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Chapter 1

Affine Grassmannians

1.1 The Grassmannian AG(k, n) of Affine Subspaces

In this section, we show that the Grassmannian AG(k, n) of k-dimensional affine subspaces
of Rn arises as the homogeneous space SE(n)/S(E(k)×O(n− k)), in terms of a transitive
action of SE(n) on AG(n, k).

Recall that a nonempty k-dimensional affine subspace A of Rn is determined by a pair
(a0, U), where a0 ∈ Rn is any point in A and U is a k-dimensional subspace of Rn called the
direction of A, with

A = a0 + U = {a0 + u | u ∈ U}.

Two pairs (a0, U) and (b0, U) define the same affine subspace A iff b0 − a0 ∈ U (in fact, U
consists of all vectors of the form b− a, with a, b ∈ A).

The subspace U can be represented by any basis (u1, . . . , uk) of vectors ui ∈ U , and so
A is represented by the affine frame (a0, (u1, . . . , uk)).

Two affine frames (a0, (u1, . . . , uk)) and (b0, (v1, . . . , vk)) represent the same affine sub-
space A iff there is an invertible k × k matrix Λ = (λij) such that

vj =
k∑
i=1

λijui, 1 ≤ j ≤ k,

and if there is some vector c ∈ Rk such that

b0 = a0 +
k∑
i=1

ciui.

Note that (Λ, c) defines an invertible affine map of Rk.

A basis (u1, . . . , uk) of U is represented by a n× k matrix of rank k, say A, so the affine
subspace A is represented by the pair (a0, A), where a0 ∈ Rn and A is a n×k matrix of rank
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4 CHAPTER 1. AFFINE GRASSMANNIANS

k. The equivalence relation on pairs (a0, A) is given by

(a0, A) ≡ (b0, B)

iff there exists a pair (Λ, c), where Λ is an invertible k × k matrix (Λ ∈ GL(k,R)) and c is
some vector in Rk, such that

B = AΛ and b0 = a0 + Ac.

Using Gram-Schmidt, we may assume that (u1, . . . , uk) is an orthonormal basis, which
means that the columns of the matrix A are orthonormal; that is,

A>A = Ik.

Then, in the equivalence relation defined above, the matrix Λ is an orthogonal k× k matrix
(Λ ∈ O(k)).

Definition 1.1. The (real) affine Grassmannian AG(k, n) consists of all k-dimensional affine
subspaces of Rn (1 ≤ k ≤ n).

In the special case k = 1, the affine Grassmannian AG(1, n) consists of all affine lines
in Rn. This is already a topologically complicated space (more complicated than projective
space RPn−1).

The (linear) Grassmannian G(k, n) consists of all k-dimensional (linear) subspaces of Rn

(1 ≤ k ≤ n). By linear duality between a finite-dimensional vector space and its dual,
G(k, n) is isomorphic to G(n− k, n).

There is a relationship between the affine Grassmannians and the linear Grassmannians.
Indeed, we have

AG(k, n) = G(k + 1, n+ 1)−G(k + 1, n).

This is because G(k + 1, n + 1) corresponds to the projective subspaces of dimension
k in RPn. In Rn+1, there is a bijection between the set G(k + 1, n + 1) − G(k + 1, n) of
linear subspaces V of dimension k + 1 that are not contained in the hyperplane of equation
xn+1 = 0, and the set AG(k, n) of k-dimensional affine subspaces of Rn, given by

V 7→ V ∩H1,

whereH1 is the affine hyperplane in Rn+1 of equation xn+1 = 1. The (k+1)-dimensional linear
subspaces contained in the hyperplane xn+1 = 0 correspond to the k-dimensional projective
subspaces of RPn “at infinity” (if we choose the hyperplane xn+1 = 0 as the hyperplane at
infinity in RPn). As a consequence of the equation AG(k, n) = G(k+ 1, n+ 1)−G(k+ 1, n),
the space AG(k, n) is an open subspace of the set of k-dimensional projective subspaces of
RPn, and thus is not compact. Observe that if 0 ≤ k ≤ n− 1, then

A(n− k − 1, n) = G(n− k, n+ 1)−G(n− k, n)
∼= G(k + 1, n+ 1)−G(k, n),
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so A(k, n) is not isomorphic to A(n− k − 1, n), except in the trivial case where n = 2k + 1.

When n = 2 and k = 1, we have

AG(1, 2) = G(2, 3)−G(2, 2) ∼= G(1, 3)−G(0, 2) = RP2 − {one point},

so AG(1, 2) is homeomorphic to the result of deleting one point from the projective plane
RP2, a space homeomorphic to an open Möbius strip (a Möbius strip with its boundary
removed). No wonder AG(1, 2) is hard to deal with!

Recall that the Euclidean group E(n) consists of all invertible affine maps (Q, u), with
Q ∈ O(n) and u ∈ Rn, and that the special Euclidean group SE(n) consists of all invertible
affine maps (Q, u), with Q ∈ SO(n) and u ∈ Rn. As usual, we represent an element (Q, u)
of E(n) (or SE(n)) by the (n+ 1)× (n+ 1) matrix(

Q u
0 1

)
,

with Rn embedded in Rn+1 by adding 1 as (n+ 1)th coordinate.

Definition 1.2. Define an action of the group SE(n) on AG(k, n) as follows: if A ∈
AG(k, n), for any affine frame (a0, A) representing A (where A>A = Ik), for any (Q, u) ∈
SE(n), then

(Q, u) · A = (Qa0 + u,QA).

We need to check that the above action does not depend on the affine frame (a0, A)
chosen for A. If (b0, B) is another affine frame of A (with B>B = Ik), then there is some
orthogonal matrix Λ ∈ O(k) and some vector c ∈ Rk such that

B = AΛ and b0 = a0 + Ac,

and since Q ∈ SO(n) we have

Qb0 = Qa0 +QAc,

QB = QAΛ,

(QA)>QA = A>Q>QA = A>A = Ik

(QB)>QB = B>Q>QB = B>B = Ik,

which shows that (Qa0 + u,QA) and (Qb0 + u,QB) are equivalent via (Λ, c), since QB =
(QA)Λ and Qb0 +u = Qa0 +u+ (QA)c. Therefore, the action of SE(n) on AG(k, n) defined
above does not depend on the affine frame chosen in A.

The above action is transitive.

Indeed, if (a0, A) and (b0, B) represent two affine subspaces, where A>A = Ik and B>B =
Ik, then by Gram-Schmidt, we can extend the columns of A into an orthonormal basis A′
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of Rn, and similarly we can can extend the columns of B into an orthonormal basis B′ of
Rn. But then, the matrices A′ and B′ are n × n orthogonal matrices, and by changing the
sign of their last column if necessary, we may assume that det(A′) = det(B′) = 1, where the
first k columns of A′ still define the same subspace as the k columns of A, since the first
k < n columns are identical, and if k = n, the nth columns have opposite signs. If we let
Q = B′(A′)> and u = b0 −Qa0, we have (Q, u) ∈ SE(n), and

(Q, u) · (a0, A′[1..k]) = (Qa0 + b0 −Qa0, QA′[1..k]) = (b0, B
′[1..k]);

this is because
A′ =

(
A1 A2

)
, B′ =

(
B1 B2

)
,

and since A′ is orthogonal (so is B′), A>2 A1 = 0 and A>1 A1 = Ik, so we have

QA′[1..k] = B′(A′)>A′[1..k]

=
(
B1 B2

)(A>1
A>2

)
A1

=
(
B1A

>
1 +B2A

>
2

)
A1

= B1A
>
1 A1 +B2A

>
2 A1

= B1 = B′[1..k].

