitted.

For example, if f is biafine, we have

g(t1,ta, t3) = flt,to) + f(t;, ts) + f<t2,t3).

If F' (and thus f) is specified by the m + 1 control points
bo, - . ., by, then F considered of degree m + 1 (and thus
g), is specified by m + 2 control points by, ..., b’ ., and
it is an easy exercise to show that the points b} are given
in terms of the original points b;, by the equations:

1 m+1—z

blz 1— bi)
e ——)

where 1 < i < m, with bj = by, and b . = by,
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One can also raise the degree again, and so on. It can be
shown that the control polygons obtained by successive
degree raising, converge to the original curve segment.
However, this convergence is much slower than the con-
vergence obtained by subdivision, and it is not useful in
practice.
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7.3 The Progressive Version of the de Casteljau Algo-
rithm (the de Boor Algorithm)

When dealing with splines, it is convenient to consider
control points not just of the form f(r™*s"), but of the
form f(ugsq, ..., Uprm), Where the u; are real numbers
taken from a sequence (uq, ..., usy,) of length 2m, satis-
fying certain inequality conditions. Let us begin with the
case m = 3.

Given a sequence (uq, us, s, Uy, Us, Ug), We say that this
sequence is progressive iff the inequalities indicated in
the following array hold:

U ?é
uy # F
us ?é ?é
Ug U5 Ug

Then, we consider the following four control points:

fur, ug, uz), flug, us,us), fus, us, us), flua, us, uep).



236 CHAPTER 7. POLYNOMIAL CURVES AS BEZIER CURVES

Observe that these points are obtained from the sequence
(U1, ug, ug, w4, us, ug), by sliding a window of length 3
over the sequence, from left to right.

We can compute any polar value f(t1,ts,t3) from the
above control points, using the following triangular array
obtained using the de Casteljau algorithm:

1 2 3
f(ula Ug, U3>
f(t1,ug, us)
f(u27 us, U4) f(tla t27 ’U,3)
f(t1,us, ug) f(t1,t2,t3)
fus, wg, us) f(t1,ta, uy)
[ty ua, us)

f(U4, Uus, uﬁ)

The following diagram shows the computation of the po-
lar value f(t1,t9,t3), given the progressive sequence

<’LL1, U2, U3, U4, Us, u6> :
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St us, ug) f(u37u4,u5)

f(U27U3,U4)

f(t1,U2,U3)

f(t17u4,7~65)

f(U1,2,U3)

f(U4, 57 uﬁ)

Figure 7.8: The de Casteljau algorithm, progressive case

In the general case, we have a sequence (ug, ..., Ugy) of
numbers u; € R.

Definition 7.3.1 A sequence (uq, . .., U, ) of numbers
u; € R is progressive it u; # U4, for all j, and all 7,
1 <1< 35 <m. These M conditions correspond to
the lower triangular part of the following array:
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U1 7é
2 FF
u; # # a
+
T
Uy £ .. #£ . o . £
Um+1  Um+2 - Umgj - U2m—j+1 .. U2m—1 U2m

The point f(t1...tUi4j41. .. Umsi) 1s Obtained at step
1 of phase 7, for 1 < 7 < m, 0 <1 < m — 3, by the
interpolation step

f(tl .. .tjuz‘+j+1 ce ’U,erz‘) =
( Ui+l — L
Umi4+1 — Wity

) f(tl .. .tj_luz-ﬂ- .. .umH)

J i+
_|_ ( f(tl .« o tj_1Ui+j+1 e e e um+i+1).
Umi4+1 — Wity
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In order to make the above triangular array a bit more
readable, let us define the following points b; ;, used dur-
ing the computation:

bij=f(t1  tjUitji1 - Umsi),

for1 <93 <m,0<1<m—y, with

bio=f(Wis1,- -\ Unti),

for 0 <7 < m. Then, we have the following equations:

S T Sl BN bj — Uiyj Do
ij = ij—17 i+1,—1-
Um+i+l — Uity Um+i+1 — Uity

The progressive version of the de Casteljau algorithm is
also called the de Boor algorithm. It is the major algo-
rithm used in dealing with splines.

One may wonder whether it is possible to give a closed
form for f(¢1,...,tn), as computed by the progressive
case of the de Casteljau algorithm, and come up with a
version of lemma 6.2.5. This turns out to be difficult, as
the case m = 2 already reveals!
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We can still prove the following theorem generalizing lemma
6.2.5 to the progressive case. The easy half follows from
the progressive version of the de Casteljau algorithm, and
the converse will be proved later.

Theorem 7.3.2 Let (uy, ..., usy) be a progressive se-
quence of numbers u; € R. Given any sequence of
m + 1 points by, ..., b, in some affine space &£, there
1s a unique polynomial curve F: A — £ of degree m,
whose polar form f:A™ — £ satisfies the conditions

fUps1, o) Umsr) = b,

for every k, 0 < k < m.

There are at least two ways of proving the existence of
a curve satisfying the conditions of theorem 7.3.2. One
proof is fairly computational, and requires computing a
certain determinant, which turns out to be nonzero pre-
cisely because the sequence is progressive. The other
proof, due to Ramshaw, is more elegant and conceptual,
but it uses the more sophisticated concept of symmetric
tensor product.
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7.4 Derivatives of Polynomial Curves

In this section, it is assumed that & is some affine space
A" with n > 2. Our intention is to give the formulae for
the derivatives of polynomial curves F: A — &£ in terms
of control points.

This characterization will be used in the next section deal-
ing with the conditions for joining polynomial curves with
C*-continuity.

In this section, following Ramshaw, it will be convenient
to denote a point in A as @, to distinguish it from the
vector a € R.

The unit vector 1 € R is denoted as 0. When dealing
with derivatives, it is also more convenient to denote the
vector % as b — a.
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Given a polynomial curve F: A — &, for any @ € A,
recall that the derivative DF'(@) is the limit

i F@+0) = F@
t—0, t#£0 t

if it exists.
& Recall that since F': A — &, where £ is an affine space,

%
the derivative DF'(@) of F' at @ is a vector in £ , and
not a point in &.

Since coefficients of the form m(m — 1)---(m — k + 1)
occur a lot when taking derivatives, following Knuth, it is
useful to introduce the falling power notation. We define

the falling power m~, as

mE=m(m—1)---(m—k+1),

for 0 < k < m, with m? = 1, and with the convention
that m¥ = 0 when k > m.
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The following lemma giving the k-th derivative D*F'(7)
of F' at 7 in terms of polar values, can be shown.

Lemma 7.4.1 Given an affine polynomial function
F:A — & of polar degree m, for any rv,s € A, with
r # s, the k-th derivative D*EF(F) can be computed

from the polar form f of F' as follows, where 1 < k <
m:

DkF( S-?"kz( ) sz(favaiagaag)

A proof is given in section 12.2. It is also possible to
obtain this formula by expressing F(7) in terms of the
Bernstein polynomials and computing their derivatives.

If F'is specified by the sequence of m + 1 control points
bi = f(F™ 5", 0 < ¢ < m, the above lemma shows

that the k-th derivative D*F(F) of I at 7, depends only
on the k + 1 control points by, .. ., b
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In terms of the control points by, ..., b;, the formula of
lemma 7.4.1 reads as follows:

DFF(7) S_Tkz< ) 1) b,

In particular, if by # by, then DF(7) is the velocity vector
of F' at by, and it is given by

DF(F) = (by — bp).

S—T S—7T

This shows that when by and b; are distinct, the tangent
to the Bézier curve at the point by is the line determined

by by and b;.

Similarly, the tangent at the point b, is the line deter-
mined by b,,_1 and b, (provided that these points are
distinct).



7.4. DERIVATIVES OF POLYNOMIAL CURVES 245

More generally, the tangent at the current point F'(t)
defined by the parameter ¢, is determined by the two
points

bo,m_lzf(%,...,%,F) and bl’m_lzf(%,...,%,g),

m—1 m—1

given by the de Casteljau algorithm. It can be shown

that
m

DF(t) = (O1,m—1 — bom—1).

S—7T

The acceleration vector D?F(T) is given by

—1) ,— _—
DR = " Y G o
(7) 517 (bobz — 2boby)
m(m — 1)
= by — 2b1 + by).
(s— 7P (Do 1+ bo)
More generally, if by = by = ... = by, and by # b1, it

can be shown that the tangent at the point by is deter-
mined by the points by and by .
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7.5 Joining Affine Polynomial Functions

When dealing with splines, we have several curve seg-
ments that need to be joined with certain required conti-
nuity conditions ensuring smoothness.

The weakest condition is no condition at all, called C~1-
continuity. This means that we don’t even care whether
F(q) = G(q), that is, there could be a discontinuity at
q. In this case, we say that q is a discontinuity knot.
The next weakest condition, called C'-continuity, is that
F(q) = G(q). In other words, we impose continuity at g,
but no conditions on the derivatives.

Definition 7.5.1 Two curve segments F([p, q|) and
G[q,7]) of polar degree m are said to join with C*-
continuity at q, where 0 < k < m, iff

D'F(q) = D'G(q),

for all 7, 0 < ¢ < k, where by convention,
D'F(7) = F(7), and D"G(7) = G(q).
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As we will see, for curve segments F' and G of polar de-
egree m, C™-continuity imposes that F' = G, which is
too strong, and thus, we usually consider C*-continuity,
where 0 < k < m — 1 (or even k = —1, as mentioned
above). The continuity conditions of definition 7.5.1 are
ususally referred to as parametric continuity. There are
other (more) useful kinds of continuity, for example geo-
metric continuity.

We can characterize C*-continuity of joins of curve seg-
ments very conveniently in terms of polar forms. A more
conceptual proof of a slightly more general lemma, will
be given in section 77, using symmetric tensor products
(see lemma ?77).
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Lemma 7.5.2 Given two intervals [p, g and [q,T|, where
D,q, T € A, with p < q <r, and two affine curve seg-
ments F:[p,ql — € and G:[q, 7| — &, of polar degree
m, the curve segments F([p,q|) and G[q,T]) join with
continuity C* at g, where 0 < k < m, iff their polar
forms f: A" — & and g: A" — &£ agree on all mul-
tisets of points that contain at most k points distinct
from q, i.e.,
f@, ., g, g) = 9(@, 0 G-, ),

m—k m—k

for all uy, ..., u; € A.

Another way to state lemma 7.5.2 is to say that the curve
segments F'([p,q]) and G[g,T]) join with continuity C* at
q, where 0 < k < m, iff their polar forms f: A" — & and
g: A" — & agree on all multisets of points that contain
at least m — k copies of the argument q.



7.5. JOINING AFFINE POLYNOMIAL FUNCTIONS 249

Thus, the number k is the number of arguments that can
be varied away from g without disturbing the values of
the polar forms f and g.

When k£ = 0, we can’t change any of the arguments, and
this means that f and g agree on the multiset

i.e., the curve segments F' and G simply join at g, without
any further conditions.

On the other hand, for £k = m — 1, we can vary m — 1
arguments away from ¢ without changing the value of
the polar forms, which means that the curve segments
F and G join with a high degre of smoothness (C™!-
continuity).

In the extreme case where k = m (C™-continuity), the
polar forms f and g must agree when all arguments vary,
and thus f = g, i.e. F' and G coincide. We will see that
lemma 7.5.2 yields a very pleasant treatment of paramet-
ric continuity for splines.
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The following diagrams illustrate the geometric condi-
tions that must hold so that two segments of cubic curves
F:A — £ and G: A — & defined on the intervals [p, ¢
and [g, 7], join at § with C*-continuity, for k = 0, 1,2, 3.
Let f and ¢ denote the polar forms of F' and G.

The curve segments F' and G join at g with CY-continuity
iff the polar forms f and g agree on the (multiset) triplet

/PP, D) 9(q,T,

Figure 7.9: Cubic curves joining at § with C°-continuity
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The curve segments F' and G join at § with C'-continuity
iff the polar forms f and g agree on all (multiset) triplets
including two copies of the argument q.

f(ﬁ?p7ﬁ) g(q7F7F)

Figure 7.10: Cubic curves joining at § with C'-continuity
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The curve segments F' and G join at § with C*-continuity
iff the polar forms f and g agree on all (multiset) triplets
including the argument q.

/(0. p,p)

Figure 7.11: Cubic curves joining at § with C?-continuity
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The curve segments F' and G join at § with C*-continuity
iff the polar forms f and g agree on all (multiset) triplets,
e, iff f=g.

f=9D,p.p)

Figure 7.12: Cubic curves joining at § with C3-continuity
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The above examples show that the points corresponding
to the common values

@77 = 9@, 7,7 )
of the polar forms f and g, where i + 5 < k < 3, con-
stitute a de Casteljau diagram with & shells, where k is
the degree of continuity required. These de Casteljau di-
agrams are represented in bold.

This is a general fact. When two polynomial curves F
and G of degree m join at g with C*-continuity (where
0 < k < m), then

f@ 7" ) =g 7" )
for all 7, 7 with 2 + 7 < k < m, and these points form a
de Casteljau diagram with k shells.
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8.1 Introduction: Knot Sequences, de Boor Control
Points

ds: 8911

dy @ 235
d; : 91114

ds : 356

dy ;123 g ‘ dg: 111415

dy : 568

ds : 689

Figure 8.1: Part of a cubic spline with knot sequence ..., 1,2,3,5,6,8,9,11,14,15,.... Thick
segments are images of [6, §].
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Given a sequence of 2m knots

<ul€—|—17 Uk42, - -y Uk;—|—2m>7

for any parameter value in the middle interval

t € [Ukym, Ugrme1], & point on the curve segment speci-
fied by the m+1 control points d;, d; i1, ..., diy, (Where
d; is mapped onto wuy.1), is computed by repeated affine
interpolation, as follows:

Using the mapping

Uk+m+j+1 — U U — Uk+j+1

u —

diyj+ ditjt1,
Uk+m+j4+1 — Uk4j+1 Uk+m+j+1 — Uk4j+1
mapping the interval |[upyji1, Uktm+j+1] onto the line
segment (diij, ditjt+1), where 0 < j < m — 1, we map
t € [Uktm, Uk+m+1] onto the line segment (ditj, divjs1),

which gives us a point d; ;.
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Then, we consider the new control polygon determined
by the m points

d0,17 d1,17 SRR dm—l,lv

and we map affinely each of the m — 1 intervals

[Wk+j+2, Wktmtj+1] onto the line segment (dj 1, dji1,1),
where 0 < j < m — 2, and for t € [ugim, Ukrms1], We
get a point d; o on (dj 1, djt1.1).

Note that each interval [ug+jio, Uptmsj+1] NOW consists
of m — 1 consecutive subintervals, and that the leftmost
interval [ug 9, Urimi1] starts at knot w0, the immedi-
ate successor of the starting knot w1 of the leftmost
interval used at the previous stage.

The above round gives us a new control polygon deter-
mined by the m — 1 points

d0,27 d1,27 SRR dm—2,27

and we repeat the procedure.
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dg : 8911

dy: 235
d,: 91114

ds : 356

dy: 123 4 ‘ dg: 111415

dO,l : 567

dy : 568

ds : 689

Figure 8.2: Part of a cubic spline with knot sequence ...,1,2,3,5,6,8,9,11,14,15,..., and
construction of the point corresponding to ¢ = 7. Thick segments are images of [6, 8].
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dg : 8911

dy : 235

1 d,: 91114

ds : 356

333

959

dy: 123 dg: 111415

7 666

dy : 568

ds : 689

Figure 8.3: Part of a cubic spline with knot sequence ...,1,2,3,5,6,8,9,11,14,15,..., and
some of its Bézier control points
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8.2 Infinite Knot Sequences, Open B-Spline Curves

We begin with knot sequences.

Definition 8.2.1 A knot sequence is a bi-infinite non-
decreasing sequence (Uy) ez of points uy, € A (i.e.

ur < gy for all k& € 7Z), such that every knot in the
sequence has finitely many occurrences. A knot u; in a
knot sequence (ty)rez has multiplicity n (n > 1) iff it
occurs exactly n (consecutive) times in the knot sequence.
Given any natural number m > 1, a knot sequence has
degree of multiplicity at most m + 1 iff every knot has
multiplicity at most m + 1, i.e. there are at most m + 1
occurrences of identical knots in the sequence. Thus, for
a knot sequence of degree of multiplicity at most m + 1,
we must have up < upyq for all k& € Z, and for every
kelZ,if

Up41 = Uk42 = -« - = Uk4n,

then 1 < n < m—+ 1. A knot u; of multiplicity m + 1
is called a discontinuity (knot). A knot of multiplicity
1 is called a simple knot. A knot sequence (Uj)iez is
uniform iff w1 = up + h, for some fixed h € R,
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We can now define spline (B-spline) curves.

Definition 8.2.2 Given any natural number m > 1,
given any knot sequence (uy)rez of degree of multiplicity
at most m + 1, a piecewise polynomial curve of (po-
lar) degree m based on the knot sequence (Uj)rez, is
a function F: A — &, where £ is some affine space (of
dimension at least 2), such that, for any two consecutive
distinct knots w; < w;y1, if w; 41 is a knot of multiplic-
ity n, the next distinct knot being ;.11 (since we must
have W1 = ... = Wip < Ujine1), then the following
condition hold:

1. The restriction of F' to [u;, W;1| agrees with a poly-
nomial curve F; of polar degree m, with associated
polar form f;.
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A spline curve F of (polar) degree m based on
the knot sequence (Uy)kez, is a piecewise polynomial
curve F: A — &, such that, for every two consecu-

tive distinct knots u; < uw;41, the following condition
holds:

2. The curve segments F; and Fj,, join with continuity
(at least) C"™~" at ;. 1, in the sense of definition 7.5.1,
where n is the multiplicity of the knot ;14
(1<n<m+1)

Thus, in particular, if w; 4 is a discontinuity knot, that is,
a knot of multiplicity m~+1, then we have C~'-continuity,
and F;(w;,1) and F; o, (w;11) may differ. The set F'(A) is
called the trace of the spline F'.
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123 456

* 567

012

9234 345

Figure 8.4: Part of a cubic spline with knot sequence ...;0,1,2,3,4,5,6,7,...

The next figure shows the construction of the control
points for the three Bézier curve segments constituting
this part of the spline.
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123 456 556
1 567

959

012

234 334 344 345

Figure 8.5: Construction of part of a cubic spline with knot sequence ...,0,1,2,3,4,5,6,7, ...
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Lemma 8.2.3 Given any m > 1, gwen any knot se-
quence () ez of degree of multiplicity at most m—+1,
for any piecewise polynomial curve F' of (polar) degree
m based on the knot sequence (uy)rez, the curve F' is
a spline iff the following conditions holds:

For alli,5, with1 < 3 <i+m, u; < U1 and

U; < Ujy1, the polar forms f; and f; agree on all multi-
sets of m elements from A (supermultisets) containing
the multiset of intervening knots

{Uis1, Wiras - ., Ty )

The following figure shows part of a cubic spline corre-
sponding to the knot sequence

~~|

..., F,5,1,T,

PECIRIE

with C?-continuity at the knots 5, u, v.