Therefore, our action is transitive.

Next, we determine the stabilizer of the affine subspace defined by the affine frame
(0, (e1, . . . , ek)), where e1, . . . , ek are the first k canonical basis vectors of Rn. This affine
subspace is also represented by (0, Pn,k), where Pn,k is the n×k matrix consisting of the first
k columns of the identity matrix In; namely

Pn,k =

(
Ik

0n−k,k

)
.

Proposition 1.1. The stabilizer of the affine subspace defined by (0, Pn,k) is the group H =
S(E(k)×O(n− k)) given by the set of matrices

H =


Q 0 u

0 R 0
0 0 1

 ∣∣∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(Q) det(R) = 1, u ∈ Rk

 .

Proof. For any (P, z) ∈ SE(n), we have

(P, z) · (0, Pn,k) = (P0 + z, PPn,k) = (z, P [1..k]).

In order for (z, P [1..k]) to represent the same affine subspace as (0, Pn,k), there must be some
pair (Λ, c) where Λ ∈ O(k) and c ∈ Rk, so that

P [1..k] = Pn,kΛ and z = Pn,kc.
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The vector Pn,kc is obtained from c by adding 0 as the last n−k coordinates, and the matrix
Pn,kΛ is obtained from Λ by adding n−k rows consisting of the vector (0, . . . , 0)︸ ︷︷ ︸

k

. Therefore,

the last n− k coordinates of z must be zero, and the last n− k rows of P [1..k] must be zero
rows. Since P is an orthogonal matrix, it must be of the form

P =

(
Λ 0
0 R

)
,

with R ∈ O(n − k). Since det(P ) = 1, we must have det(P ) = det(Λ) det(R) = 1, and the
proposition follows with Q = Λ.

As a consequence, as a homogeneous space, the grassmannian of affine subspacesGA(k, n)
is isomorphic to SE(n)/S(E(k)×O(n− k)).

1.2 The Grassmannian AGo(k, n) of Oriented Affine

Subspaces

An oriented affine subspace (other than ∅) is an affine subspace A = a0 + U where U is a
linear subspace with a chosen orthonormal basis (u1, . . . , uk) which defines the orientation
A. What this means is that if (v1, . . . , vk) is another orthonormal basis of U , if A is the
n× k matrix whose columns are (u1, . . . , uk) and if B is the n× k matrix whose columns are
(v1, . . . , vk), then there is a rotation Λ ∈ SO(k) such that

B = AΛ.

The difference with unoriented affine subspaces is that if A = a0 + U is an unoriented
affine subspace, then we only require that Λ ∈ O(k), and so we may have det(Λ) = −1, in
which case (u1, . . . , uk) and (v1, . . . , vk) do not have the same orientation. This leads to the
following technical definition.

Definition 1.3. A real oriented affine subspace of dimension k (in Rn, 1 ≤ k ≤ n) is an
equivalence class of the set of pairs (a0, A), where a0 ∈ Rn and A is an n × k matrix with
orthogonal columns, which means that A>A = Ik, under the equivalence relation on pairs
(a0, A) and (b0, B) with A>A = B>B = Ik given by

(a0, A) ≡ (b0, B)

iff there exists a pair (Λ, c) with Λ ∈ SO(k) and c ∈ Rk, such that

B = AΛ and b0 = a0 + Ac.

The space of oriented affine subspaces of dimension k is the Grassmannian of oriented affine
siubspaces, AGo(k, n).
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The reader should check that for k = 1, the set of oriented affine subspaces (a0, A) with
a0 = 0 is the sphere Sn−1. In contrast, the set of nonoriented affine subspaces (a0, A) with
a0 = 0 is the projective space RPn−1. The affine Grassmannian AGo(1, n) is the space of
oriented affine lines in Rn.

Next we would like to define a transitive action of SE(n) on AGo(k, n) (1 ≤ k ≤ n),
but this time there is no transitive action of SE(n) on AGo(n, n). The problem is that
AGo(n, n) consists of two n-dimensional oriented spaces Rn

+ and Rn
−, corresponding to the

choice of an orthonormal basis as orientation. These two subspaces are not equivalent,
because an isometry that maps an orthonormal basis of Rn

+ to an ortthonormal basis of Rn
−

must have determinant −1. In the sequel we exclude this case an assume that 1 ≤ k < n.
Our goal is to show that if 1 ≤ k < n, then as a homogeneous space, the grassmannian of
oriented affine subpaces GAo(k, n) is isomorphic to SE(n)/SE(k)×SO(n−k). Observe that
AGo(n, n) is isomorphic to O(n)/SO(n).

Definition 1.4. Define an action of the group SE(n) on AG(ok, n) with 1 ≤ k < n, as
follows: if A ∈ AG(k, n), for any affine frame (a0, A) representing A (where A>A = Ik), for
any (Q, u) ∈ SE(n),

(Q, u) · A = (Qa0 + u,QA).

The proof that the above action does not depend on the affine frame (a0, A) chosen for
A is the same as in the unoriented case, because if

B = AΛ and b0 = a0 + Ac, Λ ∈ SO(k),

then
QB = QAΛ, Λ ∈ SO(k),

which shows that (Qa0 + u,QA) and (Qb0 + u,QB) are equivalent via (Λ, c). Therefore, the
action of SE(n) on AGo(k, n) defined above does not depend on the affine frame chosen in
A. The above action is transitive if 1 ≤ k < n.

Indeed, if (a0, A) and (b0, B) represent two oriented affine subspaces, where A>A = Ik
and B>B = Ik, then by Gram-Schmidt, we can extend the columns of A into an orthonormal
basis A′ of Rn, and similarly we can can extend the columns of B into an orthonormal basis
B′ of Rn. But then, the matrices A′ and B′ are n× n orthogonal matrices, and by changing
the sign of their last column if necessary, we may assume that det(A′) = det(B′) = 1, where
the first k < n columns of A′ are equal to the first k < n columns of A (and similarly for B
and B′ who have the first identical k < n columns). The rest of the proof is the same as in
the unoriented case.

Next, we determine the stabilizer of the oriented affine subspace is represented by (0, Pn,k),
where Pn,k is the n × k matrix consisting of the first k columns of the identity matrix In;
namely

Pn,k =

(
Ik

0n−k,k

)
.
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Proposition 1.2. If 1 ≤ k < n, then the stabilizer of the oriented affine subspace defined by
(0, Pn,k) is the group H0 = SE(k)× SO(n− k) given by the set of matrices

H =


Q 0 u

0 R 0
0 0 1

 ∣∣∣∣∣∣ Q ∈ SO(k), R ∈ SO(n− k), u ∈ Rk

 .

Proof. For any (P, z) ∈ SE(n), we have

(P, z) · (0, Pn,k) = (P0 + z, PPn,k) = (z, P [1..k]).

In order for (z, P [1..k]) to represent the same oriented affine subspace as (0, Pn,k), there must
be some pair (Λ, c) where Λ ∈ SO(k) and c ∈ Rk, so that

P [1..k] = Pn,kΛ and z = Pn,kc.

The vector Pn,kc is obtained from c by adding 0 as the last n−k coordinates, and the matrix
Pn,kΛ is obtained from Λ by adding n−k rows consisting of the vector (0, . . . , 0)︸ ︷︷ ︸

k

. Therefore,

the last n− k coordinates of z must be zero, and the last n− k rows of P [1..k] must be zero
rows. Since P ∈ SO(n), it must be of the form

P =

(
Λ 0
0 R

)
,

with R ∈ O(n− k), and since det(P ) = 1 and det(Λ) = 1, we must have det(R) = 1, and so
R ∈ SO(n− k).