8.2. INFINITE KNOT SEQUENCES, OPEN B-SPLINE CURVES 267

Figure 8.6: Part of a cubic spline with C?-continuity at the knots 5, u, ©
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Figure 8.7: Part of a cubic spline with C'-continuity at the knot u
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Figure 8.8: Part of a cubic spline with C?-continuity at the knots 5, u, ©
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Figure 8.9: Part of a cubic spline with C-continuity at the triple knot s



8.2. INFINITE KNOT SEQUENCES, OPEN B-SPLINE CURVES 271

Theorem 8.2.4 Given any m > 1, given any knot
sequence (Ty)rez of degree of multiplicity at most
m+1, for any bi-infinite sequence {dj)rez of points in
some affine space &£, there exists a unique spline curve
F:A — &, such that the following conditions hold:

dp = fi(Wkat1, - Uprm),

for all k,1, where w; < ujr1 and k <1 < k+m.

Given a knot ; in the knot sequence, such that w; < w;1,
the inequality £ < ¢ < k£ + m can be interpreted in two
ways. If we think of k as fixed, the theorem tells us which
curve segments F; of the spline F' are influenced by the
specific de Boor point dj.: the de Boor point d;. influences
at most m + 1 curve segments. This is achieved when all
the knots are simple.

On the other hand, we can consider 7 as fixed, and think
of the inequalities as 1 —m < k < 7. In this case, the the-
orem tells us which de Boor points influence the specific
curve segment Fj: there are m + 1 de Boor points that
influence the curve segment F;. This does not depend on
the knot multiplicity.
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8.3 Finite Knot Sequences, Finite B-Spline Curves

In the case of a finite knot sequence, we have to deal with
the two end knots. A reasonable method is to assume
that the end knots have multiplicity m + 1. This way the
first curve segment is unconstrained at its left end, and
the last curve segment is unconstrained at its right end.

Actually, multiplicity m will give the same results, but
multiplicity m + 1 allows us to view a finite spline curve
as a fragment of an infinite spline curve delimited by two
discontinuity knots.

Definition 8.3.1 Given any natural numbers m > 1
and N > 0, a finite knot sequence of degree of mul-
tiplicity at most m + 1 with N intervening knots is
any finite nondecreasing sequence () _m<k<Nima1, Such
that w_,, < Unime1, and every knot w; has multiplicty
at most m + 1. A knot u; of multiplicity m + 1 is called
a discontinuity (knot). A knot of multiplicity 1 is called
a simple knot.
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Given a finite knot sequence (Uy)_m<k<Nims1, Of de-
gree of multiplicity at most m + 1 and with N inter-
vening knots, we now define the number L of subinter-
vals in the knot sequence. If N = 0, the knot sequence
(Uk) —m<k<ma1 consists of 2(m+1) knots, where w_,, and
U1 are distinct and of multiplicity m + 1, and we let
L=1 If N > 1, then welet L —1 > 1 be the num-

ber of distinct knots in the sequence (uy, ..., uy). If the
multiplicities of the L — 1 distinct knots in the sequence
(Ui, ...,uy) are ny,...,npq (where 1 < n; < m+ 1,

and 1 <i < L —1), then
N=ny+--+np,

and the knot sequence () _m<k<Nime1 consists of
2(m+ 1)+ N =2(m+1)+ny+ -+ ny_1 knots, with
L + 1 of them distinct.

The picture below gives a clearer idea of the knot mul-
tiplicities.

ﬂ—ma ﬂl) ﬂnl—i—l) IR ﬂN—nL_l—l—la ﬂN—I—l;

U ﬂnl ﬂnﬁ—ng R un ﬂN+m+1

m+ 1 1 D) nr— m+ 1
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Definition 8.3.2 Given any natural numbers m > 1
and N > 0, given any finite knot sequence () _m<k<Nimi1
of degree of multiplicity at most m + 1 and with NV in-
tervening knots, a piecewise polynomial curve of degree
m based on the finite knot sequence (Uy) _m<k<Nima1
is a function F: |6y, uni1] — &, where £ is some affine
space (of dimension at least 2), such that the following
condition hold:

1. If N =0, then F: [y, Tn.1] — & agrees with a poly-
nomial curve F{ of polar degree m, with associated
polar form fy. When N > 1, then for any two consec-
utive distinct knots w; < w1, it 0 <1 < N —nyp_q,
then the restriction of F' to [@;, W;,1| agrees with a
polynomial curve F; of polar degree m, with associ-
ated polar form f;, and if ¢ = N, then the restriction
of F' to [uy, uni1] agrees with a polynomial curve
F'x of polar degree m, with associated polar form fy.



8.3. FINITE KNOT SEQUENCES, FINITE B-SPLINE CURVES 275

A spline curve F' of degree m based on the finite
knot sequence (Ty) _m<k<N+ms1 Or for short, a finite
B-spline, is a piecewise polynomial curve

F: [uy, uny1] — &, such that, when N > 1 and

L > 2, for every two consecutive distinct knots

w; < U1 (where 0 < ¢ < N —nyp_q), if @1 has
multiplicity n < m—+1, the following condition holds:

2. The curve segments F; and Fj, join with continuity
(at least) C™~™ at ;. 1, in the sense of definition 7.5.1.

The set F([uy, uny1]) is called the trace of the finite
spline F'.
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Remark: The remarks about discontinuities made after
definition 8.2.2 also apply. However, we also want the last
curve segment F'y to be defined at wy;. Note that if we
assume that uy and uwy,1 have multiplicity m, then we
get the same curve. However, using multiplicity m + 1
allows us to view a finite spline as a fragment of an infinite
spline.

Note that a spline curve defined on the finite knot se-
quence

ﬂ—ma ﬂl) ﬂnl—i—l) IR ﬂN—nL_l—l—la ﬂN—I—l;
U ﬂnl ﬂnﬁ—ng R un ﬂN+m+1
m+1 n o ni_1 m + 1
where

N=ny+--+np,

consists of L curve segments,

FO, Fn17 oo ey Fn1++nL_1 — FN.
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123 456 966

112

666

111 9234 345

Figure 8.10: A cubic spline with knot sequence 1,1,1,1,2,3,4,5,6,6,6,6
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123 456 556 566

959

112

666

111 234 334 344 345

Figure 8.11: Construction of a cubic spline with knot sequence 1,1,1,1,2,3,4,5,6,6,6,6
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677

T

123 456

* 567

012

001 9234 345

000

Figure 8.12: A cubic spline with knot sequence 0,0,0,0,1,2,3,4,5,6,7,7,7,7
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677

567

012

001 234 334 344 345

000

Figure 8.13: Construction of a cubic spline with knot sequence 0,0,0,0,1,2,3,4,5,6,7,7,7,7
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8910 101111 111111

' 111213
111112

677 131313
789

121313
* 567

123 456

012

001 931 345
000

Figure 8.14: A cubic spline with knot sequence
0,0,0,0,1,2,3,4,5,6,7,7,8,9,10, 11,11,11,12,13,13,13, 13
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8910 101111 111111

101011
1212

111213
131313

91011 111112
677

121212

788

121313
567

012

001 934 334 344 345

000

Figure 8.15: Construction of a cubic spline with knot sequence
0,0,0,0,1,2,3,4,5,6,7,7,8,9,10,11,11,11,12,13,13,13,13
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123 235
012
356
567
001
101010
?
678
000
889 : J 788

8910 91010

Figure 8.16: A cubic spline with non-uniform knot sequence
0,0,0,0,1,2,3,5,6,7,8,8,9,10, 10, 10, 10
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123 223 233 235

001 66T

101010
?

8910 9910 91010

Figure 8.17: Construction of a cubic spline with non-uniform knot sequence
0,0,0,0,1,2,3,5,6,7,8,8,9,10,10, 10, 10
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8.4 Cyclic Knot Sequences, Closed B-Spline Curves

Definition 8.4.1 A cyclic knot sequence of period L,
cycle length N, and period size T, is any bi-infinite
nondecreasing sequence (ty)rez of points wp € A (i.e.
Up < Upyq for all k € Z), where L, N, T € N, L. > 2,
and NV > L, such that there is some subsequence

<ﬂj—|—17 SR ﬂj-l—N>

of IV consecutive knots containing exactly L distinct knots,
with multiplicities ny, ..., np, Uj4n < Wjyn41, and
Upany = ur + 1, for every k € Z. Note that we must
have N =ny+---+ny (and n; > 1). Given any natural
number m > 1, a cyclic knot sequence of period L, cycle
length NV, and period size T', has degree of multiplicity
at most m, iff every knot has multiplicity at most m.

As before, a knot sequence (finite, or cyclic) is uniform
iff w1 = wp + h, for some fixed h € R,
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A cyclic knot sequence of period L, cycle length N, and
period size T, is completely determined by a sequence of
N +1 consecutive knots, which looks as follows (assuming
for simplicity that the index of the starting knot of the
cycle that we are looking at is k = 1):

Figure 8.18: A cyclic knot sequence
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Closed B-spline curves are defined as follows.

Definition 8.4.2 Given any natural number m > 1,
given any cyclic knot sequence (uy) ez of period L, cycle
length NV, period size T', and of degree of multiplicity at
most m, a closed piecewise polynomial curve of (polar)
degree m based on the cyclic knot sequence (Uy)kez, is
a function F: A — &, where £ is some affine space (of
dimension at least 2), such that, for any two consecutive
distinct knots w; < w;y1, if w; 1 is a knot of multiplicity
n, the next distinct knot being w;. .1, then the following
condition hold:

1. The restriction of F' to [w;, W 1] agrees with a polyno-
mial curve F; of polar degree m, with associated polar
form f;, and F; n(t+T) = Fi(t), for all t € [u;, W;+1].
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A closed spline curve F of (polar) degree m based
on the cyclic knot sequence (Uy)rez of period L,
cycle length N, and period size T', is a closed piecewise
polynomial curve F: A — &£, such that, for every two
consecutive distinct knots u; < w;yq, the following
condition holds:

2. The curve segments F; and Fj,, join with continuity
(at least) C™ ™ at ;4 1, in the sense of definition 7.5.1,
where n is the multiplicity of the knot ;44
(1<n<m).

The set F'(A) is called the trace of the closed spline F'.
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123

012=161718 234

141516

151617
131415 567

111213

121314

101112 8910

91011

Figure 8.19: A closed cubic spline with cyclic knot sequence of period 16, cycle length 16,
and period size 16: ...,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16, . ..
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012=161718

141516

151617 345

131415

111213 789

121314

101112

91011

Figure 8.20: Construction of a closed cubic spline with cyclic knot sequence of period 16,
cycle length 16, and period size 16: ...,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16, . ..
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134

—-213=6911 345

569 456

Figure 8.21: A closed cubic spline with cyclic knot sequence
ey, —3,—2,1,3,4,5,6,9,11,12, .., with L=N =5T =28
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134

344

—-213=6911 345

—211 =699 445

569 266 556 456

Figure 8.22: Construction of a closed cubic spline with cyclic knot sequence
ey, —3,—2,1,3,4,5,6,9,11,12, .., with L=N =5T =8
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Theorem 8.4.3 (1) Given any m > 1, given any fi-
nite knot sequence (Ug) _m<k<Nims1 Of degree of mul-
tiplicity at most m—+1, for any sequence (d_,,, ..., dy)
of N+m+1 points in some affine space &, there exists

a unique spline curve F:[ugy, uni1] — &, such that the
following conditions hold:

dk — fi<ﬂ]€+17 SR 7ﬂ/€+m)7

for all k,7, where —m < k < N, u; < U;y1, and
E<i:<k+m.

(2) Given any m > 1, given any finite cyclic knot
sequence (Uy)rez of period L, cycle length N, period
size 1", and of degree of multiplicity at most m, for
any bi-infinite periodic sequence (dj)rez of period N
of points in some affine space &, i.e., sequence such
that dy.ny = di for all k € Z, there exists a unique
closed spline curve F: A — &, such that the following
conditions hold:

dk — fi<ﬂ]€+17 SR 7ﬂ/€+m)7

for all k,v, where uw; < w11 and k <1 < k+m.
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8.5 The de Boor Algorithm, and Knot Insertion

Given a knot sequence (@) (infinite, finite, of cyclic),
and a sequence (dy) of control points (corresponding to
the nature of the knot sequence), given any parameter
t € A (where t € [ug, uny1], in case of a finite spline),
in order to compute the point F(t) on the spline curve
F determined by (u;) and (dy), we just have to find
the interval [uy, @7, q] for which w; < t < @4y, and
then to apply the progressive version of the de Casteljau
algorithm, starting from the m+1 control points indexed
by the sequences (W i, ..., Urip_1), Where
1<k<m+1.

As in section 7.3, let us assume for simplicity that I = m,
since the indexing will be a bit more convenient. Indeed,
in this case [, Upmi1] 1 the middle of the sequence
(Ui, ..., Ugy) of length 2m. For the general case, we
translate all knots by I —m.
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Recall that F'(t) = f(t,...,t) is computed by iteration,
as the point by, determined by the inductive computa-
tion

Umtk+1 — T b — Upj
br.j = ( )rj-1+( JOr41,5-1,
Um4k+1 — Uk+j Um4k+1 — Uk+j

bk,j — f(gjﬂk—f—j—f—l . -ﬂm+k);
for 1 <53 <m,0<k<m—7j, and with
bk,O — f(ﬂk-!-la cee 7ﬂm+k> — dka for 0 < k < m.

The computation proceeds by rounds, and during round
J, the points bg j, b1 4, ..., by—;; are computed.
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If ¢ = w,,, and the knot @, has multiplicity r
(1 <7 < m), we notice that

bO,m—r — bO,m—r—l—l — .. = bO,m;

because by = [t Up_ri1...Upm) = F(F), since
Uy, 1s of multiplicity 7, and € = Uyy—pr1 = ... = Up,.

Thus, in this case, we only need to start with the
m—1-+1 control points by g, . . . , by—r 0, and we only need
to construct the part of the triangle above the ascending
diagonal

bm—r,O; bm—r—l,l; ) bO,m—T-
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It turns out that it is convenient in order to present
the de Boor algorithm, to index the points by ; differ-
ently. First, we will label the starting control points as
di.0,---,dmt1,0, and second, for every round j, rather
than indexing the points on the j-th column with an in-
dex k always starting from 0, and running up to m — 7, it
will be convenient to index the points in the j-th column
with an index 7 starting at 7 + 1, and always ending at
m + 1.

Thus, at round 7, the points

b(),j, bl,j? cee bk,j; cee bm—j,j

indexed using our original indexing, will correspond the
to the points

dj—f—l,j? dj+2,j7 SR dk—f—j—f—l,j: SRR dm+1,j7

under our new indexing.
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As we can easily see, the inductive relation giving dj.4 41 ;
in terms of dpj41 -1 and dj4; -1, 1s given by the equa-
tion:

Umtk+1 — T

dk+j+1,j — ( )dk+j,j—1

Um+k+1 — Uk+j

T — Up
_|_< ]{I‘f—j

) j41,5-1,
Um4k+1 — Uk+j

where 1 < 3 <m—-—r. 0< k< m—r—j, and with
di+10 = dp, when 0 < £ < m — r, where r is the
multiplicity of %,, when ¢ = %,,, and r = 0 otherwise.
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Letting « = k + 5 + 1, the above equation becomes

)di,j—la

L — U

dij = (— : Jdi—1j-1+ (

Umti—j — Ui—1 Um4i—5 — WUi—1
where 1 <j7<m—r,j+1 <1 <m+1—r, and with
d;o=d;i—1, when 1 <i <m-+1—r. The point F(t) on
the spline curve is dy41—rm—r-

Finally, in order to deal with the general case where

t € [uy, ury1], we translate all the knot indices by

I — m, which does not change differences of indices, and
we get the equation

t—uiq

dij = (— t )iy -1+
Um4i—5 — WUi—1 Um4i—5 — WUi—1

where 1 <j<m-r,I—-m+j5j+1<:<I+1-—r,

and with d;o = dj—1, when I —m +1<i<T+1-—r,

where r is the multiplicity of the knot w; when ¢t = uy,

and r =0 when u; <t <u;y (1 <r<m).

)di,j—lv
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The point F () on the spline curve is dyi1—ym—r. This is
the de Boor algorithm. Note that other books often use
a superscript for the “round index” j, and write our d; ;
as d!. The de Boor algorithm can be described as follows
in “pseudo-code”:

begin
I =max{k | up <t <TUps1};
if £ = u; then r := multiplicity(uy) else r := 0 endif;
fori:=I—-m+1tol+1—7rdo
dio = di—1
endfor;
for j:=1tom—1r do
fori:=I-m+j7+1tol+1—1rdo
d;j = (%)di—l,j—l + (ﬁ)di,j—l
endfor
endfor;
F(%) = dI—i—l—r,m—r
end
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The process of knot insertion consists of inserting a knot
w into a given knot sequence, without altering the spline
curve. The knot w may be new or may coincide with some
existing knot of multiplicity » < m, and in the latter case,
the effect will be to increase the degree of multiplicity of
w by 1.

Knot insertion can be used either to construct new control
points, Bézier control points associated with the curve
segments forming a spline curve, and even for computing
a point on a spline curve.

If I is the largest knot index such that u; < W < uyryq,
inserting the knot w will affect the m—1—r control points
f@—magat, - .-, Ursy) associated with the sequences

(Wi —makats- - -, Ureg) containing the subinterval (@, W],
where 1 < k < m —1—r, and where r is the multiplicity
of uyif w =1y (with 1 <r <m), and r =0 if u; < w.
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Let, vp = uyg, for all £ < I, v71 = w, and U1 = Uy,
forall k > 1+ 1.

We need to compute the m — r new control points

JOr—msksty -y Urgly - ooy ULtk),s

which are just the polar values corresponding to the m—r
subsequences of m — 1 consecutive subintervals

<@]—m—l—kz—l—17 AP V) S T @]+k>7

one of which containing w = v;,q, where 1 < k < m—r.
We can use the de Boor algorithm to compute the new
m — 7 control points.