As a consequence, if 1 ≤ k < n, as a homogeneous space, the grassmannian of oriented
affine subpaces GAo(k, n) is isomorphic to SE(n)/SE(k)×SO(n−k). The grassmannian of
oriented affine subpaces GAo(n, n) has two elements and so it is isomorphic to O(n)/SO(n).

1.3 The Grassmannians AG(k, n) and AGo(k, n) as

Reductive Homogeneous Spaces

In this section, we show that the Grassmannian AG(k, n) (1 ≤ k ≤ n) and AGo(k, n)
(1 ≤ k < n) are reductive homogeneous space with a simple reductive decomposition se(n) =
h ⊕ m. In fact, there is an involutive automorphism σ of SE(n) whose fixed subgroup
SEσ is exactly the group H = S(E(k) ×O(n − k)) introduced in Section 1.1, and A(k, n)
is isomorphic to SE(n)/S(E(k) × O(n − k)). If 1 ≤ k < n, the group SEσ

0 = H0 =
SE(k)×SO(n−k) is the connected component of SEσ containing the identity, and Ao(k, n)
is isomorphic to SE(n)/SE(k) × SO(n − k). The groups SEσ and SEσ

0 have the same Lie
algebra h given by

h =


S 0 u

0 T 0
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), u ∈ Rk

 .
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It follows that, except for the fact that there is no Ad(H)-invariant metric on m (because
H is not compact), all the other properties of a symmetric space are satisfied.

Let Ik,n−k be the matrix

Ik,n−k =

(
Ik 0
0 −In−k

)
.

Note that I2k,n−k = In. We define an automorphism σ of SE(n) as follows:

σ

(
Q z
0 1

)
=

(
Ik,n−k 0

0 1

)(
Q z
0 1

)(
Ik,n−k 0

0 1

)
.

Because I2k,n−k = In, we have σ2 = id. Let us find the subgroup SE(n)σ of SE(n) fixed by
σ. Every matrix P in SE(n) can be written as

P =

Q R u
S T v
0 0 1

 ,

with u ∈ Rk and v ∈ Rn−k, and we haveIk 0 0
0 −In−k 0
0 0 1

Q R u
S T v
0 0 1

Ik 0 0
0 −In−k 0
0 0 1

 =

 Q R u
−S −T −v
0 0 1

Ik 0 0
0 −In−k 0
0 0 1


=

 Q −R u
−S T −v
0 0 1

 .

Then, σ(P ) = P iff
R = −R, S = −S, v = −v,

which means that R = 0, S = 0, and v = 0. Therefore SE(n)σ = S(E(k)×O(n− k)) = H.

If 1 ≤ k < n, since there is no continuous path in O(n − k) from In−k to a matrix
Q ∈ O(n − k) with det(Q) = −1, we see that the connected component SE(n)σ0 of the
identity In+1 in SE(n)σ is the group H0 = SE(k)× SO(n− k) from Section 1.2.

The Lie algebras of SE(n) and H = SE(n)σ are

se(n) =


S −A> u
A T v
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), A ∈ Mn−k,k, u ∈ Rk, v ∈ Rn−k


and

h =


S 0 u

0 T 0
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), u ∈ Rk

 .
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The derivative θ = dσI is an involutive automorphism of se(n) which is easily found using
curves through I. For any X ∈ se(n), if γ is the curve in SE(n) given by γ(t) = etX , then
γ(0) = I, γ′(0) = X, and by the chain rule

d(σ(γ(t))

dt

∣∣∣∣
t=0

= dσγ(0)(γ
′(0)) = dσI(X),

so we have

dσI(X) =
d

dt

((
Ik,n−k 0

0 1

)
etX
(
Ik,n−k 0

0 1

))
t=0

=

((
Ik,n−k 0

0 1

)
XetX

(
Ik,n−k 0

0 1

))
t=0

=

(
Ik,n−k 0

0 1

)
X

(
Ik,n−k 0

0 1

)
.

Therefore

θ

(
S z
0 0

)
=

(
Ik,n−k 0

0 1

)(
S z
0 0

)(
Ik,n−k 0

0 1

)
.

Consequently, the Lie algebra h is the eigenspace of θ associated with the eigenvalue +1,
whereas the eigenspace of θ associated with the eigenvalue −1 is given by

m =


0 −A> 0
A 0 v
0 0 0

 ∣∣∣∣∣∣ A ∈ Mn−k,k, v ∈ Rn−k

 .

By Lemma 30 in O’Neill [4] (Chapter 11), the fact that σ is an involutive automorphism
of SE(n) whose fixed subgroup is H has the following interesting implications.

Proposition 1.3. The following properties hold:

(1) We have a direct sum
se(n) = h⊕m.

(2) Ad(h)(m) ⊆ m for all h ∈ H.

(3) We have
[h, h] ⊆ h, [h,m] ⊆ m, [m,m] ⊆ h.

Consequently, if 1 ≤ k ≤ n, then AG(k, n) is a reductive homogeneous space SE(n)/S(E(k)×
O(n− k)) with the reductive decomposition se(n) = h⊕m, and if 1 ≤ k < n, then AGo(k, n)
is also a reductive homogeneous space SE(n)/SE(k) × SO(n − k) with the same reductive
decomposition se(n) = h⊕m
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The next step is to check whether it is possible to define a G-invariant metric on AG(k, n).
For this, let us figure out what the adjoint action of H on m is. For any

h =

R 0 u
0 S 0
0 0 1

 ∈ H,
and any

X =

0 −A> 0
A 0 v
0 0 0

 ∈ m,

we have

Adh(X) =

R 0 u
0 S 0
0 0 1

0 −A> 0
A 0 v
0 0 0

R> 0 −R>u
0 S> 0
0 0 1


=

 0 −RA> 0
SA 0 Sv
0 0 0

R> 0 −R>u
0 S> 0
0 0 1


=

 0 −RA>S> 0
SAR> 0 −SAR>u+ Sv

0 0 0

 .

Consider the matrices h ∈ H such that R = I, S = I and the first coordinate u1 in u is
nonzero. The matrices X ∈ m that either have a single nonzero entry equal to 1 in A (and
A>) or a single nonzero entry in v form a basis of m. Let Ek+11 ∈ m be the matrix whose
only nonzero entries are ek+11 = 1 and e1k+1 = −1, and let Ek+1n ∈ m be the matrix whose
only nonzero entry is ek+1n = 1. Then, we have

Adh(Ek+11) =

0 A> 0
A 0 −Au
0 0 0

 =



0 · · · 0 −1 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0
1 · · · 0 0 0 · · · −u1
0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0


= Ek+11 − u1Ek+1n.

Therefore, the matrix of Adh over the basis (Eij) has the entry −u1 in the row corresponding
to Ek+1n and the column corresponding to Ek+11, and since u1 ∈ R is arbitrary, we see that
the matrices representing the linear maps Adh have unbounded entries (even for the special
kinds of matrices in H that we are considering). Therefore, Ad(H) is not bounded, and thus
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it closure is not compact, which implies that there is no Ad(H)-invariant inner product on
m (by Theorem 2.42 of Gallot, Hullin, Lafontaine [1]). Therefore, there is no hope for a
G-invariant metric on AG(k, n). Except for that, AG(k, n) has all the other properties of a
symmetric space. A similar result applies to AGo(k, n) when 1 ≤ k < n.

1.4 A Connection on SE(n)

We compute the Levi-Civita connection associated with the left-invariant metric on SE(n)
induced by the inner product in se(n) given by

〈X, Y 〉 = tr(XY >) = tr(X>Y ).