In fact, note that these points constitute the first column
obtained during the first round of the de Boor algorithm.
Thus, we can describe knot insertion in “pseudo-code”,
as follows:
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begin
I =max{k | Ty <W < Ups1};
if w = u; then r := multiplicity(uy) else r := 0 endif;
fori:=I—-m+1tol+1—-rdo
dio = di
endfor;
fori:=I—-m+2tol+1—rdo

dig = (7“7””1_1” )di—l,o + (710_%1 )di,O

Um4i—1—Wi—1 Um4i—1—Wi—1
endfor
return <d1_m+271, NN d]_|_1_7,,1>
end

Note that evaluation of a point F'(f) on the spline curve
amounts to repeated knot insertions: we perform m — r
rounds of knot insertions, to raise the original multiplicity
r of the knot ¢ to m (again, r = 0 if ¢ is distinct from all
existing knots).
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dg : 8911

dy @ 235
dr; : 91114

ds : 356

dy: 123 4 ‘ dg: 111415

ds : 689

Figure 8.23: Part of a cubic spline with knot sequence ...,1,2,3,5,6,8,9,11,14,15,.. .,
insertion of the knot t =7

Evaluation of the point F'(7) on the spline curve above,
consists in inserting the knot ¢ = 7 three times.
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8.6 Cubic Spline Interpolation

We now consider the problem of interpolation by smooth
curves. Unlike the problem of approximating a shape
by a smooth curve, interpolation problems require find-
ing curves passing through some given data points, and
possibly satisfying some extra constraints.

Problem 1: Given N + 1 data points xg, ..., xy, and
a sequence of N + 1 knots ug, ..., uy, with w; < w; 4 for
all7, 0 < ¢ < N —1, find a C? cubic spline curve F, such
that F'(u;) = z;, for all 7, 0 <4 < N,

In order to solve the above problem, we can try to find
the de Boor control points of a C? cubic spline curve F
based on the finite knot sequence

507507507517527 I 7ﬂN—2aﬂN—17ﬂN7ﬂN7ﬂN-
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We note that we are looking for a total of N + 3 de
Boor control points d_1,...,dyy1. Actually, since the
first control point d_; coincides with xy, and the last
control point dy 1 coincides with xy, we are looking for

N + 1 de Boor control points dy, . . ., dy. However, using
the de Boor evaluation algorithm, we only come up with
N — 1 equations expressing x1,...,xy_1 in terms of the
N + 1 unknown variables dy, ..., dy.

The figure below shows N +1 =74 1 = 8 data points,
and a C? cubic spline curve I passing throught these
points, for a uniform knot sequence. The control points
dy and d; = dy were chosen arbitrarily.
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da

Ty — d_1 Ty = dg

Figure 8.24: A C? cubic interpolation spline curve passing through the points
Zo, X1, T2,T3,T4,T5,Te, L7

Thus, the above problem has two degrees of freedom,
and it is under-determined. To remove these degrees
of freedom, we can add various “end conditions”, which
amounts to the assumption that the de Boor control points
do and dy are known.

For example, we can specify that the tangent vectors at
xo and xy be equal to some desired value. We now have
a system of NV — 1 linear equations in the N — 1 variables

dl, ce 7dN—1-
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In order to derive this system of linear equations, we use
the de Boor evaluation algorithm. Note that for all 7,
with 1 <7 < N — 1, the de Boor control point d; corre-
sponds to the polar label w; 1 w; w; 1, x; corresponds to
the polar label w; w; w;, and d_q, dy, dy and dy 1, corre-
spond respectively to wg ug wg, Uo Uo U1, Un_1 UyN Uy, and
UnN TN TUN.

For every 7, with 1 < ¢ < N — 1, x; can be computed
from d;_1, d;, d; 1, using the following diagram represent-
ing the de Boor algorithm:

di @ Uiy U Uigy

dic1g: Wis U din W Ui Wi

=l
£l
=l

€T; .

di1: Wip Wiy Uy div1: Wi Wiy Uigo

Figure 8.25: Computation of x; from d;_1,d;, d;,1
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Letting

ri = (W1 — Ui-1) T,
for all 2, 1 < ¢ < N — 1, and ry and ry be arbitrary
points, we obtain the following (N + 1) x (N + 1) system

of linear equations in the unknowns dy, ..., dxy:
1 do T
ar Biom \ ( dy \ ( r1 \
az B2 7o 0 do T9
0 ay—2 [Pn-2 YN-2 dy—2 TN—2
ay-1 By-1 IN-1 dn-1 TN-1
\ 1 \ dn / \ TN

The matrix of the system of linear equations is tridiago-
nal, and it is clear that «;, 8;,v; > 0. If

CV@'—I_/Y@' < 62'7

for all 7, 1 < ¢ < N — 1, which means that the matrix
is diagonally dominant, then it can be shown that the
matrix is invertible. In particular, this is the case for a
uniform knot sequence.
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There are methods for solving diagonally dominant sys-
tems of linear equations very efficiently, for example, us-
ing an LU-decomposition.

In the case of a uniform knot sequence, it is an easy ex-
ercise to show that the linear system can be written as

() YERER

% 1 6z,
1 4 1 0 d_2 6.x2
0 L4l 3&2 - 2$N—2
= = N TN_
K 2 %) \éival/ \ T]fv\fl/

It can also be shown that the general system of linear
equations has a unique solution when the knot sequence

is strictly increasing, that is, when u; < w;4q for all 7,
0<:<N-—-1
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For example, this can be shown by expressing each spline
segment in terms of the Hermite polynomials. Writing
the C? conditions leads to a tridiagonal system, which is
diagonally dominant when the knot sequence is strictly
increasing. For details, see Farin [?].

We can also solve the problem of finding a closed inter-
polating spline curve, formulated as follows.

Problem 2: Given N data points zg,...,xx_1, and a
sequence of N + 1 knots uy, ..., uy, with u; < w;yq for
all i, 0 < i < N — 1, find a C? closed cubic spline curve
F', such that F(u;) = z;, for all ¢, 0 <17 < N, where we
let zny = 2.
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This time, we consider the cyclic knot sequence deter-
mined by the NV + 1 knots uy, ..., uy, which means that
we consider the infinite cyclic knot sequence () ez which
agrees with wg, ..., uy for 2 =0,..., N, and such that,

U+ N = Uk + UN — U,

for all £ € Z, and we observe that we are now looking
for N de Boor control points dy, . .., dy_1, since the con-
dition xy = xy implies that dy = dy, so that we can
write a system of NV linear equations in the /N unknowns
do, ...,dy_1. The following system of linear equations is
easily obtained:

b d
53 (8 (5
as Ba 7o 0 ds To

0 an—3 [Pn-3 gN—3 ZZZN.—3 7"]\7.—3
aN-—2 N—-2 7YN-2 N-2 N-2
\WN—1 an—1 Bn-i ) \dN—l ) \TN—l /
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The system is no longer tridiagonal, but it can still be
solved efficiently.

The coefficients «;, 3;, 7; can be written in a uniform fash-
ion for both the open and the closed interpolating C?
cubic spline curves, if we let A; = w; 1 — u;. It is imme-
diately verified that we have
A7

Nij_o+ N1+ A
Ai(Aj—o + Ajy) 4 AVERTVAVIESWAVIRY
Ao+ A+ 0 Ao+ A+ Ay

A7

v AVERIE VAV SVAVIRY
where in the case of an open spline curve, A_; = Ay = 0,
and in the case of a closed spline curve, A_; = Ay_q,

A9 =An_o.

Q; =

i =
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In the case of an open C? cubic spline interpolant, several
end conditions have been proposed to determine d; and
dy, and we quickly review these conditions.

(a) The first method consists in specifying the tangent
vectors my and my at xy and xy, usually called the
clamped condition method. Since the tangent vector at
x( 1s given by

3
DF () = —— (dy — o),
we get
d0:x0+u1;u0mo,
and similarly
dy = TN — ON 7 YN my.
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One specific method is the Bessel end condition. If we
consider the parabola interpolating the first three data
points xq, 1, T2, the method consists in picking the tan-
gent vector to this parabola at xy. A similar selection
is made using the parabola interpolating the last three
points Tn_9, TN_1, TN

(b) Another method is the quadratic end condition. In
this method, we require that

D*F(ty) = D*F(u;)

and
D*F(ty_1) = D*F(uy).
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(¢) Another method is the natural end condition. In
this method, we require that

_>
D*F(ty) = D*F(uy) = 0.

(d) Finally, we have the not-a-knot condition, which
forces the first two cubic segments to merge into a single
cubic segment and similarly for the last two cubic seg-
ments.

In practice, when attempting to solve an interpolation
problem, the knot sequence uy, . . ., uy is not given. Thus,
it is necessary to find knot sequences that produce rea-
sonable results. We now briefly survey methods for pro-
ducing knot sequences.



8.6. CUBIC SPLINE INTERPOLATION 317

The simplest method consists in choosing a uniform knot
sequence. Although simple, this method may produce
bad results when the data points are heavily clustered in
some areas.

Another popular method is to use a chord length knot
sequence. In this method, after choosing uy and wy, we
determine the other knots in such a way that

Ujp1 — Ui |zir1 — 2]

Uij+2 — Uj41 B ||CUz‘+2 — SUz‘+1||7

where ||x;41 — ;|| is the length of the chord between x;
and z; 1. This method usually works quite well.

Another method is the so-called centripedal method, de-
rived from physical heuristics, where we set

Uiyl — Ui @i — x| )1/2

Ujto — Uit a H$i+2 — $¢+1||

There are other methods, in particular due to Foley. For
details, the reader is referred to Farin [?].
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Chapter 9

Polynomial Surfaces

9.1 Polarizing Polynomial Surfaces

We begin with the traditional definition of polynomial
surfaces. As we shall see, there are two natural ways to
polarize a polynomial surface. Intuitively, this depends
on whether we decide to tile the parameter plane with
rectangles, or with triangles.

We also denote the affine plane A? as P. We assume
— —
that some fixed affine frame (O, (71, 42 )) for P is chosen,

typically, the canonical affine frame where O = (0,0),

— 1 — 0
1 = (O>,and 1y = (1)

Let £ be some affine space of finite dimension n > 3, and
let (Q1, (e, ..., e)) be an affine frame for .

319
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Definition 9.1.1 A polynomial surface is a function
F: P — &, such that, for all u,v € R, we have

— =
F(O-I-U’il +U’i2) :Q1—|—F1(u,v)e_1>—l----—I—Fn(u,v)a,

where [ (U, V), ..., F,,(U, V) are polynomials in
R[U,V]. Given natural numbers p,q, and m, if each
polynomial F;(U, V') has total degree < m, we say that
F'is a polynomial surface of total degree m. It the
maximum degree of U in all the F;(U, V') is < p, and the
maximum degree of V' in all the F;(U, V') is < q, we say
that F' is a bipolynomial surface of degree (p,q). The
trace of the surface F' is the set F(P).

B S —
For simplicity, we denote F(O + w1y +viy ) as F(u,v).
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The following polynomials define a polynomial surface of

total degree 2 in A%
FUV)=U+V*+UV+2U+V —1
FBRUV)=U-V +1
FUV)=UV+U+V +1.

The above is also a bipolynomial surface of degree (2, 2).
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Another example known as Enneper’s surface is as fol-
lows:

US
FRUV)=U - ?+UV2

V3
BUV)=V — ?+U2V

As defined above, Enneper’s surface is a surface of total
degree 3, and a bipolynomial surface of degree (3, 3).

Given a polynomial surface F:P — &, there are two
natural ways to polarize.

The first way to polarize, is to treat the variables u and
v separately, and polarize separately in v and v.
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This way, if p and ¢ are such that F' is a bipolynomial
surface of degree (p, q), we get a (p + ¢q)-multiaffine map

fr (A < (A)T = &,

which is symmetric separately in its first p arguments
and in its last ¢ arguments, but not symmetric in all its
arguments.

We get what are traditionally called tensor product sur-
faces. Note that in this case, since

Fu,v) = f(u,...,u,v,...,0),
VO VO

p q

the surface F'is really a map F: A x A — £. However,
since A X A is isomorphic to P, we can view F' as a
polynomial surface F:'P — &.
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The second way to polarize, is to treat the variables u and
v as a whole, namely as the coordinates of a point (u, v)
in P, and to polarize the polynomials in both variables
simultaneously.

This way, if m is such that F'is a polynomial surface of
total degree m, we get an m-multiaffine map

f:P" =&,
which is symmetric in all of its m arguments. Since

F(u,v) = f(&u,v), o (u,vl),

v~
m

the surface F'is a map F: P — &.
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We begin with the first method for polarizing, in which
we polarize separately in w and v. Using linearity, it is
enough to explain how to polarize a monomial F'(u,v) of
the form u™* with respect to the bidegree (p, q), where
h <pand£k <gq.

flug, ..o up, vy, ..., 0)

- (p)l(q) L () (I

JC{1,.0 g}, ||k




326 CHAPTER 9. POLYNOMIAL SURFACES

Frample 1.

Consider the following surface viewed as a bipolynomial
surface of degree (2, 2):

FUV)=U+V*+UV+2U+V —1
BRUV)=U-V +1
FUV)=UV+U+V+1,

In order to find the polar form f(Uy, Us, Vi, V3) of F,
viewed as a bipolynomial surface of degree (2,2), we po-
larize each of the F;(U, V') separately in U and V. It is
quite obvious that the same result is obtained if we first
polarize with respect to U, and then with respect to V,
or conversely.
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After polarizing, we have

fl(U17U27‘/17‘/2):U1U2—f—‘/1‘/2+( 1 231( 1 2)+U1+U2+ 12 .,
U+U, Vi+V;
fo(Uy, Uy, Vi, Vo) = 12 2 _ 12 2
U+ U)(Vi+Va) Ui+Us Vit Vi
f3(U17U27‘/17‘/2):( Lt 21( LT 2)+ 1—; 2+ 1;_ 2+1

The nine control points b; ; have coordinates:

bi,j J 0 1 2
7
1 (07575) (Za 171) (57573)
2 (2,2,2)  (3,2,3) (5,1,4)
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Let us now review how to polarize a polynomial in two
variables as a polynomial of total degree m. Using lin-
earity, it is enough to deal with a single monomial. Ac-
cording to lemma 6.2.7, given the monomial U"V*, with
h—+k =d < m, we get the following polar form of degree
m:

f((ug,v1), .-y (Um, Vm))

Wk (m — (h + k)
- ms 2 )3 (H“) 11

TUJCA{1,...m} \iel jeJ
INnJ=0
I|=h, |J|=k
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Frample 2.

Let us now polarize the surface of Example 1 as a surface
of total degree 2. Starting from

FUV)=U+V*+UV+2U+V —1
BRUV)=U-V +1
FUV)=UV+U+V+1,

we get

U Vo + UV Vi + V-
AUV, (Us, Vo)) = UyUs + ViVo+ =22 L L Uy 4 Uy + —2 —

2 2

UVo+ UV Uy +Us Vi+ Vs
2 + 2 + 2

1

fo(U1, V1), (Us, Vo)) =

(U1, V1), (Us, Vo)) =

+ 1.
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Control points:

f(r,r)
(2,2,2)
f(g, tg) f(r, 85)
t,t S S, S
A Jiis e
2°272
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Frample 3.

Let us also find the polar forms of the Enneper’s surface,
considered as a total degree surface (of degree 3):

US
FUV)=U — ?+UV2

V3
BUV)=V — ?+U2V

We get

Ui+ Uy + Us B UUsUs

3 3
n UiVoVs 4+ UV Vs + UsVi Va

3
Vi+ 1+ Vs Vi

3 3
n UUVa + U UsVy + UsUsVy

3
Ul + UhUs + hUs - ViVa + ViV + 1AV

3 3 ’

[1((U, V1), (Us, Va), (U3, V3)) =

f2((U, V1), (Us, Va), (U3, V3)) =

f3((Ur, V1), (Us, Va), (U3, V3)) =
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and evaluating these polar forms for argument pairs (Uy, V1),
(Us, V3), and (Us, V3), ranging over (1,0), (0, 1) and (0, 0),
we find the following 10 control points:

flrr,r)
(5,01
fr,rt) f(r,r,s)
2 1 221
(303 G373
f(rt,t) f(r,s,t) f(r,s,s)
1 11 22 1
(g,0,0) (gvgvo) (5757__)
f(t’t’t) f(Svltat) f(‘%a Satl) f(327 S, S)
0,0,0 - s - -
( ) (0.5.0) (0.5, -3) (0.5, -1)

Let us consider two more examples.
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Frample 4.

Let F' be the surface considered as a total degree surface,
and defined such that

The polar forms are:

f1((U, W), (U, V2)) = Ui ;L UQ,
(U1, V1), (Us, Va)) = i ;r V2>

[3((U1, V1), (U, Vo)) = U Uy — Vi Va.
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With respect to the barycentric affine frame (r,s,t) =

— —
(O + i1,0 + iy, 0), the control net consists of the fol-
lowing six points, obtained by evaluating the polar forms

f1, f2, f3 on the (u,v) coordinates of (r,s,t), namely
(1.0). (0,1), and (0,0)

fr,r)
(1,0,1)
J{(T, ) J{(?“f 5)
(57070) (57_70)
ft,t) f(s,1) f(s,s)
(0,0,0) (0, % 0) (0,1, 1)

The resulting surface is an hyperbolic paraboloid, of im-

plicit equation

2 =% —y*
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Frample 5.
Let F' be the surface considered as a total degree surface,
and defined such that

Fl(U7 V) — Ua
FQ(U7 V) — V7
(U, V) =20+ V2

The polar forms are:

A, ), (U V) = P2,
fo(Ur, V1), (U, Va)) = h er VQ,

f3((U, V1), (Us, Va)) = 2U,Us + V1 V.



336 CHAPTER 9. POLYNOMIAL SURFACES

With respect to the barycentric affine frame (r,s,t) =

— —
(O + i1,0 + iy, 0), the control net consists of the fol-
lowing six points, obtained by evaluating the polar forms

f1, f2, f3 on the (u,v) coordinates of (r,s,t), namely
(1.0). (0,1), and (0,0)

fr,r)
(1,0,2)
J{(T, t) / (7“1, s)
(57070) <_7§70)
ft,t) f(s,1) f(s,s)
(0,0,0) 0.2.0) (0,1,1)

The resulting surface is an elliptic paraboloid. of implicit
equation

T
[ts general shape is that of a “boulder hat”.
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9.2 Bipolynomial Surfaces in Polar Form

Given a bipolynomial surface F: P — & of degree (p, q),
where & is of dimension n, applying lemma 6.2.7 to each
polynomial F;(U, V') defining F', first with respect to U,
and then with respect to V', we get polar forms

fir (AP x (A)T — A,
which together, define a (p + ¢)-multiaffine map
fA(A)P < (A)T =€,

such that f(Uy,..., Uy Vi,...,V,) is symmetric in its
first p-arguments, and symmetric in its last g-arguments,
and with

F(u,v) = f(u,...,u;0,...,0),

p q

for all u,v € R.

By analogy with polynomial curves, it is natural to pro-
pose the following definition.



338 CHAPTER 9. POLYNOMIAL SURFACES

Definition 9.2.1 Given any affine space £ of dimension
> 3, a bipolynomial surface of degree (p,q) in polar
form is a map F: A x A — &, such that there is some
multiaffine map

F (AP x (AT — &,

which is symmetric in its first p-arguments, and symmet-
ric in its last g-arguments, and with

F(u,v) :f(@,...,@;@...,@,

p q

for all w,v € A. We also say that f is (p, q)-symmetric.
The trace of the surface F' is the set F(A, A).
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Let (71,51) and (T2, S2) be two affine frames for the affine

line A. Every point w € A can be written as
_ S1— U\ _ U—351\ -
U=|——| 1+ |—) 5,
S1— T S1— T

and similarly any point v € A can be written as

_ SS9 — U _ U — 859 _
V=|—""—| 1o+ | ——— | So.
S9 — T'9 SS9 — T9
We can expand
F(@, ..., Uy 0, ..., D),

using multiaffineness.
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Lemma 9.2.2 Let (71,51) and (T2, S2) be any two affine
frames for the affine line A, and let £ be an affine

space (of finite dimension n > 3). For any nat-

ural numbers p,q, for any family (b; ;)o<i<p.o<j<q Of
(p+1)(qg+ 1) points in &, there is a unique bipolyno-

mial surface F: A x A — & of degree (p,q), with polar

form the (p + q)-multiaffine (p, q)-symmetric map

F(AY x (A) = £,
such that

f(,’:la'-'774;?517"'78371027'"7r%a§27"'78%):bi7j7
Vv Vv vV V'
J

p—i { q—J

foralli, 1 <1 <p, and all 7, 1 < 7 < q. Further-
more, [ 1s given by the expression

[, ..., 001, ...,7,)
> (=) (=== I (== (=)
S — 1T S] — 171 S9 — T9 S9 — T9 71, 12
InJ=0 el jeJ keK leLl
IuJ={1,...,p}
KNL=0

KUL={1,....q}
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A point F(u,v) on the surface F' can be expressed in
terms of the Bernstein polynomials Bi[ry, s1](u) and
B'lry, s,)(v), as

F(u,v) =
Z BZP[TL 81](’&) B;-][TQ, SQ](U) f(fl, RN ’FL’El’ ce ,EL;TQ, RN ,7&?2, ce ,52).

. VvV Vv
0<i<p p—i i q—J J
0<j<q

Thus, we see that the Bernstein polynomials show up
again, and indeed, in traditional presentations of bipoly-
nomial surfaces, they are used in the definition itself.
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A family N = (b;,j)o<i<p.0<j<q of (p+1)(¢+ 1) points in
£, is often called a (rectangular) control net, or Bézier
net.

Note that we can view the set of pairs
g = {(6,7) €EN? [0 <0 <p,0< 7 <q},

as a rectangular grid of (p 4+ 1)(¢ + 1) points in A x A.
The control net N = (b; ;) (i jjeq,,, can be viewed as an
image of the rectangular grid o, , in the affine space £.

By lemma 9.2.2, such a control net A/ determines a unique
bipolynomial surface F' of degree (p, q).

The portion of the surface F' corresponding to the points
F (@, ) for which the parameters u, v satisfy the inequal-
ities 11 < u < s and 9 < v < 89, 18 called a rectangu-
lar (surface) patch, or rectangular Bézier patch, and
F([F1,31], [T2, S9]) is the trace of the rectangular patch.
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The surface F' (or rectangular patch) determined by a
control net A/, contains the four control points by g, bo. 4, by, 0,
and b, 4, the corners of the surface patch.

Note that there is a natural way of connecting the points
in a control net N: every point b; ;, where 0 < i < p—1,
and 0 < 5 < g — 1, is connected to the three points
bit1,4,0i j+1, and biy1, j41. Generally, pg quadrangles are
obtained in this manner, and together, they form a poly-
hedron which gives a rough approximation of the surface
patch.

The de Casteljau algorithm can be generalized very easily
to bipolynomial surfaces.
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9.3 The de Casteljau Algorithm for Rectangular Sur-
face Patches

Given a rectangular control net N° = (by, ;) j)en,,. We
can first compute the points

Doss - -, Opses

where b;, 1s obtained by applying the de Casteljau algo-
rithm to the Bézier control points

bi,O) .. '7bi,q7

with 0 < i < p, and then compute by, by applying the
de Casteljau algorithm to the control points

Dosy - -+ 5 Dpsc.
For every ¢, with 0 < ¢ < p, we first compute the points
b, . where b}, ; = b; ;, and

‘ 52 — U —1 v—T —1
i j J
bi*’k B (82 — 7“2> bi*’k i (82 — 7“2) bi*’kH’

with1 < 7 <qgand 0 <k < g—7, and we let b;, = 63*70.



9.3. THE DE CASTELJAU ALGORITHM FOR RECTANGULAR PATCHES 345

It is easily shown by induction that

bg*7k:f(F17"'779517 agb?a "7@7?2) '77%7527"'75%)7
pti b }, q—v—k: )
and since b;, = b3, ,, we have
biv = f(T1,---,T1,51,---,5,;,0,...,0).
pti b q

Next, we compute the points b‘g*, where b)), = by, and

: S1— U -
S1 —T1 S§1—T1
with 1 <53 <pand 0 <7 <p—7, and we let

F(@,m) = b}

u—mnr

byl

1+ 1%

%*
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It is easily shown by induction that

b, = f@,....u,71,...,T,51,...,5,;0,...,0),
M p—i—j i q
and thus,
F(u,v)=by, = f(@, ..., 40,...,0)
Vv Vv
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Alternatively, we can first compute the points
b0, - - - bsg,

where b,; is obtained by applying the de Casteljau algo-
rithm to the Bézier control points

b(Lj,...,bp)j,

with 0 < j < ¢, and then compute bl,, by applying the
de Casteljau algorithm to the control points

Bas -+ s bac.
The same result by, = b, is obtained.

We give, in pseudo code, the version of the algorithm in
which we compute first the control points

b0*7 « o » 7bp*7

and then bf,. We assume that the input is a control net

N = (bi,j>(@j)€‘:‘p,q'
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begin
for i :=0 to p do
for j :=0 to ¢ do
bg*,j = b’iaj
endfor:
for j :=1 to ¢q do
for £ :=0to ¢g— 7 do

g [s2zv ) pil V=T
bZ*,]{? T (82—7’2) bl*,/{i + (S2—7“2> b

endfor
endfor:
bi* - bg*,O;
endfor:
for 1 :=0 to p do
b = i
endfor:
for j:=1 to p do
for : :=0to p—j do
b, = (25) 6
Tk s1—71 1%
endfor
endfor:
F(u,v) = by,
end

CHAPTER 9. POLYNOMIAL SURFACES

7—1
1%, k+1

u—7r] 7—1
+ (81—7“1> bi+1*
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Figure 9.1: The de Casteljau algorithm for a bipolynomial surface of degree (3, 3)
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9.4 Total Degree Surfaces in Polar Form

Given a surface F: P — & of total degree m, where & is
of dimension n, applying lemma 6.2.7 to each polynomial
F;(U, V) defining F', with respect to both U and V', we
get polar forms

fi: P — A,
which together, define an m-multiafine and symmetric
map

f:P" = €&,
such that

<

Note that each f((Uy,V1),...,(Upn,Vy)) is multiaffine
and symmetric in the pairs (U;, V;).
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By analogy with polynomial curves, it is also natural to
propose the following definition.

Definition 9.4.1 Given any affine space & of dimension
> 3, a surface of total degree m in polar form, is a map
F:'P — &, such that there is some symmetric multiaffine
map

f:P" = £,
and with
F(a)= f(a,...,a),

for all @ € P. The trace of the surface F' is the set
F(P).



352 CHAPTER 9. POLYNOMIAL SURFACES

The polynomials in three variables U, V., T, defined such

that
m!

Ayl
where ¢ + 7 + k = m, are also called Bernstein polyno-
mials.

m UV, T) = U'vVITE,

The points

where ¢ + 7 + K = m, can be viewed as control points.
Let

Ap={0,j, k) EN’|i+j+k=ml}

From now on, we will usually denote a barycentric affine
frame (r, s,t) in the affine plane P, as Arst, and call it
a reference triangle.
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Lemma 9.4.2 Given a reference triangle Arst in the
affine plane P, gwen any family (b; j i) jren, of
(m+1)2(m+2) points in &, there is a unique surface F: P —
E of total degree m, defined by a symmetric m-affine

polar form f:P™ — &, such that

=
-9
<

for all (i,7,k) € A,,. Furthermore, f is given by the
ETPTeSSILON

flat,...,an) =
i ; N - U Ny A A B
> () (H) (I4) s me st
IUJUK={1,...,m} i€l = keK || || |K|

1,J,K pairwise disjoint

where a; = \ir + ;s + vit, with \; + u; +v; = 1, and
1 <1< m.
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A point F(a) on the surface F can be expressed in
terms of the Bernstein polynomz'als

AVSlaals
» (U V,T) = Z']'k'UVT
as
Fl0) = fla0) -
Z BN v) flryoorys 0,8t t),
(1,7, k)EA, e 7 k

where a = A\r + us +vt, with A+ pu+v =1.
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A family N = (b;.j.1)(ijmea,, of ZIE2) points in €,

is called a (triangular) control net, or Bézier net. Note
that the points in

Np =1, j, k) eN’|i+j+k=m}

can be thought of as a triangular grid of points in P. For
example, when m = 5, we have the following grid of 21
points:

500
401 410
302 311 320
203 212 221 230
104 113 122 131 140
005 014 023 032 041 050
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9.5 The de Casteljau Algorithm for Triangular Surface
Patches

Given a reference triangle Arst, given a triangular control
net N' = (b; ;& k)(i.jk)eA,,, tecall that in terms of the polar
form f:P™ — & of the polynomial surface F: P — &£
defined by N, for every (i, j, k) € A,,, we have

Given a = A\r+pus+vt in P, where A\+pu+v = 1, in order
to compute F'(a) = f(a,...,a), the computation builds
a sort of tetrahedron consisting of m + 1 layers. The base
layer consists of the original control points in N, which
are also denoted as (b) ; ;)(ijkyen,,- The other layers are
computed in m stages, where at stage [, 1 <[ < m, the
points (b 1) Gjken,, , are computed such that

[ [—1 [—1
bz g, k Abz—l—l 7,k + lubz L J+1k + Vbz g, k1
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During the last stage, the single point 0g'; ( is computed.
An easy induction shows that

[
b@]’ _f(g’?"'7@7107"'77;7§7"'7§7é7"'7§)7

where (4, 4, k) € Ay, and thus,

F() bOOO

Similarly, given m points aq, ..., a,, in P, where

= \r+ps+uvt, with \j+p;+v; = 1, we can compute
the polar value f(aq,...,a,) as follows. Again, the base
layer of the tetrahedron consists of the original control
points in A, which are also denoted as (b? i 1) (65 E A
At stage [, where 1 < [ < m, the points (b! )R EA
are computed such that

[ [—1 [—1
bz N )‘lbz—i—l J, k + lulbz g1k + Vlbz .9, k+1°
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An easy induction shows that

!
bz’,j,k:f(ah-"7al77:7"°77;7§7'"757@"'7£)7
ke J T
where (7,7, k) € Ay,—;, and thus,
f(CLl, “ e ,CLm) — bgfo’o

In order to present the algorithm, it may be helpful to
introduce some abbreviations. For example, a triple
(7,7, k) € Ay, is denoted as i, and we let e; = (1,0,0),
e; = (0,1,0),e3=(0,0,1), and 0 = (0,0,0). Let

a = A\r+pus+vt, where A+ pu+v = 1. We are assuming
that we have initialized the family (8)ica, ., such that
B = b;, for all i € A,,. Then, we can describe the de
Casteljau algorithm as follows.
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begin
for [ .=1 to m do
for ::=0tom—1[do
for j:=0tom—1—1[do
Ek=m-—1—7—1
i:=(i,7,k);
bl := Abire, + ibite, + Vb,
endfor
endfor
endfor:
F(a) = b{
end

In order to compute the polar value f(aq, ..., a;), for m
points ai, ..., a, in P, where a; = \ir + ;s + vit, with
AN+ + v =1, we simply replace A, i, v by A;, g, V.
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ttt

rrr 888

Figure 9.2: The de Casteljau algorithm for polynomial surfaces of total degree 3
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It is interesting to note that the same polynomial surface
F', when represented as a bipolynomial surface of degree
(p,q), requires a control net of (p + 1)(¢ + 1) control
points, and when represented as a surface of total degree

m, requires a control net of (m+1)2(m+2) points.
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)
S
2.5
z 0
-2.5
-5
-5 0 5
y

Figure 9.3: The Enneper surface



Chapter 10

Subdivision Algorithms for
Polynomial Surfaces

10.1 Subdivision Algorithms for Triangular Patches

In this section, we explain in detail how the de Casteljau
algorithm can be used to subdivide a triangular patch
into subpatches, in order to obtain a triangulation of a
surface patch using recursive subdivision.

363
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Given a reference triangle Arst, given a triangular control
net N = (b; j ) (ijk)ea,, recall that in terms of the polar
form f:P™ — & of the polynomial surface F: P — &
defined by N, for every (i, j, k) € A, we have

bi,j,k:f(lna"'77;7§7"'7§7é7"'7é>'

Given a = Ar + us + vt in P, where A+ pu+v =1, in
order to compute F(a) = f(a,...,a), the computation
builds a sort of tetrahedron consisting of m + 1 layers.
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The base layer consists of the original control points in
N, which are also denoted as (5] i k)i k)eA,,. The other
layers are computed in m stages, where at stage [,

1 < I < m, the points (1! g,k)(i,j,k)eAm_z are computed
such that

l [—1
bz 9, k )\bz—l—l g, k + lubz g1k + Vbz , g, k+1°

During the last stage, the single point 0g' ( is computed.

An easy induction shows that

[
ij, f(g’?"'7@7{7"'77;7§7"'7§7é7"'7§)7

where (2,7, k) € A,,—;, and thus,

F() bOOO
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Assuming that a is not on one of the edges of Arst, the
crux of the subdivision method is that the three other

faces of the tetrahedron of polar values bé i, besides the

face corresponding to the original control net, yield three
control nets

Nast = (bé’j’]{;)(l,j,k)EAm7
corresponding to the base triangle Aast,

Nrat = (bé’()’]g)(i,l,k)EAm?
corresponding to the base triangle Arat, and

Nrsa = (bé’j,())(i,j,l)EAm’

corresponding to the base triangle Arsa.
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From an implementation point of view, we found it conve-
nient to assume that a triangular net N' = (b; j 1) (5. k)ea,,
is represented as the list consisting of the concatenation
of the m + 1 rows

bi.0.m—i, bi, 1, m—i—1, -+, bi.m—i.o-

As a triangle, the net A is listed (from top-down) as

The main advantage of this representation is that we can
view the net N as a two-dimensional array net, such
that netli,j| = b, j 5 (with i + 7+ k = m). In fact,
only a triangular portion of this array is filled. This way
of representing control nets fits well with the convention
that the reference triangle Arst is represented as follows:
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r

Figure 10.1: Reference triangle

Instead of simply computing F'(a) = by’ , the de Castel-
jau algorithm can be easily adapted to output the three
nets Nast, N'rat, and Nrsa. We call this version of the
de Casteljau algorithm the subdivision algorithm.
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In implementing such a program, we found that it was
convenient to compute the nets Nast, Nart, and Nars.

In order to compute Nrat from Nart, we wrote a very
simple function transnetj, and in order to compute
Nrsa from Nars, we wrote a very simple function
transnetk. We also have a function convtomat which
converts a control net given as a list of rows, into a two-
dimensional array:.

We found it convenient to write three distinct functions
subdecas3ra, subdecas3sa, and subdecas3ta, com-
puting the control nets with respect to the reference tri-
angles Aast, Aart, and Aars.
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The subdivision strategy that we will follow is to divide
the reference triangle Arst into four subtriangles Aabt,
Abac, Acrb, and Asca, where a = (0,1/2,1/2), b =
(1/2,0,1/2), and ¢ = (1/2,1/2,0), are the middle points
of the sides st, rt and rs respectively, as shown in the
diagram below:

abt crb

t b r

Figure 10.2: Subdividing a reference triangle Arst
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The first step is to compute the control net for the refer-
ence triangle Abat. This can be done using two steps.

bat

Figure 10.3: Computing the nets N'bat, Nbar and Nars from Nrst

We will now compute the net Mcas from the net Nars.
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S

bat

Figure 10.4: Computing the net Ncas from Nars

We can now compute the nets Nebr and N cba from the
net Nobar.

od

bat

Figure 10.5: Computing the nets Ncbr and N cba from Nbar

Finally, we apply some net permutations, and we get
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S

abt crb

Figure 10.6: Subdividing Arst into Aabt, Abac, Acrb, and Asca

Using mainsubdecas4, starting from a list consisting of
a single control net net, we can repeatedly subdivide the
nets in a list of nets, in order to obtain a triangulation of
the surface patch specified by the control net net.

The function rsubdiv4 performs n recursive steps of sub-
division, starting with an input control net net. The
function itersub4 takes a list of nets and subdivides
cach net in this list into four subnets.
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The function rsubdiv4 creates a list of nets, where each
net is a list of points. In order to render the surface patch,
it is necessary to triangulate each net, that is, to join the
control points in a net by line segments. This can be done
in a number of ways, and is left as an exercise.

The best thing to do is to use the Polygon construct
of Mathematica. Indeed, polygons are considered non-
transparent. and the rendering algorithm automatically
removes hidden parts. It is also very easy to use the
shading options of Mathematica, or color the polygons
as desired. This is very crucial to understand complicated
surfaces.

The subdivision method is illustrated by the following
example of a cubic patch specified by the control net

net = {{0, 0, 0}, {2, 0, 2}, {4, 0, 2}, {6, 0, O},
{1, 2, 2}, {3, 2, 5}, {5, 2, 2},
{2, 4, 2}, {4, 4, 2}, {3, 6, 0}};
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6

6

Figure 10.7: Subdivision, 1 iteration
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6

Figure 10.8: Subdivision, 2 iterations
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Figure 10.9: Subdivision, 3 iterations
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Another pleasant application of the subdivision method is
that it yields an efficient method for computing a control
net NMabc over a new reference triangle Aabe, from a
control net A/ over an original reference triangle Arst.

Let Arst and Aabc be two reference triangles, and let
()\17 M1, Vl); ()\27 2, V2)7 and ()\37 3, V3)7 be the barycen—
tric coordinates of a, b, ¢, with respect to Arts.

Given any arbitrary point d, if d has coordinates (\, u, v)
with respect to Arst, and coordinates (X, p', v') with
respect to Aabc, since

d=Xr+us+vt=Na+pu'b+1'c
and

a =M1+ 418 + 1t
b =Mor + oS + ot
C :)\37“ + U3s + Vst
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we easily get

>~

/
<>\1 A >\3> A
Bl =1 K K2 U3 H

7 Vo s V/

and thus,

/ —1
A Mod Ag A
Ho) = #1 H2 U3 H

0 vy 2 3 0

379

Thus, the coordinates (X, ', V") of d with respect to Aabc
can be computed from the coordinates (A, i, v) of d with
respect to Arst, by inverting a matrix. In this case, this
is easily done using determinants, by Cramer’s formulae.
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Now, given a reference triangle Arst and a control net
N over Arst, we can compute the new control net N abe
over the new reference triangle Aabc, using three subdi-
vision steps as explained below.