For left-invariant vector fields, the inner products 〈X, Y 〉 are constant, so the Koszul formula
reduces to

2〈∇XY, Z〉 = 〈[X, Y ], Z〉 − 〈[Y, Z], X〉 − 〈[X,Z], Y 〉.

If

X =

(
S1 u1
0 0

)
, Y =

(
S2 u2
0 0

)
, Z =

(
S3 u3
0 0

)
,

then we have

[Y, Z] = Y Z − ZY =

(
S2S3 S2u3

0 0

)
−
(
S3S3 S3u2

0 0

)
=

(
S2S3 − S3S2 S2u3 − S3u2

0 0

)
,

and

〈[Y, Z], X〉 = tr

(
S2S3 − S3S2 S2u3 − S3u2

0 0

)(
S>1 0
u>1 0

)
= tr

(
(S2S3 − S3S2)S

>
1 + (S2u3 − S3u2)u

>
1 0

0 0

)
= tr(S2S3S

>
1 − S3S2S

>
1 + S2u3u

>
1 − S3u2u

>
1 ).

Similarly,
〈[X,Z], Y 〉 = tr(S1S3S

>
2 − S3S1S

>
2 + S1u3u

>
2 − S3u1u

>
2 ),

so we get

〈[Y, Z], X〉+ 〈[X,Z], Y 〉 = tr(S2S3S
>
1 − S3S2S

>
1 + S1S3S

>
2 − S3S1S

>
2

+ S2u3u
>
1 − S3u2u

>
1 + S1u3u

>
2 − S3u1u

>
2 )

and since S>1 = −S1, S
>
2 = −S2, we obtain

〈[Y, Z], X〉+ 〈[X,Z], Y 〉 = tr(−S2S3S1 + S3S2S1 − S1S3S2 + S3S1S2

+ S2u3u
>
1 + S1u3u

>
2 − S3(u2u

>
1 + u1u

>
2 )).
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Now, the first and the fourth terms cancel out since

tr(S2S3S1) = tr(S3S1S2),

and the second and the third terms cancel out since

tr(S3S2S1) = tr(S1S3S2).

Furthermore, because u2u
>
1 + u1u

>
2 is symmetric and S3 is skew symmetric, we have

tr(S3(u2u
>
1 + u1u

>
2 )) = 0.

Indeed, if S is a skew symmetric and H is a symmetric matrix

tr(SH) = tr((SH)>) = tr(H>S>) = −tr(HS) = −tr(SH),

so tr(SH) = 0. After simplifications, we get

〈[Y, Z], X〉+ 〈[X,Z], Y 〉 = tr(S2u3u
>
1 + S1u3u

>
2 ) = tr(S>2 u1u

>
3 + S>1 u2u

>
3 ).

Then, if we observe that

tr(S>2 u1u
>
3 + S>1 u2u

>
3 ) = tr

(
0 S>2 u1 + S>1 u2
0 0

)(
S>3 0
u>3 0

)
,

we can write

2〈∇XY, Z〉 = 〈[X, Y ], Z〉 − 〈[Y, Z], X〉 − 〈[X,Z], Y 〉

= 〈[X, Y ], Z〉 −
〈(

0 S>2 u1 + S>1 u2
0 0

)
, Z

〉
= 〈[X, Y ], Z〉+

〈(
0 S2u1 + S1u2
0 0

)
, Z

〉
,

which yields

∇XY =
1

2

(
[X, Y ] +

(
0 S2u1 + S1u2
0 0

))
.

Since

[X, Y ] =

(
S1S2 − S2S1 S1u2 − S2u1

0 0

)
,

we also have

∇XY =
1

2

(
S1S2 − S2S1 2S1u2

0 0

)
.

Consider the inner product
〈X, Y 〉 = tr(X>Y )
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on se(n). We claim that this inner product is invariant under the left action of G = SE(n).
If

X =

(
S u
0 0

)
, Y =

(
T v
0 0

)
, and R =

(
Q z
0 1

)
∈ SE(n),

with S> = −S, T> = −T , Q>Q = QQ> = I, and u, v, z ∈ Rn, then we have(
Q z
0 1

)(
S u
0 0

)
=

(
QS Qu
0 0

)
(
Q z
0 1

)(
T v
0 0

)
=

(
QT Qv
0 0

)
,

so

〈RX,RY 〉 = tr

(
S>Q> 0
u>Q> 0

)(
QT Qv
0 0

)
= tr

(
S>Q>QT S>Q>Qv
u>Q>QT u>Q>Qv

)
= tr

(
S>T S>v
u>T u>v

)
= tr(S>T + u>v).

However

〈X, Y 〉 = tr

(
S> 0
u> 0

)(
T v
0 0

)
= tr

(
S>T S>v
u>T u>v

)
= tr(S>T + u>v),

which proves that
〈RX,RY 〉 = 〈X, Y 〉.
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Chapter 2

Metrics on G/H And Right-Invariant
Metrics on G

Given a reductive homogeneous manifold G/H with reductive decomposition g = h⊕m, if H
is not compact, Ad(H)-invariant metrics on m do not necessarily exist. It is still desirable to
obtain metrics on G/H such that the projection π : G→ G/H is a Riemannian submersion.
Since H acts freely and properly on G on the right , for every right-invariant metric on G
induced by an inner product 〈−,−〉 on g, the maps Rh are isometries for all h ∈ H, so by
Proposition 2.28 in Gallot, Hullin, Lafontaine [1], (Chapter 2), there is a unique Riemannian
metric 〈−,−〉G/H on G/H such that π : G→ G/H is a Riemannian submersion.

Since G/H is reductive, we have

g = h⊕m,

and this makes it possible to pick the horizontal subspaces in the tangent spaces TaG (with
a ∈ G) in terms of m and to give a more direct proof of Proposition 2.28 from Gallot, Hullin,
Lafontaine [1].

Given an inner product 〈−,−〉 on g, recall that the induced right-invariant metric on G
is given by

〈u, v〉a = 〈(dRa−1)a(u), dRa−1)a(v)〉, for all u, v ∈ TaG and all a ∈ G.

We will show that a metric on G/H can be obtained by propagating by right-invariance a
metric on g to all of the “horizontal subspaces” (dLa)1(m) of Ta(G) = (dLa)1(g).

Because of the invariance condition Adh(m) ⊆ m for all h ∈ H (since G/H is a reductive
homogeneous space), since m is finite-dimensional and Adh is injective, we have Adh(m) = m,
and if b = ah then

Adb = Ada ◦ Adh,

which implies that

Adb(m) = Ada(m), for all a, b ∈ G such that a−1b ∈ H.

17
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This means that Ada(m) depends only on the point p ∈ G/H for which p = aH.

Recall that for every a ∈ G, the map τa : G/H → G/H is defined by

τa(bH) = abH, for all a, b ∈ G,

and π : G→ G/H is the projection given by π(a) = aH. For all a, b ∈ G, we have

τa(π(b)) = abH = π(La(b)),

namely

τa ◦ π = π ◦ La.

By taking the derivative at 1, we get

(dτa)o ◦ dπ1 = dπa ◦ (dLa)1;

equivalently, the following diagram commutes (where p = aH):

g
(dLa)1 //

dπ1
��

(dLa)1(g) = TaG

dπa
��

To(G/H)
(dτa)o

// Tp(G/H).

Since Ker dπ1 = h and since (dLa)1 is an isomorphism, we see that

Ker dπa = (dLa)1(h).