In the first step, we compute the control net Nast over
the reference triangle Aast, using subdecas3ra.

In the second step, we compute the control net Nbat
using subdecas3sa, and then the control net Mabt over
the triangle Aabt, using transnetj.

In the third step, we compute the control net N cab using
subdecas3ta, and then the control net Mabc over the
triangle Aabc, using transnetk.
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Note that in the second step, we need the coordinates of
b with respect to the reference triangle Aast, and in the
third step, we need the coordinates of ¢ with respect to
the reference triangle Aabt. This can be easily done by
inverting a matrix of order 3, as explained earlier.

One should also observe that the above method is only
correct if a does not belong to st, and b does not be-
long to at. In general, some adaptations are needed. We
used the strategy explained below, and implemented in
Mathematica.

Case 1: a & st.

Compute Mast using subdecas3ra.
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Case la: b ¢ at.

First, compute N bat using
subdecas3sa, and then N abt using transnetj. Next,
compute N cab using subdecas3ta, and then Nabc us-

Ing transnetk.

Figure 10.10: Case la: a not in st, b not in at
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Case 1b: b € at.

First, compute N'tas from Nast using transnetk twice,
then compute N bas using subdecas3ra, and then N abs
using transnetj. Finally, compute N abc using
subdecas3ta.

Figure 10.11: Case 1b: a not in st, b € at
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Case 2a: s = a (and thus, a € st).

In this case, Arst = Arat. First compute Nart using
transnetj, and then go back to case 1.

Case 2b: a € st and s # a.

Compute Nars using subdecas3ta, and then go back
to case 1.

Figure 10.12: Case 2b: a € st, s # a
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As an example we can display a portion of a well
known surface known as the “monkey saddle”,
defined by the equations

T = u,
y=nuv,
z:ug—?)uvz.

Note that z is the real part of the complex num-
ber (u4iv)3. It is easily shown that the monkey
saddle is specified by the following triangular
control net monknet over the standard reference
triangle Arst, where r = (1,0,0), s = (0, 1,0),
and ¢ = (0,0, 1).

monknet = {{0, 0, 0}, {0, 1/3, 0}, {0, 2/3, 0}, {0, 1, O},

{1/3, 0, 0}, {1/3, 1/3, 0}, {1/3, 2/3, -1},
{2/3, 0, 0}, {2/3, 1/3, 0}, {1, 0, 1}};
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Using newcnet3 twice to get some new nets netl and
net2, and then subdividing both nets 3 times, we get the
following picture.

NS
S
N2

Figure 10.13: A monkey saddle, triangular subdivision



10.1. SUBDIVISION ALGORITHMS FOR TRIANGULAR PATCHES 387

Another nice application of the subdivision algorithms, is
an efficient method for computing the control points of
a curve on a triangular surface patch, where the curve is
the image of a line in the parameter plane, specified by
two points a and b.

What we need is to compute the control points

di:f<ga"'7@7@7"'7b>7

7

D' g
m—1 [

where m is the degree of the surface.

We could compute these polar values directly, but there is
a much faster method. Indeed, assuming that the surface
is defined by some net A over the reference triangle Arts,
if 7 does not belong to the line (a,b), we simply have to
compute Nrba using newcnet3, and the control points
(dy, . ..,d,) are simply the bottom row of the net N'rba,
assuming the usual representation of a triangular net as
the list of rows

bi.0.m—i, bi, 1, m—i—1, -+, bi,m—io-
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More precisely, we have the following cases.
Case 1. r ¢ ab.

We compute Nrba using newcnet3.

S

Figure 10.14: Case 1: r not in ab
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Case 2a: r € ab and a € rt.

We compute A sba using newcnet3.

S

Figure 10.15: Case 2a: r € ab and a € rt

389
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Case 2b: r € ab and a ¢ rt.

In this case, we must have t ¢ ab, since r € ab, and we
compute Ntba using newcnet3.

S

Figure 10.16: Case 2b: r € ab and a not in 7t

Using the function curvcpoly, it is easy to render a tri-
angular patch by rendering a number of u-curves and
v-curves.
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10.2 Subdivision Algorithms for Rectangular Patches

We now consider algorithms for approximating rectangu-
lar patches using recursive subdivision.

Given two affine frames (771, 51) and (79, 52) for the affine
line A, given a rectangular control net

N = (bi,j)6.1)em,,
recall that in terms of the polar form
(AP x (A)?T— &

of the bipolynomial surface F': Ax A — & of degree (p, q)
defined by N, for every (i,7) € g,,, we have

bi,j = f(Tl""’FL’El""’ L;TQ,...,T27§27...7§J).
p—1i l q—J J

Unlike subdividing triangular patches, subdividing rect-
angular patches is quite simple.
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Indeed, it is possible to subdivide a rectangular control
net A in two ways. The first way is to compute the two
nets N'[ry, u; %] and NMu, s1; %], where

N[Thu; *]u

= f(T1,.. . T, U, .., U T, ..., T, 52, ..., 5),
p—i kM e J
with 0 <7 <p,and 0 < j5 < ¢, and
Nu, s1; %;. ;
= f@,...,",51,...,51;T2,...,T9,52,...,5),
pi b e J

with 0 <7 <p,and 0 < 5 <gq.

This can be achieved in ¢+ 1 calls to the version of the de
Casteljau algorithm performing subdivision (in the case
of curves).

This algorithm has been implemented in Mathematica
as the function urecdecas.
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The second way is to compute the two nets N [x; 19, v]
and NV[*; v, s], where

N[*; T2, v]i,j

= f(T1,...,T1,81,. .., 51,72, ..., T2,U,...,0),
pi kM 4= J
with 0 <7 <p,and 0 < j5 < ¢, and
N[*;U,Sg]i’j
= f(T1,...,T1,51,.-.,51;0,...,U,52,...,5),
p—i b e J

with 0 <7 <p,and 0 < 5 <gq.

This can be achieved in p+1 calls to the version of the de
Casteljau algorithm performing subdivision (in the case
of curves).

This algorithm has been implemented in Mathematica
as the function vrecdecas.
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Then, given an input net N over [ry, s1] X [rg, o], for any
u,v € A, we can subdivide the net N into four subnets
Nr1, u;ro, v], N'u, s1; 79, v], Nr1, u; v, so], N'u, s1; v, s3],
by first subdviding N into N[*; 9, v] and N[*; v, s, us-
ing the function vrecdecas, and then by splitting each
of these two nets using urecdecas.

The four nets have the common corner F'(u, ).

182 USo S159
T1U, VS92 US1, VS

v uv S1U
T1U; T2V US1, T2V

e Urs 5172

Figure 10.17: Subdividing a rectangular patch



10.2. SUBDIVISION ALGORITHMS FOR RECTANGULAR PATCHES 395

In order to implement these algorithms, we represent a
rectangular control net

N = (bi ) g)em,,
as the list of p + 1 rows

bi.o, bi1, -, big,
where 0 <17 < p.

This has the advantage that we can view N as a rectan-
gular array net, with net|i, j| = b; ;.

The function makerecnet converts an input net into such
a two dimensional array.

The subdivision algorithm is implemented in Mathemat-
ica by the function recdecas, which uses the functions
vrecdecas and urecdecas.
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In turn, these functions use the function subdecas, which
performs the subdivision of a control polygon.

It turns out that an auxiliary function rectrans con-
verting a matrix given as a list of columns into a linear
list of rows, is needed.

As in the case of triangular patches, using the function
recdecas, starting from a list consisting of a single con-
trol net net, we can repeatedly subdivide the nets in a
list of nets, in order to obtain an approximation of the
surface patch specified by the control net net.

The function recsubdiv4 shown below performs n recur-
sive steps of subdivision, starting with an input control
net net.

The function recitersub4 takes a list of nets and sub-
divides each net in this list into four subnets.
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The function recsubdiv4 returns a list of rectangular
nets. In order to render the surface patch, it is necessary
to link the nodes in each net. This is easily done, and is
left as an exercise.

The functions urecdecas and vrecdecas can also be
used to compute the control net Na, b; ¢, d] over new
affine bases |a,b] and [c,d], from a control net N over
some affine bases [r1, s1] and [r, s3].

If d # ry and b # ry, we first compute N[ry, s1;79,d]
using vrecdecas, then N[ry, b; o, d] using urecdecas,
and then Nry, b; ¢, d] using vrecdecas, and finally
Nla, b; ¢, d] using urecdecas. It is easy to care of the
cases where d = ry or b = ry.

Let us go back to the example of the monkey saddle,
to illustrate the use of the functions recsubdiv4 and
recnewnet.
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It is easily shown that the monkey saddle is specified
by the following rectangular control net of degree (3,2)
sgmonknet1, over [0, 1] x [0, 1]:

sgmonknetl = {{0, 0, 0}, {0, 1/2, 0},
{0, 1, 0}, {1/3, 0, O},
{1/3, 1/2, 0}, {1/3, 1, -1},
{2/3, 0, 0}, {2/3, 1/2, 0},
{2/3, 1, -2}, {1, 0, 1},
{1, 1/2, 1}, {1, 1, -2}}

Using recnewnet, we can compute a rectangular net
sqmonknet over [—1,1] x [—1,1]:

sgmonknet = {{-1, -1, 2}, {-1, 0, -4},
{-1, 1, 2}, {-1/3, -1, 2},
{-1/3, 0, 0}, {-1/3, 1, 2},
{1/3, -1, -2}, {1/3, 0, 0O},
{1/3, 1, -2}, {1, -1, -2},
{1, 0, 4}, {1, 1, -2}}
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Finally, we show the output of the subdivision algorithm
recsubdiv4, for n = 1,2, 3. The advantage of rectangu-
lar nets is that we get the patch over [—1,1] x [—1, 1] di-
rectly, as opposed to the union of two triangular patches.

Figure 10.18: A monkey saddle, rectangular subdivision, 1 iteration
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11

Figure 10.19: A monkey saddle, rectangular subdivision, 2 iterations

The final picture (corresponding to 3 iterations) is basi-
cally as good as the triangulation shown earlier, and is
obtained faster.
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1 X

Figure 10.20: A monkey saddle, rectangular subdivision, 3 iterations
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Actually, it is possible to convert a triangular net of degree
m into a rectangular net of degree (m, m), and conversely
to convert a rectangular net of degree (p, q) into a trian-
oular net of degree p + ¢, but we will postpone this until
we deal with rational surfaces.



Chapter 11

Polynomial Spline Surfaces

11.1 Joining Polynomial Surfaces

We now attempt to generalize the idea of splines to poly-
nomial surfaces. As we shall see, this is far more subtle
than it is for curves.

In the case of a curve, the parameter space is the affine line
A, and the only reasonable choice is to divide the affine
line into intervals, and to view the curve as the result of
joining curve segments defined over these intervals.

However, in the case of a surface, the parameter space is
the affine plane P. and even if we just want to subdi-
vide the plane into convex regions, there is a tremendous
variety of ways of doing so.

403
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Thus, we will restrict our attention to subdivisions of the
plane into convex polygons, where the edges are line seg-
ments.

In fact, we will basically only consider subdivisions made
of rectangles or of (equilateral) triangles.

First, we will find necessary and sufficient conditions on
polar forms for two surface patches to meet with C™ con-
tinuity.

We will restrict our attention to total degree polynomial
surfaces. This is not a real restriction, since it is always
possible to convert a rectangular net to a triangular net
(see section 77).
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We need to review the definition of a directional deriva-
tive.

Definition 11.1.1 Let £ and F' be two normed affine

spaces, say £ = A" and F' = A", let {) be a nonempty
open subset of E, and let f:Q — F be any function.

For any a € (), for any # O in E the directional

derivative of f at a w.r.t. the vector 7, denoted as
Dy f(a), is the limit (if it exists)

_>
i f<a+tU>—f(a>7
t—0,teU t

where U={t eR | a+tuW €Q,t +#0}.

Since the map ¢t — a + £ s continuous, and since
() — {a} is open, the inverse image U of Q2 — {a} under
the above map is open, and the definition of the limit in
definition 11.1.1 makes sense.

The directional derivative is sometimes called the Gateaux
derivative.
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Let A and B be two adjacent convex polygons in the
plane, and let (r, s) be the line segment along which they
are adjacent (where r;s € P are distinct vertices of A
and B).

Given two polynomial surface F' and G of degree m, for
any point a € P, we say that F' and G agree to kth
order at a, iff

Dy, ...Dy F(a) =Dy, ...D,Gla),

forallu?,...,ﬂgE]RZ,WhereOSiSk.

Definition 11.1.2 Let A and B be two adjacent convex
polygons in the plane, and let (7, s) be the line segment
along which they are adjacent (where r, s € P are distinct
vertices of A and B). Given two polynomial surfaces F4
and Fj of degree m, Fy and Fg join with C* continuity
along (r,s), ifft Fy and Fp agree to kth order for all
a € (r,s).



11.1. JOINING POLYNOMIAL SURFACES 407

Recall that lemma ?7? tells us that for any a € (r,s),
F'4 and F'g agree to kth order at a iff their polar forms
fa:P™ — &€ and fp:P™ — & agree on all multisets of
points that contain at least m — k copies of a, that is, iff

faluy, ..., up, a,...,a) = fplug, ..., ug, a,...,a),

m—k m—k

for all uq,...,u; € P.

Using this fact, we can prove the following crucial lemma.
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Lemma 11.1.3 Let A and B be two adjacent convex
polygons in the plane, and let (r,s) be the line seg-
ment along which they are adjacent (where r,s € P
are distinct vertices of A and B). Given two polyno-
mial surface F'y and Fg of degree m, F'y and Fg join
with CF continuity along (r,s) iff their polar forms
fa:P™ — & and fp: P™ — &£ agree on all multisets of
points that contain at least m — k points on the line

(r,s), that is, iff

falug, ... Uk, Gpst, ooy Q)
= feur, ..., Uk, Qpy1y - ey Q)
for all uy,...,ur € P, and all ag.1,...,a, € (r,s).

As a consequence of lemma 11.1.3, we obtain the neces-
sary and sufficient conditions on control nets for F'4 and
F'g for having C™ continuity along (r, s).
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Let A = Aprs and B = Aqrs be two reference triangles
in the plane, sharing the edge (7, s).

Figure 11.1: Two adjacent reference triangles

Then, lemma 11.1.3 tells us that 4 and Fz join with C"
continuity along (r, s) iff

fa'dr"s') = fa(p'¢'r"s'),

forall ¢, 5, k, [ such that i+j+k+Il =m, and k+1l > m—n
(0<n<m).
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For n = 0, we just have

Fa(rFs™ ) = fp(rts™h),

with 0 < k < m, which means that the control points
of the boundary curves along (7, s) must agree. This is
natural, the two surfaces join along this curve!

Let us now see what the continuity conditions mean for
m=3andn =1,2,3.

For C' continuity, the following 10 polar values must
agree:

falr,rr) = fglr,r,r),
falr,r,s) = fp(r,r,s),
fa(r,s,s) = [fp(r,s,s),
fa(s,s,s) = f(s,s,s),
falp,r,r) = fe(p,7,7),
fA(p7 T, 8) — fB(pa T, 8)7
fA(pv S, 8) — fB(pa S, 8)7
fA(Q7 S5 S) — fB(CL S, S),
falg,r,s) = fzlq,r,s),
falg,r.r) = fBlg,r,7).
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Denoting these common polar values as f4 (-, -, -), note
that these polar values naturally form the vertices of three
diamonds,

(fA,B<p7 r, T)a fA,B<T7 r, T): fA,B(Q7 r, T): fA,B<87 r, T)):

(fA,B<p7 T, S)a fA,B(,r: r, S)a fA,B(Q7 r, 8)7 fA,B<87 r, 8))7

(fA,B(p7 S, S)a fA,B(Ta S, S)a fA,B(Q7 S, 8)7 fA,B(87 S, S))7
images of the diamond (p,r, ¢, s). In particular, the ver-
tices of each of these diamonds must be coplanar, but

this is not enough to ensure C! continuity. The above
conditions are depicted in the following diagram:
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fA,B(Sasas) N
fA,B(rasas) \\

\ \
fA,B(Ta T, S) N \\ \\

fA,B(p7 S, S) i
fA,B<p= T, S) -

i fA,B(Q7 S, S)
_ fA,B(Qv T, S)

fA,B(p7 T, T') -

fA(pava) . | . fB(q7Q’S)

fB(q 4,q)

fA(p p,p)

Figure 11.2: Control nets of cubic surfaces joining with C! continuity

We can view this diagram as three pairs of overlaping de
Casteljau diagrams each with one shell.



11.1. JOINING POLYNOMIAL SURFACES 413

Let us now consider C? continuity, i.e., n = 2. In addition
to the 10 constraints necessary for C'! continuity, we have
6 additional equations among polar values:

fA<p7p7 T) — fB(p7p7 T)a

falp,p,s) = [5(p,p;9),
falp,q,7) = fB(p,q,7),
falp,q,s) = fB(p,q, ),
fala,q:7) = fB(q,q,7),
falg,q,5) = [B(q,4, )

Again, denoting these common polar values as f4 5(-, -, -),
note that these polar values naturally form the vertices
of four diamonds, images of the diamond (p,r, ¢, s). For
example, the left two diamonds are

(fA,B(p7p7 T)v fA,B(Tapa T)a fA,B(Q7p7 T)a fA,B(Sapv T))v
(fA,B(p7p7 8)7 fA,B(Tvpa S)v fA,B(Q7p7 8)7 fA,B(Svpa S))

In particular, the vertices of each of these diamonds must
be coplanar, but this is not enough to ensure C? continu-

1ty.
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Note that the polar values fa(p,q,7) = fB(p,q,7) and
falp,q,s) = fs(p,q,s) are not control points of the orig-
inal nets. The above conditions are depicted in the fol-
lowing diagram:

fA(p p,p)

Figure 11.3: Control nets of cubic surfaces joining with C? continuity

We can view this diagram as two pairs of overlaping de
Casteljau diagrams each with two shells.
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Finally, in the case of C? continuity, i.e., n = 3, all the
control points agree, which means that f4 = fp.

In general, C" continuity is ensured by the overlaping of

m — n + 1 pairs of de Casteljau diagrams, each with n
shells.

We now investigate the realizability of the continuity con-
ditions in the two cases where the parameter plane is sub-
divided into rectangles, or triangles. We assume that the
parameter plane has its natural euclidean structure.



416 CHAPTER 11. POLYNOMIAL SPLINE SURFACES

11.2 Spline Surfaces with Triangular Patches

We study what happens with the continuity conditions
between surface patches, if the parameter plane is divided
into equilateral triangles.

In the case of spline curves, recall that it was possible to
achieve C™~! continuity with curve segments of degree
m. Also, spline curves have local flexibility, which means
that changing some control points in a small area does not
affect the entire spline curve.

In the case of surfaces, the situation is not as pleasant.
For simplicity, we will consider surface patches of degree
m joining with the same degree of continuity n for all
common edges.

First, we will prove that it 2m < 3n + 1, then it is gen-
erally impossible to construct a spline surface.
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More precisely, given any 4 adjacent patches as shown in
the Figure below, if fo and fp are known, then f4 and
fp are completely determined.

Figure 11.4: Constraints on triangular patches
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The proof is more complicated than it might appear. The
difficulty is that even though A and D join with C" conti-
nuity along (s, q), A and B join with C™ continuity along
(s,t), and B and C' join with C" continuity along (s, p),
there is no reference triangle containing all of these three
edges!

Lemma 11.2.1 Surface splines consisting of triangu-
lar patches of degree m > 1 joining with C" conti-
nuity cannot be locally flexible if 2m < 3n + 1. This
means that given any four adjacent patches D, A, B,C
as in the previous figure, if fp and fo are known, then
fa and fg are completely determined. Furthermore,
when 2m = 3n + 2, there s at most one free control
point for every two internal adjacent patches.
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Proof. The idea is to show that the two control nets
of polar values fa(s't’q') and fg(s't/p~) are completely
determined, where 2 + 7 + [ = m in the first case, and
1+ 7 + k = m in the second case.

Since D and A join with C" continuity along (s, q), B
and C join with C™ continuity along (s, p), and A and B
join with C™ continuity along (s, 1),

falst’p¥q') is determined for all j + k < n, fz(s't/p*q’)
is determined for all 7 + 1 < n, and

fA(Sitjpkql) _ fB<8itjpkql>
for all £k +1 < n.
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These conditions do not seem to be sufficient to show that
faand fp are completely determined, but we haven’t yet
taken advantage of the symmetries of the situation.

Indeed, note that (p,q) and (s, t) have the same middle
point, so that p+ g = s +t.

We first reformulate the C"-continuity conditions between
A and B, using the identity p 4+ ¢ = s + t.

Recall that these conditions are
fA(Sitjpkql) _ fB<8itjpkql>
for all kK +1 < n.
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Replacing p by s + ¢t — ¢ on the left-hand side and ¢ by
s +t — p on the right-hand side, we get

Z (_1)23 fA(SZ—Hltj—ngl—f—Zg) —

i1lioli3!
11+io+iz=k 15253
] o
§ : +147+72,,k+
(_1)j3 . ' q ' . 'fB(SZ jltj j2p 33)7
Jit+jatjz=l JEIZTS

where K+ <n,andt+ 757+ k+1=m.

This is an equation relating some affine combination of
polar values from a triangular net of (k+1)2(k+2) polar val-
ues associated with A and some affine combination of po-

lar values from a triangular net of W polar values
associated with B.
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A similar rewriting of the C™-continuity equations be-
tween A and D and between C' and B shows that the
polar values fa(s™/~t/q") are known for 0 <1 < m—j
and 0 < j < n, and that the polar values fz(s™ 7/~ *t/pk)
are known for 0 < k<m—jand 0 <j <n.

On Figure 11.5, the polar values of the form f4(s™ 7=t/ ¢')
are located in the trapezoid (s, ¢, x,y) and the polar val-
ues of the form fg(s™ 7~ Ft/p*) are located in the trape-

zoid (s, p, z,y).

If n = 2h and m = 3h, the polar values associated with
A and B that are not already determined are contained
in the diamond (¢, u, v, w), and there are (m — n)* = h?
such polar values, since f4(s't!) = fp(s't’) along (s,t)
(where ¢ + 7 = m).
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If n =2h+1and m = 3h+2, the polar values associated
with A and B that are not already determined are also
contained in the diamond (¢, u, v, w), and there are

(m — n)? = (h + 1)* such polar values.

p D2 Z W t

Figure 11.5: Determining polar values in A and B

In either case, the polar values in the diamond (%, u, v, w)
can be determined inductively from right to left and from
bottom up.
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Knowing that we must have 2m > 3n + 2 to have local
flexibility, and thus, to find any reasonable scheme to
constuct triangular spline surfaces, the problem remains
to actually find a method for contructing spline surfaces
when 2m = 3n + 2.

Such a method using convolutions is described by Ramshaw
7], but it is not practical.

Instead of presenting this method, we attempt to un-
derstand better what are the constraints on triangular
patches when n = 2N and m = 3N + 1. The key is to
look at “derived surfaces”.
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Given a polynomial surface F: P — & of degree m, for

any vector = R?, the map D, F: P — ? defined by
the directional derivative of F' in the fixed direction 7,
is a polynomial surface of degree m — 1, called a derived
surface of F.

Given two triangular surfaces F:'P — £ and G: P — &,
the following lemmas show that if F' and G join with C"
continuity along a line L and if U is parallel to L, then
D, F" and D,G also join with C" continuity along L.
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Lemma 11.2.2 Gwen two triangular surfaces

F:P =& and GP — &, if I and G meet with C"
continuity along a line L, and zf7 c R? is parallel to
L, then D, F and D,G also meet with C" continuity
along L.

Lemma 11.2.3 Gwen two triangular surfaces
F:P—&and G:P — &, if F' and G meet with C"
continuity along a line L, and if 0 is parallel to L,

then D, F" and D,G also meet with C™ continuity along
L.

We can now derive necessary conditions on surfaces F
and G of degree 3n + 1 to join with C*" continuity.
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. =
Consider three vectors o, S, 4/, parallel to the three
directions of the edges of triangles in the triangular grid,
and such that

7 /\/\
>E_> B
a A C
7

Figure 11.6: A stripe in the parameter plane for triangular patches

Lemma 11.2.4 Giwen a spline surface F: P — &£ of
degree 3n+1 having C** continuity, for any three vec-

— 7 . .
tors o, B, 7, parallel to the three directions of the
edges of triangles in the triangular grid, and such that

— —
o+ [+ 7 = 0, for every triangle A, the derived
surface DZHDZHF 4 1S the same in any stripe in the

direction 7, the derived surface DEHDZHF ' 1S the

same in any stripe in the direction ?, and the de-
rived surface DZHDZHF "4 1S the same in any stripe

wn the direction [ .
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From lemma 11.2.4, in order to find spline surfaces of
degree 3n+1 with C?" continuity, it is natural to attempt
to satisty the conditions

%
DZ—HDZ—HFA _ DZ—HDZ—HFA _ DZ—HD;L—HFA — 0 7
for all triangles A.

Each derived surface patch has degree n — 1, and thus,

setting it to zero corresponds to @ conditions.

%
[f we can show that for E>, G, 7, these conditions are

independent, we have a total of w conditions.
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(3n+3)(3n+2)

A surface of degree 3n + 1 is determined by

2
control points. Subtracting the 3("“;1)” conditions, we see

that each patch Fy is specified by 3(n+1)?# control points.

We can show that these conditions are indeed indepen-
dent using tensors.

In summary, we were led to consider surface splines of
degree 3n + 1 with C?" continuity, satisfying the inde-
pendent conditions

—
DZ-HD%—HFA _ Dg—l_lD,TyL—'_lFA _ DZ—HDQL—HFA — 0.



430 CHAPTER 11. POLYNOMIAL SPLINE SURFACES

Each patch is then defined by 3(n + 1)? control points.
Such spline surfaces do exist, and their existence can be
shown using convolutions.

Unfortunately, to the best of our knowledge, no nice scheme
involving de Boor control points is known for such trian-
oular spline surfaces.

This is one of the outstanding open problems for spline
surfaces, as discussed very lucidly by Ramshaw [?].

Next we will see that we have better luck with rectangular
spline surfaces.
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11.3 Spline Surfaces with Rectangular Patches

We now study what happens with the continuity condi-
tions between surface patches, if the parameter plane is
divided into rectangles.

For simplicity, we will consider surface patches of degree
m joining with the same degree of continuity n for all
common edges.

First, we will prove that if m < 2n+1, then it is generally
impossible to construct a spline surface.
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More precisely, given any 4 adjacent patches as shown
in the figure below, if fg and fp are known, then f, is
completely determined.

Figure 11.7: Constraints on rectangular patches
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As opposed to the triangular case, the proof is fairly sim-
ple.

Lemma 11.3.1 Surface splines consisting of rectan-
gular patches of degree m > 1 joining with C™ conti-
nuity cannot be locally flexible if m < 2n + 1. This
means that given any three adjacent patches A, B, D
as i the previous figure, if fg and fp are known,
then f4 1s completely determined. Furthermore, when
m = 2n+ 2, there is at most one free control point for
every two internal adjacent patches.

Thus, in order to have rectangular spline surfaces with
C™ continuity, we must have m > 2n + 2.

We shall consider the case of rectangular spline surfaces
of degree 2n meeting with C"~! continuity.

One can prove using convolutions (see Ramshaw [?]) that
such spline surfaces exist, but the construction is not prac-
tical.
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Instead, as in the case of triangular spline surfaces, we will
look for necessary conditions in terms of derived surfaces.
This time, we will be successtul in finding a nice class
of spline surfaces specifiable in terms of de Boor control
points.

Lemma 11.3.2 Given two (triangular) surfaces
F:P — & and G:'P — & of degree 2n, if F' and G

meet with C"™1 continuity along a line L, and if kT4
1s parallel to L, then DZHF = DZHG.

We can now derive necessary conditions on surfaces F
and G of degree 2n to join with C"~! continuity.

Lemma 11.3.3 Gwen a spline surface F:' P — & of
degree 2n having C" ! continuity, for any horizontal

_>
vector ?, and any vertical vector [, for every rect-
angle A, the derived surface D'*'Fy is the same in

any stripe in the direction ?, and the derived surface

%
DZHFA 1 the same in any stripe in the direction [ .
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In view of lemma 11.3.3, it makes sense to look for rect-
angular spline surfaces of degree 2n with continuity C"~!
satisfying the constraints

_>
Dy Fy =D Fa= 0

for all rectangles A.

Since D" F4 has degree n — 1, setting it to zero corre-

sponds to @ constraints, and thus, we have a total ot

(n + 1)n constraints.
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A surface of degree 2n is specified by (2n+2)2(2n+1) control

points, and subtracting the (n + 1)n constraints, we find
that each rectangular patch is determined by
(n + 1)? control points.

However, note that a surtace of degree 2n such that
%
Dy Ey =D Ey = 0
is equivalent to a bipolynomial surface of bidegree (n,n).
Thus, in the present case of rectangular spline surfaces,

we discover that bipolynomial spline surfaces of bidegree
(n,n) are an answer to our quest.
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Furthermore, since each rectangle is the product of two
intervals, we can easily adapt what we have done for spline
curves to bipolynomial spline surfaces. In fact, we can do
this for bipolynomial spline surfaces of bidegree (p, q).

Given a knot sequences (§;) along the u-direction, and
a knot sequences (t;) along the v-direction, we have de
Boor control points of the form

Lij = f(Siv1, - - ) Sikpy ity - - 7tj+q)-

The patches of the spline surface have domain rectangles
of the form

Ry =[Sk, Sk1] X [t L),
where 5, < 541 and € < 741
The patch defined on the rectangle Ry ; has the

(p+ 1)(g + 1) de Boor control points x; ;, where
k—p<i<kandl—q<1<I.
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Two patches adjacent in the u-direction meet with CP~"
continuity, where r is the multiplicity of the knot s; that
divides them, and two patches adjacent in the v-direction
meet with C'77" continuity, where r is the multiplicity of
the knot ¢; that divides them.

The progressive version of the de Casteljau algorithm can
be generalized quite easily. Since the study of bipolyno-
mial spline surfaces of bidegree (p,q) basically reduces
to the study of spline curves, we will not elaborate any
further, and leave this topic as an interesting project.

In summary, contrary to the case of triangular spline sur-
faces, in the case of rectangular spline surfaces, we were
able to generalize the treatment of spline curves in terms
of knot sequences and de Boor control points to bipoly-
nomial spline surfaces.

The challenge of finding such a scheme for triangular
spline surfaces remains open.



11.4. SUBDIVISION SURFACES 439

11.4 Subdivision Surfaces

A Quick History of Subdivision Surfaces

The idea of defining a curve or a surface via a limit process
involving subdivision goes back to Chaikin, who (in 1974)
defined a simple subdivision scheme applying to curves
defined by a closed control polygon [?].

Soon after that, Riesenfeld [?] realized that

Chaikin’s scheme was simply the de Boor subdivision
method for quadratic uniform B-splines, i.e., the process
of recursively inserting a knot at the midpoint of every
interval in a cyclic knot sequence.

In 1978, two subdivision schemes for surfaces were pro-
posed by Doo and Sabin [?, 7, ?|, and by Catmull and
Clark [?].



440 CHAPTER 11. POLYNOMIAL SPLINE SURFACES

The main difference between the two schemes is the fol-
lowing.

After one round of subdivision the Doo-Sabin scheme pro-
duces a mesh whose vertices all have the same degree 4,
and most faces are rectangular, except for faces arising
from original vertices of degree not equal to four and from
nonrectangular faces.

After one round of subdivision, the number of nonrectan-
oular faces remains constant, and it turns out that these
faces shrink and tend to a limit which is their common
centroid.

The centroid of each nonrectangular face is referred to as
an extraordinary point.
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Furthermore, large regions of the mesh define biquadratic
B-splines.

The limit surface is C''-continuous except at extraordi-
nary points.

On the other hand, after one round of subdivision, the
Catmull-Clark scheme produces rectangular faces, and
most vertices have degree 4, except for vertices arising
from original nonrectangular faces and from vertices of
degree not equal to four, also referred to as extraordinary
points.

The limit surface is C?-continuous except at extraordi-
nary points. Large regions of the mesh define bicubic
B-splines.
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Several years later, Charles Loop in his Master’s thesis
(1987) introduced a subdivision scheme based on a mesh
consisting strictly of triangular faces [?].

In Loop’s scheme, every triangular face is refined into four
subtriangles. Most vertices have degree six, except for
original vertices whose degree is not equal to six, referred
to as extraordinary points.

Large regions of the mesh define triangular splines based
on hexagons consisting of 24 small triangles each of degree
four (each edge of such an hexagon consists of two edges
of a small triangle). The limit surface is C*-continuous
except at extraordinary points.
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Doo-Sabin’s Scheme

During every round of the subdivision process, new ver-
tices and new faces are created as follows.

Every vertex v of the current mesh yields a new vertex
vr called image of v in F', for every face F' having v as
a vertex.

Then, image vertices are connected to form three kinds
of new faces: F'-faces, E-taces, and V-faces.
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An F-face is a smaller version of a face F', and it is ob-
tained by connecting the image vertices of the boundary
vertices of F'in F'. Note that if F'is an n-sided face, so

is the new F'-face. This process is illustrated in Figure
11.8.

) 4

Yrp==--=-=_2F
/ \
/ \

/ \
T Tp / \NUR U
¢ F »
\ /
\ /
\ /

\ /
WE Yo == ==d VR

/ \

Figure 11.8: Vertices of a new F-face
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A new F-face is created as follows.

For every edge E/ common to two faces F; and F5, the
four image vertices vp,, vg, of the end vertex v of F/, and
wr,, Wr, of the other end vertex w of E are connected to
form a rectangular face, as illustrated in Figure 11.9.

J| QI U 2
1

]
E | Fy
| _ -4 VR,

Figure 11.9: Vertices of a new E-face
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A new V-face is obtained by connecting the image ver-
tices vp of a given vertex v in all the faces adjacent to v,
provided that v has degree n > 3. If v has degree n, the
new V'-face is also n-sided. This process is illustrated in
Figure 11.10.

Figure 11.10: Vertices of a new V-face



11.4. SUBDIVISION SURFACES 447

Various rules are used to determine the image vertex vg
of a vertex v in some face F'.

A simple scheme used by Doo is to compute the centroid ¢
of the face F', and the image vp of v in F' as the midpoint
of ¢ and v (if F' has n sides, the centroid of F' is the
barycenter of the weighted points (v, 1/n), where the v’s
are the vertices of F).

Another rule is .
UV, = E Oéij’lUj,
J=1

where the w; are the vertices of the face I, and v; is the
image of w; in F', with

Qjj = { 1 cos(2m(i—j)/n) 1f7, ].7
o if ¢ £ 4,

where 1 < 17,7 < nand n > 3is the number of boundary
edges of F'.
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Observe that atter one round of subdivision, all vertices
have degree four, and the number of nonrectangular faces
remains constant.

It is also easy to check that these faces shrink and tend
to a limit which is their common centroid.

However, it is not obvious that such subdivision schemes
converge, and what kind of smoothness is obtained at
extraordinary points.

These matters were investigated by Doo and Sabin [?]
and by Peters and Reif [?].
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This can be achieved by eigenvalue analysis, or better,
using discrete Fourier transforms.

The Doo-Sabin method has been generalized to accomo-

date features such as creases, darts, or cusps, by Seder-
berg, Zheng, Sewell, and Sabin [?].

Such features are desirable in human modeling, for exam-
ple, to model clothes or human skin.
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Catmull-Clark’s Scheme

Unlike the previous one, this method consists in subdi-
viding every face into smaller rectangular faces obtained
by connecting new face points, edge points, and vertex
points.

Given a face F' with vertices vy, . . ., v,, the new face point
v is computed as the centroid of the v;, i.e.

n
1
Vp = E — ;.
, n
1=1

Given an edge E with endpoints v and w, if F; and F5 are
the two faces sharing E' as a common edge, the new edge
point vg is the average of the four points v, w,vg, vp,,
where vp, and vp, are the centroids of F and F», i.e.

U+ w4+ vp + VR

VE — A



11.4. SUBDIVISION SURFACES 451

The computation of new vertex points is slightly more
involved.

In fact, there are several different versions. The version
presented in Catmull and Clark [?] is as follows.

Given a vertex v (an old one), if F denotes the average of
the new face points of all (old) faces adjacent to v and £
denotes the average of the midpoints of all (old) n edges
incident with v, the new vertex point v’ associated with
v 18

1 2 -3
Sy N v.
n

n n

New faces are then determined by connecting the new
points as follows: each new face point vy is connected by
an edge to the new edge points vg associated with the
boundary edges E of the face F'; each new vertex point
v’ is connected by an edge to the new edge points vg
associated with all the edges E incident with v.

Note that only rectangular faces are created.
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Figure 11.11 shows this process. New face points are
denoted as solid square points, new edges points are de-
noted as hollow round points, and new vertex points are
denoted as hollow square points.