Also, since the restriction of dπ1 to m is an isomorphism and (dLa)1 and (dτa)o are isomor-
phims, so is the restriction of dπa to (dLa)1(m). We have the following commutative diagram
in which all the maps are isomorphisms (with p = aH):

m
(dLa)1 //

dπ1

��

(dLa)1(m)

dπa
��

To(G/H)
(dτa)o

// Tp(G/H).

For all a ∈ G and all h ∈ H, we have

π(a) = aH = ahH = π(ah) = π(Rh(a));

that is, π = π ◦Rh, and by taking derivatives at a, we get

dπa = dπah ◦ d(Rh)a. (∗)
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Equivalently, if we write b = ah and p = aH for a ∈ G and h ∈ H, we have the following
commutative diagram:

TaG = (dLa)1(g)

dπa ((QQ
QQQ

QQQ
QQQ

QQ

(dRh)a // (dLb)1(g) = TbG

dπbvvmmm
mmm

mmm
mmm

Tp(G/H)

Since
TaG = (dLa)1(g),

we have
TaG = (dLa)1(h)⊕ (dLa)1(m),

and since Ker dπa = (dLa)1(h) and the restriction of dπa to (dLa)1(m) is an isomorphism
onto Tp(G/H), we can take (dLa)1(m) as the horizontal subspace Ha of TaG.

As a consequence, for any p ∈ G/H and any a ∈ G such that p = aH, since the map
dπa : (dLa)1(m) → Tp(G/H) is an isomorphism, for any u ∈ Tp(G/H), there is a unique
X ∈ m such that

u = (dπa ◦ (dLa)1)(X);

namely, X = ((dLa−1)a ◦ (dπa)
−1)(u).

Let us find out how X changes when we express u in terms of b, with b = ah for some
h ∈ H.

Proposition 2.1. For any p = aH = bH in G/H, if b = ah for some h ∈ H, for any
u ∈ Tp(G/H) and any X ∈ m such that u = (dπa ◦ (dLa)1)(X), we have

u = (dπb ◦ (dLb)1)(X
′), with X ′ = Adh−1(X).

Proof. Since a = bh−1, by (∗) dπa = dπb ◦ d(Rh)a, La and Rh commute, and since Ada =
d(La ◦Ra−1)1 = (dLa)a−1 ◦ (dRa−1)1, we have

u = (dπa ◦ (dLa)1)(X)

= (dπb ◦ (dRh)a ◦ (dLa)1)(X)

= (dπb ◦ (dLa)h ◦ (dRh)1)(X)

= (dπb ◦ (dLb)1 ◦ (dLh−1)h ◦ (dRh)1)(X)

= (dπb ◦ (dLb)1 ◦ Adh−1)(X),

which shows that

u = (dπb ◦ (dLb)1)(X
′), with X ′ = Adh−1(X),

as claimed.
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For any a ∈ G, the map Ada : g→ g is a linear isomorphism of g, so Ada(m) is always a
subspace of g. In the special case where a ∈ H, we have Ada(m) = m, but for a ∈ G −H,
this is generally false and we can only claim that Ada(m) ⊆ g. Here is the main theorem of
this section.

Theorem 2.2. Given any homogeneous reductive manifold G/H with reductive decomposi-
tion

g = h⊕m,

every inner product 〈−,−〉 on g yields a Riemannian metric on G/H such that if G is
endowed with the right-invariant Riemannian metric induced by 〈−,−〉, then π : G→ G/H
is a Riemannian submersion. For every a ∈ G, the horizontal subspace Ha at a is given by

Ha = (dLa)1(m),

and the restriction of dπa to Ha = (dLa)1(m) is an isomorphism onto Tp(G/H), with p = aH.
The metric on Tp(G/H) is defined as follows: For every p = aH ∈ G/H, for any two vectors
u, v ∈ Tp(G/H),

〈u, v〉G/H,p = 〈(dπa)−1(u), (dπa)
−1(v)〉a,

where 〈−,−〉a is the right-invariant metric on Ha = (dLa)1(m) induced by the inner product
on g, which means that

〈u, v〉G/H,p = 〈(dRa−1)a((dπa)
−1(u)), (dRa−1)a((dπa)

−1(v))〉.

Equivalently, if X and Y are the unique vectors in m such that X = ((dLa−1)a ◦ (dπa)
−1)(u)

and Y = ((dLa−1)a ◦ (dπa)
−1)(v), then

〈u, v〉G/H,p = 〈Ada(X),Ada(Y )〉.

Furthermore, Ada(m) depends only on the point p ∈ G/H for which p = aH. We can choose
an inner product on g by picking any inner product on m and any inner product on h and
asserting that h and m are orthogonal. This, way

TaG = (dLa)1(h)⊕ (dLa)1(m),

where the vertical subspace Va = (dLa)1(h) and the horizontal subspace Ha = (dLa)1(m) are
orthogonal for every a ∈ G. Furthermore, for all a, b ∈ G and all h ∈ H, if b = ah, then
(dRh)a is an isometry between Ha and Hb.

Proof. We define the metric 〈−,−〉G/H using the isomorphisms dπa : Ha → Tp(G/H), where
Ha = (dLa)1(m), a ∈ G, and p = aH ∈ G/H, as follows. For any two vectors u, v ∈
Tp(G/H), if X and Y are the unique vectors in m such that X = ((dLa−1)a ◦ (dπa)

−1)(u)
and Y = ((dLa−1)a ◦ (dπa)

−1)(v), then we have

〈u, v〉G/H,p = 〈(dRa−1)a((dπa)
−1(u)), (dRa−1)a((dπa)

−1(v))〉
= 〈(dRa−1)a((dLa)1(X)), (dRa−1)a((dLa)1(Y ))〉
= 〈Ada(X),Ada(Y )〉.
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Thus, the metric on Tp(G/H) is completely determined by the metric on Ada(m), a
subspace which depends only on the point p ∈ G/H for which p = aH.

Let us check that this definition does not depend on the choice of the coset representative
aH = p. If bH = aH, we have b = ah for some h ∈ H, and then by Proposition 2.1 we have

X ′ = ((dLb−1)b ◦ (dπb)
−1)(u) = Adh−1(X) and Y ′ = ((dLb−1)b ◦ (dπb)

−1)(v) = Adh−1(Y ),

so for p = bH, we have

〈u, v〉G/H,p = 〈Adb(X
′),Adb(Y

′)〉
= 〈Adb(Adh−1(X)),Adb(Adh−1(Y ))〉
= 〈Ada(X),Ada(Y )〉,

proving that the definition of 〈u, v〉G/H,p does not depend on the coset representative of
p = aH. The smoothness of this metric follows from the standard argument; namely, G is a
principal H-bundle over G/H, and so local sections exist.

Observe that the definition

〈u, v〉G/H,p = 〈(dRa−1)a((dπa)
−1(u)), (dRa−1)a((dπa)

−1(v))〉

means that
〈u, v〉G/H,p = 〈(dπa)−1(u), (dπa)

−1(v)〉a,

where 〈−,−〉a is the right-invariant metric on Ha = (dLa)1(m) induced by the inner product
on g. Consequently, for all p ∈ G/H and for all a ∈ G such that p = aH, the isomorphism
dπa : HA → Tp(G/H) is an isometry, which shows that the submersion π is a Riemannian
submersion. Furthermore, for all a, b ∈ G and all h ∈ H, if b = ah, then (dRh)a is an
isometry between Ha = (dLa)1(m) and Hb = (dLb)1(m).
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Chapter 3

G-Invariant Connections on Reductive
Homogeneous Spaces

3.1 Connections on Reductive Homogeneous Spaces

Given a reductive homogeneous space G/H with reductive decomposition g = h ⊕ m, we
know that there is a one–to–one correspondence between G-invariant metrics on G/H and
inner products 〈−, 〉m on m that are Ad(H)-invariant , which means that

〈u, v〉m = 〈Adh(u),Adh(v)〉m, for all h ∈ H and all u, v ∈ m.