-~
-~
~
~

\
\
/ \
/ \
/ \
/ \
/ \
d ]

Figure 11.11: New face point, edge points, and vertex points
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An older version of the rule for vertex points is
1

1 1
/
_— — —g —
v 4‘F+2 —|-4U,

but it was observed that the resulting surfaces could be
too “pointy” (for example, starting from a tetrahedron).

Another version studied by Doo and Sabin is

n—?2

1 1
v'==—F+—-E+ v.
n

n n

Doo and Sabin analyzed the tangent-plane continuity of
this scheme using discrete Fourier transforms [?].
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Observe that after one round of subdivision, all faces are
rectangular, and the number of extraordinary points (ver-
tices of degree different from four) remains constant.

The tangent-plane continuity of various versions of
Catmull-Clark schemes are also investigated in Ball and
Storry [?] (using discrete Fourier transforms), and C'-
continuity is investigated by Peters and Reif [?].

A more general study of the convergence of subdivision
methods can be found in Zorin |?] (see also Zorin [?]).

It is also possible to accomodate boundary vertices and
edges. DeRose, Kass, and Truong |?], have generalized
the Catmull-Clark subdivision rules to accomodate sharp
edges and creases.
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Their work is inspired by previous work of Hoppe et al
7], in which the Loop scheme was extended to allow (in-
finitely) sharp creases, except that DeRose et al’s method
applies to Catmull-Clark surfaces.

The method of DeRose Kass, and Truong [?], also al-
lows semi-sharp creases in addition to (infinitely) sharp
creases.

This new scheme was used in modeling the character Geri
in the short film Geri’s game.
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Loop’s Scheme

Unlike the previous methods, Loop’s method only applies
to meshes whose faces are all triangles.

Loop’s method consists in splitting each (triangular) face
into four triangular faces, using rules to determine new
edge points and new vertex points.

For every edge (rs), since exactly two triangles Aprs and
Agqrs share the edge (rs), we compute the new edge point
Nrs as the following convex combination:

1.3 3 1
rs — 4 A gt S WY
s = gPTghTgoTgd

as illustrated in Figure 11.12.
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This corresponds to computing the affine combination of
three points assigned respectively the weights 3/8,3/8,
and 2/8: the centroids of the two triangles Aprs and
Agrs, and the midpoint of the edge (rs).

Figure 11.12: Loop’s scheme for computing edge points

For any vertex v of degree n, if py, ..., p,—1 are the other
endpoints of all (old) edges incident with v, the new ver-
tex point v" associated with v is

n—1

1
/:1_n — i nU,
v = ( a)<§ np)—l—ozv

1=0

where o, is a coeflicient dependent on n.
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Loop’s method is illustrated in Figure 11.13, where hollow
round points denote new edge points, and hollow square
points denote new vertex points.

Figure 11.13: Loop’s scheme for subdividing faces

Observe that after one round of subdivision, all vertices
have degree six, except for vertices coming from orginal
vertices of degree different from six, but such vertices are
surrounded by ordinary vertices of degree six.
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Vertices of degree different from six are called extraordi-
nary points. Loop determined that the value «,, = 5/8
produces good results [?], but in some cases, tangent
plane continuity is lost at extraordinary points.

Large regions of the mesh define triangular splines based
on hexagons consisting of small triangles each of degree
four (each edge of such an hexagon consists of two edges
of a small triangle).

Thus, ordinary points have a well defined limit that can be
computed by subdividing the quartic triangular patches.
The limit surface is C?-continuous except at extraordi-
nary points.
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Loop’s method was first formulated for surfaces without
boundaries. Boundaries can be easily handled by treating
the boundary curves a cubic B-splines, as in the Catmull-
Clark scheme.

In his Master’s thesis |?], Loop rigorously investigates the
convergence and smoothness properties of his scheme.

He proves convergence of extraordinary points to a limit.
He also figures out in which interval «, should belong,
in order to insure convergence and better smoothness at

extraordinary points.

Since the principles of Loop’s analysis are seminal and
yet quite simple, we will present its main lines.



11.4. SUBDIVISION SURFACES 461

Loop’s Analysis of Convergence

As we already remarked, after one round of subdivision,
extraordinary points are surrounded by ordinary points,
which makes the analysis of convergence possible.

Since points are created during every iteration of the sub-
division process, it is convenient to label points with the
index of the subdivision round during which they are cre-
ated.

Then, the rule for creating a new vertex point v' associ-
ated with a vertex v'~! can be written as

vl = (1 =)+ '
where 1
n—
L,
n
z:O
is the centroid of the points pO 3 pn 1, the other end-

points of all edges incident with v~
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Loop proves that as [ tends to oo,

(1) Every extraordinary vertex v' tends to the same limit
l.

as q';

2) The ordinary vertices ph, ..., p! . surrounding v* also
y 0 n—1 g

tend to the same limit as ¢'.

Since ¢' is the centroid of ordinary points, this proves the
convergence for extraordinary points. Keep in mind that

the lower indices of the p! are taken modulo n.

Proving that lim;_,  v! = lim;_, o ¢’ is fairly easy.
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Using the fact that
1 SIS S R R A

-1
P = gpz‘—1 + gpz' + g“ + épiJrl

and some calculations, it is easy to show that

3 _ _
,Ul_ql:(an_é> (’Ul 1_ql 1>.

By a trivial induction, we get

N
vl — ¢ = (an— g) (v — ¢").

Thus, if =1 < o, — 2 < 1, Le,
gl
8 8’

we get convergence of v’ to ¢'.

The value oy, = 5/8 is certainly acceptable.

463
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Proving (2) is a little more involved.
Loop makes a clever use of discrete Fourier transforms.

Discrete Fourier series deal with finite sequences ¢ € C"
of complex numbers.

It is convenient to view a finite sequence ¢ € C" as a
periodic sequence over Z, by letting ¢, = ¢y, ift
k — h =0 mod n.

[t is also more convenient to index n-tuples starting from
0 instead of 1, thus writing ¢ = (cg, . .., Cy1).

Every sequence ¢ = (¢, ...,cp—1) € C" of “Fourier co-
efficients” determines a periodic function f..R — C (of
period 2m) known as discrete Fourier series, or phase
polynomzial, defined such that

n—1

fc(e) = Cp + C1€i9 + -0+ Cn_lei(n_l)e = Z Ckeike.
k=0
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Then, given any sequence f = (fo,..., fn_1) of data
points, it is desirable to find the “Fourier coeflicients”
¢ = (cy,...,c,_1) of the discrete Fourier series f. such
that

fc(27rk/n) = fk;

for every k, 0 < k <n—1.

The problem amounts to solving the linear system
Fne=f,
where F,, is the symmetric n X n-matrix (with complex
coefficients)
F = ( €i27rkl/n>

0<k<n—1~
0<l<n-—1

assuming that we index the entries in F}, over
0,1,...,n—1]x][0,1,...,n—1], the standard k-th row
now being indexed by £ — 1 and the standard [-th column
now being indexed by [ — 1.
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The matrix F;, is called a Fourier matriz. Letting
nl —i2mkl
A G [
0<l<n-—1

be the conjugate of F),, it is easily checked that

F.F, = F,F, =nl,.

Thus, the Fourier matrix is invertible, and its inverse
F!' = (1/n)F, is computed very cheaply.

The purpose of the discrete Fourier transform is to find
the Fourier coefficients ¢ = (cy, ..., ¢,—1) from the data

pOintS f — <f07 Tt fn—l)‘

The discrete Fourier transform is a linear map

-~ Ch—= CM

Now, the other major player in Fourier analysis is the
convolution.
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In the discrete case, it is natural to define the discrete
convolution as a circular type of convolution rule.

The discrete convolution is a map . C" x C" — C",
taking two sequences c¢,d € C", and forming the new
sequence ¢ x d.

The Fourier transform and the convolution rule (discrete
or not!) must be defined in such a way that they form
a harmonious pair, which means that the transform of a
convolution should be the product of the transforms, i.e.

—_— /\/\
cxd=cd,

where the multiplication on the right-hand side is just the
inner product of ¢ and d (vectors of length n).
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Inspired by the continuous case, and following Strang |?]

~

)

it is natural to define the discrete Fourier transform f
of a sequence f = (fo,..., fn_1) € C" as

AN

f — ana
or equivalently, as
n—1
]?(:ZC) _ Z fje—ZQij/n
§=0

for every k£, 0 < k <n — 1.

We also define the tnverse discrete Fourier transform
(taking ¢ back to f) as

c=F,c.
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Since

in view of the formula F,,F,, = F,,F,, = n I,,, the Fourier

coefficients ¢ = (c¢g, ..., c,_1) are then given by the for-
mulae
1 1 n—1
cn— — f(k) = = E—z’?wjk/n.
=0 =12,

Note the analogy with the continuous case, where the
Fourier transform f of the function f is given by

Fla) = / " (e

and the Fourier coefficients of the Fourier series
(0. @)

fa)= 3 e

k=—o0

are given by the formulae

1 " -
Cp = — / f(x)e ™ dg.
2m ).
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Remark. Others authors (including Strang in his older
book [?]) define the discrete Fourier transform as

f:ﬁan-

The drawback of this choice is that the convolution rule
has an extra factor of n.

Loop defines the discrete Fourier transform as F}, f, which
causes problem with the convolution rule. We will come
back to this point shortly!

The simplest definition of discrete convolution is, in our
opinion, the definition in terms of circulant matrices.
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We define the circular shift matriz S, (of order n) as
the matrix

(00 0 0 0 1)
100 0 0 0
s _ |0 100 0 0
N v
\0 0 0 0 iy

consisting of cyclic permutations of its first column.

For any sequence f = (fo,..., fn_1) € C" we define the
circulant matrix H(f) as

n—1
H(f) =) fS,
=0

where SY = I,,, as usual.

For example, the circulant matrix associated with the se-
quence f = (a,b,c,d) is

QO SR
QSR
SR QUO
QAO
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We can now define the convolution f*g of two sequences

f: (f()?"'afn—l) andg: (go,---;gn—1> as
frg=H(f)g,

viewing f and g as column vectors.

Then, the miracle (which is not too hard to prove!) is
that we have

which means that the columns of the Fourier matrix F,
are the eigenvectors of the circulant matrix H(f), and
that the eigenvalue associated with the [th eigenvector is
()i, the Ith component of the Fourier transform f of f
(counting from 0).
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After some calculations, we get

Frg=Tn(f*g),

which can be rewritten

as the (circular) convolution rule

where the multiplication on the right-hand side is just the
inner product of the vectors f and g.

If the sequence f = (fo,..., fn_1) is even, which means
that f_; = f; for all j € Z (viewed as a periodic se-
quence), or equivalently, that f,_;, = f; for all 7,

0 <7 <n-—1,itis easily seen that the Fourier transtorm
f can be expressed as

n—1
flk) =" fjcos (2mjk/n),
7=0

for every k, 0 < k <n—1.
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Similarly, the inverse Fourier transform (taking ¢ back to
f) is expressed as

I
—_

Q)|

(k) =) cjcos(2mjk/n),
J
for every k, 0 < k <n—1.

I
o

Observe that it is the same as the (forward) discrete

Fourier transform. This is what saves Loop’s proof (see
below)!

After this digression, we get back to Loop’s Master’s the-
sis [7?].

However, we warn our readers that Loop defines the dis-
crete Fourier transform as

./T"(f):an,

(which is our inverse Fourier transform f) and not as
E, f, which is our Fourier transform f (following Strang

7).
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Neverthless, even though Loop appears to be using an
incorrect definition of the Fourier transtform, what saves
his argument is that for even sequences, his F(f) and our

f are identical, as observed earlier.

With these remarks in mind, we go back to Loop’s proof

that the ordinary vertices pl), . .., p!. | surrounding v’ also

tend to the same limit as ¢'.

The trick is rewrite the equations

n—1

1
1N~ L
q_znpz
1=0
and
S SR U B U S R

1
pi:§p2—1+§pi +§’U +§Pi+1

in terms of discrete convolutions.
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To do so, define the sequences

and

both of length n.
Note that these sequences are even!

We also define the sequence P! as

Pl — (pf)a R 7p£1—1)7

and treat ¢! and v' as constant sequences Q' and V! of
length n.

Then, after some calculations, we get

Pl = (M—%A) * P4 @l
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Taking advantage of certain special properties of M and

A, namely;,
5
(10-24) =
8 J

[%
Pl = (M—%A) * P'+ @,

where ¢"* stands for the n-fold convolution ¢ - -- x¢.
n

—

n_

I
o

J
we get

At this stage, letting
H
R=M-—-—-A
8 Y]

all we have to prove is that R™ tends to the null sequence
as [ goes to infinity:.
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Since both M and A are even sequences, applying the
Fourier transform in its cosine form and the convolution
rule, we have

R* = (R),
and so, we just have to compute the discrete Fourier trans-
form of R.

However, this is easy to do, and we get

s f0 if j =0,
(F); = 2+ 1 cos(2mj/n) if j #0.
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Since the absolute value of the cosine is bounded by 1,

1 ~ 5
< (R): <2
8—()]—8

for all 7,0 <7 <n —1, and thus
lim (R) = 0,,,

[— o0

which proves that

lim R* = lim R™* =0,,
[— o0 [— o0

and consequently that

lim pi — lim ¢
[— o0 [— o0

Therefore, the faces surrounding extraordinary points con-
verge to the same limit as the centroid of these faces.
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Loop gives explicit formulae for the limit of extraordinary
points.

He proves that ¢’ (and thus v') has the limit

3
11 — 8ay,

(1 —=8,)¢"+ 0", where S, =

The bounds to insure convergence are the same as the
bounds to insure convergence of v’ to ¢', namely

5 < 11
— <oy < —.
8 8

In particular, «, = 5/8 yields 8, = 1/2. Loop also
investigates the tangent plane continuity at these limit
points.
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He proves that tangent plane continuity is insured if o,
is chosen so that
1 3 1

—7 cos 27 /n) < oy < 7 T 7008 (27 /n).

For instance, for a vertex of degree three (n = 3), the
values a3 = 5/8 is outside the correct range, as Loop
first observed experimentally.

If o, is chosen in the correct range, it is possible to find a
formula for the tangent vector function at each extraor-
dinary point.

Loop also discusses curvature continuity at extraordinary
points, but his study is more tentative.
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He proposes the following “optimal” value for a,;

3 /3 1 ’
ozn:§+(§+zcos(27r/n)> .

Note that ag = 5/8 is indeed this value for regular vertices
(of degree n = 6).

In summary, Loop proves that his subdivision scheme is
C-continuous, except at a finite number of extraordinary
points. At extraordinary points, there is convergence, and
there is a range of values from which o, can be chosen to
insure tangent plane continuity:.

The implementation of the method is discussed, and it is
nontrivial.

Stam [?] also implemented a method for computing points
on Loop surfaces.

Loop’s scheme was extended to accomodate sharp edges
and creases on boundaries, see Hoppe et [?].



Chapter 12

Embedding an Affine Space in a
Vector Space

12.1 Embedding an Affine Space as a Hyperplane in a
Vector Space: the “Hat Construction”

Assume that we consider the real affine space £ of dimen-

sion 3, and that we have some affine frame (ay, (07, 03, 03)).
With respect to this affine frame, every point x € E is
represented by its coordinates (x1, £, x3), where

— — —
a=ay+ TV +ToVy + T303.

%
A vector @ € E is also represented by its coordinates

(u1, ug, uz) over the basis (Uf, e vg)

483
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One way to distinguish between points and vectors is to
add a fourth coordinate, and to agree that points are
represented by (row) vectors (xy, x9, x3, 1) whose fourth
coordinate is 1, and that vectors are represented by (row)
vectors (vq, vg, v3,0) whose fourth coordinate is 0.

This “programming trick” works actually very well. Of
course, we are opening the door for strange elements such
as (r1, 9, x3, D), where the fourth coordinate is neither 1
nor 0.
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The question is, can we make sense of such elements, and
of such a construction?” The answer is “yes”. We will

%
present a construction in which an affine space (E, E') is

embedded in a vector space E , in which ? is embedded
as a hyperplane passing through the origin, and E itself
is embedded as an affine hyperplane, defined as w™1(1),
for some linear form w: £ — R.

The vector space E has the universal property that for
— —

any vector space F' and any affine map f: &F — F', there

~ A~ — —

is a unique linear map f: £ — F' extending f: £ — F'.
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Some Simple Geometric Transformations

. — - .
Given an affine space (E, E), every « € FE induces a
mapping t,: £ — FE. called a translation, and defined
such that t,(a) = a + @, for every a € E. Clearly, the

set of translations is a vector space isomorphic to £ .

Given any point a and any scalar A € R, we define the
mapping H, \: E — E, called dilatation (or central di-
latation, or homothety) of center a and ratio X\, and
defined such that

Ha’)\(x') =a+ )\Cﬁ,
for every r € E.
H,\(a) = a, and when A # 0 and = # a, H, »(x) is on
the line defined by a and x, and is obtained by “scaling”

at by A. The effect is a uniform dilatation (or contrac-
tion, if A < 1).
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When A =0, Hyo(z) =a for all x € E, and H, is the
constant affine map sending every point to a.

[t we assume A # 1, note that H, ) is never the identity,
and since a is a fixed-point, H,  is never a translation.

We now consider the set E of geometric transformations
from E to F, consisting of the union of the (disjoint) sets
of translations and dilatations of ratio A # 1.

We would like to give this set the structure of a vector

%
space, in such a way that both £/ and E can be nat-
urally embedded into E. In fact, it will turn out that
barycenters show up quite naturally too!
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In order to “add” two dilatations H,, x, and H,, ),, it
turns out that it is more convenient to consider dilatations
of the form H,;_,, where A # 0. To see this, let us see
the effect of such a dilatation on a point x € E: we have

Hyi\z)=a+(1—Nat =a+at — \at = v + \Td.

For simplicity of notation, let us denote H, ;) as (a, A).
Then, we have

(a, \)(2) = = + \Ta.
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Lemma 12.1.1 The set E consisting of the disjoint
union of the translations and the dilatations H, 1)\ =
(a,\), A € R\ #£ 0, is a vector space under the fol-
lowing operations of addition and multiplication by a
scalar:

(a1, A1) F {ag, o) = \azar,
Zf A+ A =0;

(a1, M) F (ag, o) = <A1A+1A2 1+A1A )\Qag,)\l—l—)\2>,
if A\ 4+ o #0;
(@, \)F W = (a+ X1, \);
717:7+7;
p{a, A) = (a, Apy,
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Furthermore, the map w: E—R defined such that

w((a, A))
w(W)

A,
0

)

is a linear form, w™1(0) is a hyperplane isomorphic

— L i ~
to E under the injective linear map 1: E — E such

that i(W) = t, (the translation associated with W ),
and w™1(1) is an affine hyperplane isomorphic to E

%
with direction i( E'), under the injective affine map
j:E — FE, where j(a) = {(a,1), for every a € FE.
Finally, for every a € E, we have

E=i(E)oRj).