Unfortunately, if H is not compact, such inner products do not exist.

Instead of trying to define a connection on G/H in terms of a metric, we may try to define
a connection on G/H in terms of a bilinear map α : m×m→ m on m. Since the Levi–Civita
connection is invariant under diffeomorphisms, the Levi–Civita connection induced by an
Ad(H)-invariant inner product on m is G-invariant, so it it natural to look for G-invariant
connections. Let us review what it means for a connection on G/H to be G-invariant.

Every group element a ∈ G defines a diffeomorphism τa : G/H → G/H given by

τa(gH) = agH, for all g ∈ G.

Oberve that
τab = τa ◦ τb,

since
τab(gH) = abgH = τa(bgH) = τa(τb(gH)),

and
τh(H) = H, for all h ∈ H.

Given a diffeomorphism ϕ : M → N between two manifolds M and N , for any vector
field V on M , recall that we define the push-forward ϕ∗V of V by

(ϕ∗V )ϕ(p) = dϕpVp, for all p ∈M.

23
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If ψ is a diffeomorphism from N to P , then

((ψ ◦ ϕ)∗V )ψ(ϕ(p)) = d(ψ ◦ ϕ)pVp

= dψϕ(p)(dϕpVp)

= dψϕ(p)(ϕ∗V )ϕ(p)

= (ψ∗(ϕ∗V ))ψ(ϕ(p)),

which shows that
(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

Definition 3.1. A connection ∇ on a homogeneous space G/H is G-invariant if

(τa)∗(∇VW ) = ∇(τa)∗V ((τa)∗W ), for all V,W ∈ X (G/H) and all a ∈ G. (∗)

Recall that (∇VW )p depend only of Vp, so

(∇VW )p = (∇VpW )p.

We make constant use of the above fact.

The natural projection from G onto G/H is denoted by π : G → G/H. Recall that the
restriction of the map dπ1 : g→ T0(G/H) to m is a linear isomorphism (where o denotes the
point in G/H corresponding to the coset 1H = H). Since g = h ⊕ m, every vector X ∈ g
has a unique decomposition as

X = Xh +Xm, Xh ∈ h, Xm ∈ m.

The fact that every X ∈ g induces a vector field X∗ on G/H (an action field or infinites-
imal generator) through the left action of G on G/H plays a crucial role. For any X ∈ g,
the vector field X∗ is given by

X∗p =
d

dt
(exp(tX)aH)

∣∣∣∣
t=0

,

for any a ∈ G such that p = aH. Recall that the linear map dπ1 : g → To(G/H) can be
expressed as

dπ1(X) = X∗0 =
d

dt
(exp(tX)H)

∣∣∣∣
t=0

,

and Ker (dπ1) = h.

It turns out that any G-invariant connection on G/H is uniquely determined by the
bilinear map α : m×m→ m given by

α(X, Y ) = (dπ1)
−1(∇X∗

o
Y ∗)o, for all X, Y ∈ m.
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Furhermore, there is a one-to-one correspondence between G-invariant connections on G/H
and bilinear maps α : m×m→ m satifying the condition

Adh(α(X, Y )) = α(Adh(X),Adh(Y )), for all X, Y ∈ m and all h ∈ H. (†)

It is also possible to characterize torsion-free G-invariant connections and G-invariant con-
nections for which the geodesics through o are of the form γ(t) = etX · o. In this case, the
bilinear map α is given by

α(X, Y ) = −1

2
[X, Y ]m, X, Y ∈ m.

This connection is known as the Cartan connection on G/H. The Levi–Civita connection
associated with a G-invariant metric on G/H coincides with the Cartan connection on G/H
iff G/H is naturally reductive.

The following technical results will be needed.

Proposition 3.1. For any X ∈ g and any a ∈ G, we have

(τa)∗X
∗ = (Ada(X))∗.

Proof. By definition, for any p = bH, we have τa(bH) = abH, and

((τa)∗X
∗)τa(p) = (dτa)p(X

∗(p))

=
d

dt
(a exp(tX)bH)

∣∣∣∣
t=0

=
d

dt
(a exp(tX)a−1abH)

∣∣∣∣
t=0

=
d

dt
(exp(tAda(X))abH)

∣∣∣∣
t=0

= (Ada(X))∗τa(p),

which shows that (τa)∗X
∗ = (Ada(X))∗.

In the special case where p = o, since X∗o = dπ1(X) for any X ∈ g, the above derivation
shows that

((τa)∗X
∗)τa(o) = dτa(X

∗
0 )

= dτa(dπo(X))

= ((dτa)o ◦ dπ1)(X)

= (Ada(X))∗τa(o),

so ((dτa)o ◦dπ1)(X) = (Ada(X))∗τa(o). If we restrict X to belong to m and if we let p = aH =

τa(o) and define ηa : Ada(m)→ Tp(G/H) by

ηa(Y ) = Y ∗p , Y ∈ Ada(m),
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then we obtain the following commutative diagram:

m
Ada //

dπ1

��

Ada(m)

ηa

��
To(G/H)

(dτa)o

// Tp(G/H).

(∗∗)

Since the maps Ada, dπ1 and (dτa)o are linear isomorphisms, the map ηa is an isomorphism
between Ada(m) and Tp(G/H), with p = aH. Observe that if h ∈ H, then p = o, Adh(m) =
m, and ηh = dπ1.

Proposition 3.2. For any p ∈ G/H, for any two coset representatives bH = aH = p, if
b = ah for some h ∈ m, then

ηb ◦ Adb = ηa ◦ Ada ◦ Adh.

Proof. Indeed, by (∗∗) we have

ηa ◦ Ada = (dτa)o ◦ dπ1
ηb ◦ Adb = (dτb)o ◦ dπ1

dπ1 ◦ Adh = (dτh)o ◦ dπ1,

and we deduce that

ηb ◦ Adb = (dτb)o ◦ dπ1
= (dτa)o ◦ (dτh)o ◦ dπ1
= (dτa)o ◦ dπ1 ◦ Adh

= ηa ◦ Ada ◦ Adh,

as claimed.

We begin with a necessary condition for a connection on G/H to be G-invariant. Recall
that as a special case of (∗∗), we have

dπ1 ◦ Adh = (dτh)o ◦ dπ1 for all h ∈ H,

which can be expressed as

(Adh(X))∗o = (dτh)o(X
∗
o ) for all h ∈ H and all X ∈ m.

This equation is also shown in O’Neill [4] (Chapter 11, Proposition 22) and Gallier (Propo-
sition 19.16).
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If we apply the identity (∗) at τh(o) = o to V = X∗, W = Y ∗ with X, Y ∈ m, and to
a = h ∈ H, we get

(τh)∗(∇X∗Y ∗)o = (∇((τh)∗X∗)o(τh)∗Y
∗)o,

which is equivalent to

(dτh)o(∇X∗
o
Y ∗)o = (∇(dτh)oX∗

o
(Adh(Y ))∗)o

= (∇(Adh(X))∗o(Adh(Y ))∗)o.

Definition 3.2. The bilinear map α : m×m→ m is given by

α(X, Y ) = (dπ1)
−1(∇X∗

o
Y ∗)o, for all X, Y ∈ m,

where dπ1 is the isomorphism from m onto To(G/H). Equivalently, α(X, Y ) is determined
by

α(X, Y )∗o = (∇X∗
o
Y ∗)o, for all X, Y ∈ m.