The following diagram illustrates the embedding of the
affine space E into the vector space E, when E is an
affine plane.
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Y

Figure 12.1: Embedding an affine space E into a vector space E

~ —
Note that E is isomorphic to E U(E x R*) (where R* =
R — {0}). Other authors, such as Ramshaw, use the
notation F, for F.
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Ramshaw calls the linear form w: £ — R a weight (or

flavor), and he says that an element z € E such that
w(z) = A is A-heavy (or has flavor X) ([?]). The el-
ements of j(E) are 1-heavy and are called points, and

%
the elements of ¢( F') are O-heavy and are called vectors.
In general, the A-heavy elements all belong to the hyper-

%
plane w™(\) parallel to i( ).

Thus, intuitively, we can thing of E as a stack of parallel
hyperplanes, one for each A, a little bit like an infinite
stack of very thin pancakes! There are two privileged
pancakes: one corresponding to E, for A = 1, and one

. —
corresponding to E , for A = 0.

From now on, we will identify j(F) and E, and ¢( £ ) and

E We will also write Aa instead of (a, ), which we will
call a weighted point, and write la just as a. When we
want to be more precise, we may also write (a, 1) as @ (as
Ramshaw does).
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In particular, when we consider the homogenized version
A of the affine space A associated with the base field R
considered as an affine space, we write A for (), 1), when
viewing A as a point in both A and A\A and simply A,
when viewing A as a vector in R and in A. The elements
of A are called Bézier sites, by Ramshaw.

Then, in view of the fact that
(a+ 1) = (a,1) + W,

and since we are identifying a + @ with (a+ @, 1) (un-

der the injection j7), in the simplified notation, the above

reads asa+ @ =a+ . Thus, we go one step further,
~ = —

and denote a + v asa+ u'.

From lemma 12.1.1, for every a € E, every element of E
can be written uniquely as W F Ma. We also denote

Aa + (—u)b

as
Aa = ub.
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Given any family (a;);e; of points in F, and any family
(A;)ier of scalars in R, with finite support, it is easily
shown by induction on the size of the support of (\;);cs
that,

(1) [f Zie] )\z’ — O, then

Z a;, A Z)\ a;,

el 1€l
where R
E )\iai — E )\Zbaz
el el

for any b € E, which, by lemma 5.2.1, is a vector inde-
pendent of b, or

(2) I 3., A # 0, then

Dlah) = (o S

el el 1el

Thus, we see how barycenters reenter the scene quite nat-
urally, and that in E, we can make sense of > ./ {a;, \i),
regardless of the value of )

ZEI
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When » ., A; = 1, the element ) _._,(a;, A;) belongs to
the hyperplane w™1(1), and thus, it is a point. When
> icr Ai = 0, the linear combination of points ) ., Aia;
is a vector, and when I = {1,...,n}, we allow ourselves
to write

AN

Aag + -+ F Apan,

where some of the occurrences of + can be replaced by
— , as
Aay + -+ A,

where the occurrences of — (if any) are replaced by —.

In fact, we have the following slightly more general prop-
erty, which is left as an exercise.
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%
Lemma 12.1.2 Given any affine space (E, E), for
any family (a;);c; of points in E, for any family (N\;)icr
of scalars in R, with finite support, and any family

%
(v_})je 7 of vectors in E also with finite support, and
with I N J =0, the following properties hold:

(1) If > .c; Xi =0, then

Zaz, Z Z)\aﬁZv],

el JjeJ el jeJ
where R
E )\Z'CLZ' = E Azbaz
el el

for any b € E, which, by lemma 5.2.1, is a vector
independent of b, or

(2) If > e Ni # 0, then

RIED O

el jed

ZZ@EI ZCLZ_I_ZZ@EI Z Z)\

el jeJ el

The above formulae show that we have some kind of ex-
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tended barycentric calculus.
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Operations on weighted points and vectors were intro-
duced by H. Grassmann, in his book published in 1844
This calculus will be helpful in dealing with rational curves.

There is also a nice relationship between affine frames in
— R
(E, E') and bases of F, stated in the following lemma.

%
Lemma 12.1.3 Given any affine space (E, E), for

any affine frame (ag, (@oas, . . ., agan)) for E, the fam-
ily (aoa’, . .., @G, ag) is a basis for E, and for any

affine frame (ag, . . ., an) for E, the family (ag, . . ., any)
s a basis for E.

Furthermore, given any element (x,\) € E, if

Tr = Qg+ xlaoai + -+ mmaoa%
over the affine frame (aq, (@oal, ..., aoan)) in E, then
the coordinates of (x, \) over the basis

(ma e A0, CL())

m E, are
(AZ1, ooy ATy, A).



12.1. THE “HAT CONSTRUCTION” 499

— .
For any vector v € E , if

v = v1a0a1 + - -+ Uy QpQoy,
over the basis
s e
(CL()CLl, Cee Cloam)
= .
. B, then over the basis
o e
(aoala ey ApAm;, CLQ)
—— . —
win E, the coordinates of v are

(U1, ..., Um, 0).
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For any element (a, \), where A\ # 0, if the barycentric

coordinates of a w.r.t. the affine basis (ag, ..., ay) in
E are (Mo, ..., Am) with Ao+ ---+ Ay = 1, then the
coordinates of (a,\) w.r.t. the basis (ag, ..., ay) in E
are

(AXgy - ooy AA).

%
If a vector v € E s expressed as

— — —
v = 01a0a1 + - Uy QoA

— _(/Ul_l_...-|—’Um)a,0—|—?]1@1‘|‘““|‘vmam7

with respect to the affine basis (ag, ..., a,) in E, then
its coordinates w.r.t. the basis (ag,...,a,) in E are

(-(’Ul—|— +vm),v1,...,vm).
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The following diagram shows the basis (aga’, aoas, ag)
corresponding to the affine frame (ag, a1, as) in E.

/ pe

J¥a,1) =a
’
’
Re
aq R E
Q >
e
47 aoa?
’
’
’
Re
Ve —
Ve S u

~

Figure 12.2: The basis (aoal, apas, ao) in £/

If (z1,...,x,) are the coordinates of x w.r.t. to the affine

frame (ag, (@oal, ..., aoay)) in E, then, (z1,...,Zm, 1)

are the coordinates of x in FE, i.e., the last coordinate is

1, and if @ has coordinates (uy, . . ., um) with respect to
%

the basis (agal, . . ., agay) in E , then U has coordinates

AN

(U1, ..., Uy, 0)in E, ie. the last coordinate is 0.
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The following diagram shows the affine frame (ag, a1, as)
in I viewed as a basis in F.

~

Figure 12.3: The basis (ag, a1, az) in E
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Now that we have defined E and investigated the rela-
tionship between affine frames in £ and bases in E, we
can give one more construction of a vector space F from

%
E and E, that will allow us to “visualize” in a much more
intuitive fashion the structure of £ and of its operations

AN

+ and -.

%
Definition 12.1.4 Given any affine space (E, E), we

%
define the vector space F as the direct sum £ & R,

where R denotes the field R considered as a vector space

%
(over itself). Denoting the unit vector in R as 1, since

%
F = FE &R, every vector o € F can be written as
— —
T =+ A1 . for some unique = E | and some
unique A € R. Then, for any choice of an origin {; in F,

we define the map €2: EF — F, as follows:

@(9){)\(?‘”?1@) if 6 =(a,\),a€E X#0;
o -7 TwecFE

)
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The idea is that, once again, viewing JF as an affine space
under its canonical structure, E is embedded in F as

the hyperplane H = 1 4 FE, with direction FE, the
—
hyperplane E in F.

Then, every pomt a € I is in bijection with the point

A= 1+ Qla in the hyperplane H. Denoting the origin

%
0 of the canonical affine space F as €2, the map () maps

a point (a,\) € E to a point in F, as follows: Q((a, \))
is the point on the line passmg through both the origin

Q) of .7: and the point A = 1 + Qla in the hyperplane
H = 1 + E,suchthat

O((a, A)) = XA = A(T' + 0a).

The following lemma shows that () is an isomorphism of
vector spaces.
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Lemma 12.1.5 Given any affine space (E, E)), for
any choice 4y of an origin in £, the map O E — Fis
a linear isomorphism between E and the vector space
F of definition 12.1.4. The inverse of ) is given by

T AT = {@ + AT, N))if A #0;
U if A =0.

The following diagram illustrates the embedding of the
affine space E into the vector space F, when E is an
affine plane.
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Figure 12.4: Embedding an affine space E into a vector space F

We now consider the universal property of E. Other au-
thors, such as Ramshaw, use the notation f, for f. First,
we define rigorously the notion of homogenization of an
affine space.
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%
Definition 12.1.6 Given any affine space (F, E), an

%
homogenization (or linearization) of (E, E), is a triple
(€, 7,w), where £ is a vector space, j: E — £ is an in-
jective affine map with associated injective linear map

%
i: B — £, w: & — Ris alinear form, such that w™1(0) =

= | —
i(E), w (1) = j(F), and for every vector space F' and

%
every affine map f: £ — F', there is a unique linear map

AN % AN
f:&€ — F extending f,ie. f = foy7, asin the following
diagram:

E L &
e g
%

F

Thus, j(E) = w (1) is an affine hyperplane with direc-
%
E) =w }0).

tion 4 (
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%
Lemma 12.1.7 Gz'ven any affine space (K, E) and
any vector space F , for any affine map fiE — F

there s a unique linear map f E — F extending f,
such that

AN

F(@ T 2a) = Mla)+ £ (),

= —
foralla € E, all v € E, and all A\ € R, where f 1is
the linear map associated with f. In particular, when
A # 0, we have

Fd T ) = Afla+ 210D,

Lemma 12.1.7 shows that <E , J,w), is an homogenization

%
of (E/, E'). As a corollary, we obtain the following lemma.
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Lemma 12.1.8 Given two affine spaces £ and F' and
an affine map f: E — F, there is a unique linear map
f: B — F extending f, as in the diagram below,

E Ly F

N v

E — F
i

such that

AN

F(@ T aa) = F (@) T M(a),

= —
foralla € E, all v € E, and all A\ € R, where f 1is
the linear map associated with f. In particular, when
A # 0, we have

AN

F(W Faa) = Afla+210).

From a practical point of view, lemma 12.1.8 shows us
how to homogenize an affine map to turn it into a linear
map between the two homogenized spaces.
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Assume that £ and F' are of finite dimension, and that
(ag, (Ui, ..., w,)) is an affine basis of E, with origin ao,
and (by, (01, ...,00)) is an affine basis of F, with origin

bo.

Then, with respect to the two bases (u_f, TS ap) in
FE and (W,...,ﬁ,bo) in F', a linear map h: £ — F'is
given by an (m + 1) x (n + 1) matrice A.

If this linear map A is equal to the homogenized version
f of an affine map f, since

~ —
flu +Aa) = f () + Af(a),
since over the basis (171, TS ag) in E . points are rep-

resented by vectors whose last coordinate is 1, and vectors
are represented by vectors whose last coordinate is 0, the

last row of the matrix A = M/(f) with respect to the
given bases is
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with m occurrences of 0, the last column contains the
coordinates

(:ulv ey oy, 1)

of f(ag) with respect to the basis (07, . . ., Un, bo),

the submatrix of A obtained by deleting the last row and

%
the last column is the matrix of the linear map f with

respect to the bases (g, ..., w,) and (v1,...,0.), and

since
flao+ W) = F( F ap),
given any « € I/ and y € F', with coordinates
(1, ...y, 1) and (Y1, ..., Ym, 1),
for X = (zq,...,2,, 1) and Y = (y1,...,ym, 1), we
have

y=f(z) iff Y =AX.
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For example, consider the following affine map
f: A% — A? defined as follows:

Y1 = axy + bxo + iy,
Yo = cx1 + dTo + Uo.

The matrix of fis

a b
c d o
0 0 1
and we have
Y1 a b (41 X1
Yl =|c d p X2
1 0 0 1 1
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nE , we have

(%31 a b 1 X1
)l =|c d po X2
Y3 0 0 1 T3

which means that the homogeneous map fis is obtained
from f by “adding the variable of homogeneity 3"

Y1 = axy + bxo + pixs,
Yo = cx1 + dxy + [T,

Y3 = I3.

We now show how to homogenize multiaffine maps.
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Lemma 12.1.9 Gwen any affine space E and any

— —
vector space F', for any m-affine map f: E™ — F',

~ —
there is a unique m-linear map f:(E)" — F extend-
ing [, such that, if

flay+ 707, .. am+0n) = flar, ... am) +

Z fs(ﬁv"wv_i/gv

SC{1,...,m}, k=card(5)
S={i1,....ix}, k>1
%
forallay...,a, € E, and all v_1>,...,v_>m c L', where

the fs are uniquely determined multilinear maps (by
lemma 77 ), then

S={i1,...,ip.}, k>1 jé&S
—> — _
for all ay...,a, € E, all v{,...,v,, € E, and all

M,y A € R Furthermore, for A; # 0, 1 <1 < m,
we have

N

f(?}_1>-/|:)\1a1,.. U_>m:|:)\mam) —
A Anf(ar+ ATV, an A ).
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12.2 Differentiating Affine Polynomial Functions Us-
ing Their Homogenized Polar Forms, Osculating
Flats

%
Let 6 = 1, the unit (vector) in R. When dealing with
derivatives, it is also more convenient to denote the vector
ab as b — a.

For any @ € A, the derivative DF'(@) is the limit,

i F(a+td) — F(a)
t—0, t£0 L

)

if it exists. However, since F' agrees with F' on A, we
have

F(@+td) — F(a) = F(a+t§) — F(a),
and thus, we need to see what is the limit of
F(@+td) — F(a)
t Y
when t — 0, t #£ 0, with ¢t € R.




516 CHAPTER 12. EMBEDDING AN AFFINE SPACE IN A VECTOR SPACE

& Recall that since F: A — &£, where £ is an affine space,

%
the derivative DF'(@) of F" at @ 1s a vector in € , and
not a point in &. However, the structure of £ takes care of
this, since F(@+t8) — F(a) is indeed a vector (remember

AN

our convention that — is an abbreviation for — ).

Since

F@+ts) = f@+1o,...,a+1d),

N

m

where fis the homogenized version of the polar form f
of F', and F'is the homogenized version of F', since

Fa+td)—F@) = f@+1,...,a+1t)— f(@,...,a)

m m

by multilinearity and symmetry, we have
F(@+1t8) — F(a) =

k=m
mt f(@,...,qa,0)+ (?)tkﬁ@m@@m@,
2

Hf—/ v/ \/”
m—1 k= m—k k
and thus,
. F@+t§)— F(a N
lim @ ) @) =mf(a,...,a,o).
t—0,t£0 L N——
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However, since I extends F on A, we have DF(a) =
DF(@), and thus, we showed that

AN

DF(a) =mf(a,...,a,o).

m—1

|

This shows that the derivative of F' at @ € A can be
computed by evaluating the homogenized version f of
the polar form f of F', by replacing just one occurrence

of ain f(a,...,a) by .
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More generally, we have the following useful lemma.

Lemma 12.2.1 Gwen an affine polynomzial function
F:A — & of polar degree m, where £ is a normed
affine space, the k-th derivative D*F(a) can be com-
puted from the homogenized polar form f of F' as fol-
lows, where 1 < k < m:

AN

D"F(@)=m(m—1)---(m—k+1) f(@,...,ad,...,0).
m—k i

Since coefficients of the form m(m —1)---(m — k + 1)
occur a lot when taking derivatives, following Knuth, it is
useful to introduce the falling power notation. We define

the falling power mE, as

mE=m(m—1)---(m—k+1),

for 0 < k < m, with m? = 1, and with the convention
that m% = 0 when k& > m.

Using the falling power notation, the previous lemma
reads as

AN

D"F(a)=m" f(a,...,a,d,...,9).
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We also get the following explicit formula in terms of
control points.

Lemma 12.2.2 Gwen an affine polynomzial function
F:A — & of polar degree m, where £ is a normed
affine space, for any v¥,5 € A, with r # s, the k-
th derivative D (F) can be computed from the polar
form f of F' as follows where 1 < k < m:

DFE(7 o - ( ) T f(F,. TS, S).

If F'is specified by the sequence of m + 1 control points
bi = f(T™"s"),0 <1 < m, the above lemma shows that
the k-th derivative D*F(F) of F' at 7, depends only on
the k + 1 control points by, ..., b; In terms of the control
points by, ..., br, the formula of lemma 7.4.1 reads as
follows:

D F () ki() )" b;.

1=0
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In particular, if by # by, then DF'(7) is the velocity vector
of F' at by, and it is given by

DF(F) = — boby = ———

(bl — b0)7

S—7T S —T

the last expression making sense in £.

In terms of the de Casteljau diagram

_ m
DF(t) = (O1,m—1 — bom—1).

S—7T

Similarly, the acceleration vector D*F(F) is given by

D°F(7) = =
— 1)

r)?

m(m
(5 —

the last expression making sense in &.

(bg — 2by + bo),

Later on when we deal with surfaces, it will be necessary
to generalize the above results to directional derivatives.
However, we have basically done all the work already.
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Let us assume that £ and &£ are normed affine spaces,
and consider a map F: E — &£. Recall from definition
11.1.1, that if A is any open subset of . for any a € A,

for any u 7é O in E the directional derivative of F

at a w.r.t. the vector ', denoted as D F(a), is the
limit, if it exists,

lim
t—0,t€U,t£0 t

where U ={t eR | a+tu € A}.

If i E — & is a polynomial function of degree m, with
polar form the symmetric multiaffine map f: £ — &,
then

Fla+td) - F(a) = Fla+tW) — Fla),

where F is the homogenized version of F', that is, the
polynomial map F E — 5 associated with the homoge-
nized version f: (E)™ — & of the polar form f: E™ — &
of F: E — &.
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Thus, D, F'(a) exists iff the limit
AN % AN
. Fla+td)— Fl(a)
lim
t—0, t£0 L

AN

exists, and in this case, this limit is D, F'(a) = D, F(a).
We get

m—1

By a simple, induction, we can prove the following lemma.

Lemma 12.2.3 Gwen an affine polynomaial function

F:E — & of polar degree m, where E and £ are

%

normed affine spaces, for any k nonzero vectors uf,
%

., u_;c> e E, where 1 < k < m, the k-th directional

derivative Dy, ...D, F(a) can be computed from the

AN

homogenized polar form f of F as follows:

Dy, ...DyFla)=mtf(a,...,a,uf,..., )
1 k (CL) m f(,a7 _k:a,a uy, 7U’/<:)
[f £/ has finite dimension,
D*F(a)(ut, ..., ut) =mE fla,... a,ut, ..., up).

N——

m—k