Proposition 3.3. The bilinear map α associated with a G-invariant connection ∇ on G/H
as in Definition 3.2 satisfies the condition

Adh(α(X, Y )) = α(Adh(X),Adh(Y )), for all X, Y ∈ m and all h ∈ H. (†)

Proof. The equation

(dτh)o(∇X∗
o
Y ∗)o = (∇(Adh(X))∗o(Adh(Y ))∗)o

proved earlier shows that

(dτh)o(dπ1(α(X, Y ))) = dπ1(α(Adh(X),Adh(Y ))),

so
dπ1(Adh(α(X, Y ))) = dπ1(α(Adh(X),Adh(Y ))),

which, since dπ1 is an isomorphism from m onto To(G/H), implies the condition

Adh(α(X, Y )) = α(Adh(X),Adh(Y )), for all X, Y ∈ m and all h ∈ H,

as claimed.

Here is the main theorem of this section.

Theorem 3.4. Given any homogeneous reductive space G/H with reductive decomposition

g = h⊕m,

there is a one-to-one correspondence between G-invariant connections on G/H and bilinear
maps α : m×m→ m satifying the condition

Adh(α(X, Y )) = α(Adh(X),Adh(Y )), for all X, Y ∈ m and all h ∈ H. (†)
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Given any G-invariant connection ∇ on G/H, the bilinear map α is given by

α(X, Y ) = (dπ1)
−1(∇X∗

o
Y ∗)o, for all X, Y ∈ m,

where dπ1 is the isomorphism from m onto To(G/H). Conversely, given a bilinear map α
satisfying condition (†), the unique G-invariant connection ∇ associated with α is defined
as follows. For any p ∈ G/H, for any coset representative aH = p with a ∈ G, the map
ηa : Ada(m)→ Tp(G/H) given by

ηa(Y ) = Y ∗p , Y ∈ Ada(m),

is a linear isomorphism such that the following diagram commutes:

m
Ada //

dπ1

��

Ada(m)

ηa

��
To(G/H)

(dτa)o

// Tp(G/H).

Then, for any V ∈ Tp(G/H) and for any vector field W on G/H of the form W = (Ada(Y ))∗,
with Y ∈ m, if X ∈ m is the unique vector such that V = (ηa ◦ Ada)(X), we set

(∇VW )p = (dτa)o(∇(dτa−1 )p(V )(τa−1)∗W )o = (dτa)o ◦ dπ1
(
α
(
X, Y

))
. (††)

Furthermore, the G-invariant connection on G/H associated with α is torsion-free iff

α(X, Y )− α(Y,X) = −[X, Y ]m, for all X, Y ∈ m.

Proof. It was shown in Proposition 3.3 that the bilinear map α associated with a G-invariant
connection ∇ on G/H satisfies (†).

Conversely, we show that any bilinear map α : m × m → m satisfying (†) induces a
G-invariant connection on G/H.

For any a ∈ G, since τa is a diffeomorphism with inverse τa−1 , for any two vector fields
V and W over G/H, if the connection ∇VW is G-invariant, since

(τa)∗ ◦ (τa−1)∗ = (τa ◦ τa−1)∗ = id∗,

we must have

∇VW = (τa)∗((τa−1)∗∇VW )

= (τa)∗(∇(τa−1 )∗V (τa−1)∗W ).

At p = aH, since p = τa(o), we get

(∇VW )p = (dτa)o(∇(τa−1 )∗V (τa−1)∗W )o

= (dτa)o(∇(dτa−1 )p(Vp)(τa−1)∗W )o.
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Moreover, (∇(dτa−1 )p(Vp)(τa−1)∗W )o ∈ To(G/H) ∼= m, with (dτa−1)p(Vp) ∈ To(G/H) and
where (τa−1)∗W is a vector field whose value at o belongs to To(G/H). We can pick some
chart of G/H at o with domain U , and then we know that over U , the vector field (τa−1)∗W
can be written as

Ŵ = (τa−1)∗W = f1X
∗
1 + · · ·+ fnX

∗
n,

for some basis (X1, . . . , Xn) of m and for some smooth functions f1, . . . , fn on U . Since

(τa−1)∗W and Ŵ agree near o, we have

∇(dτa−1 )p(Vp)(τa−1)∗W = ∇(dτa−1 )p(Vp)Ŵ

=
n∑
i=1

fi∇(dτa−1 )p(Vp)X
∗
i +

n∑
i=1

((
(dτa−1)p(Vp)

)
fi

)
X∗i ,

(where
(
(dτa−1)p(Vp)

)
fi denotes the directional derivative of fi in the direction (dτa−1)p(Vp)),

which shows that ∇(dτa−1 )p(Vp)(τa−1)∗W is completely determined by the ∇(dτa−1 )p(Vp)X
∗
i , for

i = 1 . . . , n.

Given any p ∈ G/H, for any coset representative aH = p, recall that we have an isomor-
phism ηa : Ada(m) → Tp(G/H), so for any V ∈ Tp(G/H), there is a unique X ∈ m so that
V = ηa(Ada(X)). Furthermore, we have

(dτa−1)p(V ) = (dτa−1)p(ηa(Ada(X)))

= (dτa−1)p((dτa)o ◦ dπ1)(X))

= dπ1(X) = X∗o .

As a consequence, for any V ∈ Tp(G/H) and for any vector field W on G/H of the form
W = (Ada(Y ))∗ with Y ∈ m, since

(τa−1)∗(W ) = (τa−1)∗(Ada(Y ))∗ = (Ada−1(Ada(Y )))∗ = Y ∗,

we have

(∇(dτa−1 )p(V )(τa−1)∗W )o = (∇X∗
o
Y ∗)o

= dπ1
(
α
(
X, Y

))
.

Therefore, for any coset representative aH = p with a ∈ G, for any V ∈ Tp(G/H) and
for any vector field W on G/H of the form W = (Ada(Y ))∗, with Y ∈ m, if X ∈ m is the
unique vector such that V = (ηa ◦ Ada)(X), we set

(∇VW )p = (dτa)o(∇(dτa−1 )p(V )(τa−1)∗W )o = (dτa)o ◦ dπ1
(
α
(
X, Y

))
. (††)

We need to show that the above definition does not depend on the representative of p,
so let b ∈ G such that aH = bH. Then, b = ah for some h ∈ H, and we have

V = (ηa ◦ Ada)(X) = (ηb ◦ Adb)
(
Adh−1(X)

)
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and

W = (Ada(Y ))∗ =
(
Adb(Adh−1(Y )

)∗
.

Since dπ1 ◦ Adh = (dτh)o ◦ dπ1, we get

(dτb)o(∇(dτb−1 )p(V )(τb−1)∗W )o = (dτa)o ◦ (dτh)o(∇(dτb−1 )p(V )(τb−1)∗W )o

= (dτa)o ◦ (dτh)o ◦ dπ1
(
α
(
Adh−1(X),Adh−1(Y )

))
= (dτa)o ◦ dπ1 ◦ Adh

(
α
(
Adh−1(X),Adh−1(Y )

))
.

Using (†), this yield

(dτa)o ◦ dπ1 ◦ Adh
(
α
(
Adh−1(X),Adh−1(Y )

))
= (dτa)o ◦ dπ1 ◦ Adh ◦ Adh−1

(
α
(
X, Y

))
= (dτa)o ◦ dπ1

(
α
(
X, Y

))
,

which proves that our definition does not depend on the choice of the representative of the
coset p. The definition also makes it clear that the resulting connection is G-invariant.

If the connection ∇ is torsion-free, let us find out which condition is imposed on α. Recall
that the torsion of a connection ∇ is given by

T (V,W ) = ∇VW −∇WV − [V,W ].

If the connection ∇ is torsion-free, which means that

∇VW −∇WV = [V,W ], for all V,W ∈ X (G/H),

then we have

∇X∗Y ∗ −∇Y ∗X∗ = [X∗, Y ∗], for all X, Y ∈ m,

which implies that

dπ1(α(X, Y ))− dπ1(α(Y,X)) = −[X, Y ]∗o.

However, [X, Y ]m is the unique vector in m such that dπ1([X, Y ]m) = [X, Y ]∗o, so we get
dπ1(α(X, Y )) − dπ1(α(Y,X)) = −dπ1([X, Y ]m), and since dπ1 is a bijection from m onto
To(G/H), we obtain

α(X, Y )− α(Y,X) = −[X, Y ]m, for all X, Y ∈ m.

Therefore, if the G-invariant connection ∇ is torsion-free, then αS = (α(X, Y )−α(Y,X))/2,
the skew-symmetric part of α, is given by

αS(X, Y ) = −1

2
[X, Y ]m.

The converse is clear.
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Remark: It should be possible to derive Theorem 3.4 from Theorem 2.1 in Kobayashi and
Nomizu [3] (Chapter X), a more general result which applies to certain principal subbun-
dles of the bundle of linear frames with structure group some subgroup of GL(n,R), on a
reductive homogeneous space. However, Kobayashi and Nomizu use a different definition of
a connection, namely in terms of g-valued one-forms (so called Ereshmann connections; see
Kobayashi and Nomizu [2], Chapters II and III). The translation of their results to connec-
tions defined as operators ∇ on vector fields appears to require as much work as proving our
theorem directly.

3.2 G-Invariant Connections and Cartan Connections

We now find a necessary and sufficient condition on the bilinear map α associated with a
G-invariant connection ∇ on G/H so that the curves γ(t) = etXo = τetX (o) through o with
X ∈ m are geodesics. Such a condition is given in Kobayashi and Nomizu [3] (Chapter X,
Proposition 2.9 and Theorem 2.10). However, as noted earlier, Kobayashi and Nomizu use a
different definition of a connection, namely in terms of g-valued one-forms. The translation
of their results to connections defined as operators ∇ on vector fields requires a fair amount
of work.

We need a preliminary result. First, observe that for any fixed t, etX ∈ G defines the
diffeomorphisn τetX of G/H.

Proposition 3.5. For any reductive homogeneous manifold G/H, for any X ∈ g, if γ is the
curve in G/H given by γ(t) = etX · o = τetX (o), then for every t ∈ R, we have

(τγ(t))∗X
∗ = X∗.

Proof. Since the action vector field X∗ is defined such that for any p ∈ G/H,

X∗p =
d

ds
(esXaH)

∣∣∣∣
s=0

,

for any a ∈ G such that p = aH, we have

(τγ(t))∗X
∗
p =

d

ds
(etXesXaH)

∣∣∣∣
s=0

=
d

ds
(esXetXaH)

∣∣∣∣
s=0

= X∗τγ(t)(p),

which proves our claim.

Proposition 3.6. Given any reductive homogeneous manifold G/H and any G-invariant
connection ∇ on G/H, for any X ∈ m, if γ is the curve in G/H given by γ(t) = etX · o =
τetX (o), then γ is a geodesic in G/H iff the bilinear map α : m × m → m associated with ∇
is skew-symmetric (that is, α(X,X) = 0 for all X ∈ m).
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Proof. (After Kobayashi and Nomizu [3], Proposition 2.9). The curve γ(t) = etX · o is a
geodesic iff

(∇X∗X∗)τγ(t)(o) = 0, for all t ∈ R.

Now, since τγ(t) is a diffeomorphism of G/H for every t and since ∇ is G-invariant, we have

(τγ(t))∗(∇X∗X∗) = ∇(τγ(t))∗X∗(τγ(t))∗X
∗,

and from Proposition 3.5, we have

(τγ(t))∗X
∗ = X∗,

so we obtain
(τγ(t))∗(∇X∗X∗) = ∇X∗X∗,

which evaluated at τγ(t)(o) yields

(τγ(t))∗(∇X∗X∗)τγ(t)(o) = (∇X∗X∗)τγ(t)(o) ;

that is,
(dτγ(t))o(∇X∗X∗)o = (∇X∗X∗)τγ(t)(o) .

Since (dτγ(t))o is a bijection, we have (∇X∗X∗)τγ(t)(o) = 0 for all t ∈ R iff (∇X∗X∗)o = 0 iff
α(X,X) = 0 for all X ∈ m, establishing our claim.

Since we showed that a G-invariant connection on G/H corresponds to a bilinear map
α : m×m→ m whose skew-symmetric part αS is given by

αS =
1

2
[X, Y ]m,

if there is a G-invariant torsion-free connection on G/H such that the the curves t 7→ τetX (o)
are geodesics through o for all X ∈ m, then

α(X, Y ) = −1

2
[X, Y ]m.

Conversely, because Adh is induced by the Lie group isomorphism Rh−1 ◦ Lh, it is a Lie
algebra isomorphism, so the Lie bracket [X, Y ] is Adh-invariant for all h ∈ H, and Theorem
3.4 shows that there is G-invariant connection induced by

α(X, Y ) = −1

2
[X, Y ]m.

Now, if the curves t 7→ τetX (o) are geodesics through o for all X ∈ m, since we have
d/dt(τetX(o))|t=0 = X∗o , by the uniqueness of geodesics passing through o and with initial
velocity X∗o , we see that all geodesics through o are of the form t 7→ τetX (o). Thus, we
obtain the following result which is a version of Theorem 2.10 from Kobayashi and Nomizu
[3] (Chapter X).
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Theorem 3.7. Given any reductive homogeneous manifold G/H with reductive decomposi-
tion g = h⊕ m, there is a unique G-invariant torsion-free connection ∇ on G/H such that
all geodesics through o are given by the curves t 7→ τetX (o) iff the bilinear map α : m×m→ m
associated with ∇ is given by

α(X, Y ) = −1

2
[X, Y ]m, for all X, Y ∈ m.

We call the above connection the Cartan connection on G/H.

Remark: Theorem 2.10 In Kobayashi and Nomizu [3] states that

α(X, Y ) =
1

2
[X, Y ]m,

with a + sign. This appears to be in contradiction with our result. The reason is that
Kobayashi and Nomizu define the action vector field X∗ associated with a vector X ∈ g in
terms of the right action of etX on G/H (see [2], page 42). We use the left action of etX on
G/H (as most other authors of books written after the 1980’s do).

The Levi–Civita connection is preserved by diffeomorphims, so in particular, any Levi–
Civita connection on a homogeneous space is G-invariant. We also know that if G/H admits
a G-invariant metric, then the Levi–Civita connection induced by that metric is given by

(dπ1)
−1(∇X∗Y ∗)o = −1

2
[X, Y ]m + U(X, Y ),

where [X, Y ]m is the component of [X, Y ] on m and U(X, Y ) is determined by

2〈U(X, Y ), Z〉 = 〈[Z,X]m, Y 〉+ 〈X, [Z, Y ]m〉,

for all Z ∈ m. Therefore, we deduce that the Levi–Civita connection associated with a
G-invariant metric on G/H coincides with the Cartan connection on G/H iff U ≡ 0 iff G/H
is naturally reductive (see Kobayashi and Nomizu [3] (Chapter X, Theorem 3.3).
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