Affine Grassmannians

Jean Gallier
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu
(C) Jean Gallier

April 28, 2023

Contents

1 Affine Grassmannians 3
1.1 Actions of $\mathbf{S E}(n)$ on Affine Grassmannians 3
1.2 $A G(k, n)$ as a Reductive Homogeneous Space 7
1.3 Metrics on G / H Induced by Right-Invariant Metrics on G 10
1.4 Connections on Reductive Homogeneous Spaces 14
1.5 A Connection on $\mathrm{SE}(n)$ 25

Chapter 1

Affine Grassmannians

1.1 Actions of $\mathrm{SE}(n)$ on Affine Grassmannians

In this section, we show that the Grassmannian $A G(k, n)$ of k-dimensional affine subspaces of \mathbb{R}^{n} arises as the homogeneous space $\mathbf{S E}(n) / S(\mathbf{E}(k) \times \mathbf{O}(n-k))$, in terms of a transitive action of $\mathbf{S E}(n)$ on $A G(n, k)$.

Recall that a nonempty k-dimensional affine subspace \mathcal{A} of \mathbb{R}^{n} is determined by a pair $\left(a_{0}, U\right)$, where $a_{0} \in \mathbb{R}^{n}$ is any point in \mathcal{A} and U is a k-dimensional subspace of \mathbb{R}^{n} called the direction of \mathcal{A}, with

$$
\mathcal{A}=a_{0}+U=\left\{a_{0}+u \mid u \in U\right\} .
$$

Two pairs $\left(a_{0}, U\right)$ and $\left(b_{0}, U\right)$ define the same affine subspace \mathcal{A} iff $b_{0}-a_{0} \in U$ (in fact, U consists of all vectors of the form $b-a$, with $a, b \in \mathcal{A}$).

The subspace U can be represented by any basis $\left(u_{1}, \ldots, u_{k}\right)$ of vectors $u_{i} \in U$, and so \mathcal{A} is represented by the affine frame $\left(a_{0},\left(u_{1}, \ldots, u_{k}\right)\right)$.

Two affine frames $\left(a_{0},\left(u_{1}, \ldots, u_{k}\right)\right)$ and $\left(b_{0},\left(v_{1}, \ldots, v_{k}\right)\right)$ represent the same affine subspace \mathcal{A} iff there is an invertible $k \times k$ matrix $\Lambda=\left(\lambda_{i j}\right)$ such that

$$
v_{j}=\sum_{i=1}^{k} \lambda_{i j} u_{i}, \quad 1 \leq j \leq k
$$

and if there is some vector $c \in \mathbb{R}^{k}$ such that

$$
b_{0}=a_{0}+\sum_{i=1}^{k} c_{i} u_{i} .
$$

Note that (Λ, c) defines an invertible affine map of \mathbb{R}^{k}.
A basis $\left(u_{1}, \ldots, u_{k}\right)$ of U is represented by a $n \times k$ matrix of rank k, say A, so the affine subspace \mathcal{A} is represented by the pair $\left(a_{0}, A\right)$, where $a_{0} \in \mathbb{R}^{n}$ and A is a $n \times k$ matrix of rank
k. The equivalence relation on pairs $\left(a_{0}, A\right)$ is given by

$$
\left(a_{0}, A\right) \equiv\left(b_{0}, B\right)
$$

iff there exists a pair (Λ, c), where Λ is an invertible $k \times k$ matrix $(\Lambda \in \mathbf{G L}(k, \mathbb{R}))$ and c is some vector in \mathbb{R}^{k}, such that

$$
B=A \Lambda \quad \text { and } \quad b_{0}=a_{0}+A c
$$

Using Gram-Schmidt, we may assume that $\left(u_{1}, \ldots, u_{k}\right)$ is an orthonormal basis, which means that the columns of the matrix A are orthonormal; that is,

$$
A^{\top} A=I_{k} .
$$

Then, in the equivalence relation defined above, the matrix Λ is an orthogonal $k \times k$ matrix $(\Lambda \in \mathbf{O}(k))$.
Definition 1.1. The (real) affine Grassmannian $A G(k, n)$ consists of all k-dimensional affine subspaces of $\mathbb{R}^{n}(1 \leq k \leq n)$.

In the special case $k=1$, the affine Grassmannian $A G(1, n)$ consists of all affine lines in \mathbb{R}^{n}. This is already a topologically complicated space (more complicated than projective space $\mathbb{R} \mathbb{P}^{n}$).

The (linear) Grassmannian $G(k, n)$ consists of all k-dimensional (linear) subspaces of \mathbb{R}^{n} $(1 \leq k \leq n)$. By linear duality between a finite-dimensional vector space and its dual, $G(k, n)$ is isomorphic to $G(n-k, n)$.

There is a relationship between the affine Grassmannians and the linear Grassmannians. Indeed, we have

$$
A G(k, n)=G(k+1, n+1)-G(k+1, n)
$$

This is because $G(k+1, n+1)$ corresponds to the projective subspaces of dimension k in $\mathbb{R} \mathbb{P}^{n}$. In \mathbb{R}^{n+1}, there is a bijection between the set $G(k+1, n+1)-G(k+1, n)$ of linear subspaces V of dimension $k+1$ that are not contained in the hyperplane of equation $x_{n+1}=0$, and the set $A G(k, n)$ of k-dimensional affine subspaces of \mathbb{R}^{n}, given by

$$
V \mapsto V \cap H_{1},
$$

where H_{1} is the affine hyperplane in \mathbb{R}^{n+1} of equation $x_{n+1}=1$. The ($k+1$)-dimensional linear subspaces contained in the hyperplane $x_{n+1}=0$ correspond to the k-dimensional projective subspaces of $\mathbb{R}^{\mathbb{P}}{ }^{n}$ "at infinity" (if we choose the hyperplane $x_{n+1}=0$ as the hyperplane at infinity in $\left.\mathbb{R P}^{n}\right)$. As a consequence of the equation $A G(k, n)=G(k+1, n+1)-G(k+1, n)$, the space $A G(k, n)$ is an open subspace of the set of k-dimensional projective subspaces of $\mathbb{R P}^{n}$, and thus is not compact. Observe that if $0 \leq k \leq n-1$, then

$$
\begin{aligned}
A(n-k-1, n) & =G(n-k, n+1)-G(n-k, n) \\
& \cong G(k+1, n+1)-G(k, n)
\end{aligned}
$$

so $A(k, n)$ is not isomorphic to $A(n-k-1, n)$, except in the trivial case where $n=2 k+1$.
When $n=2$ and $k=1$, we have

$$
A G(1,2)=G(2,3)-G(2,2) \cong G(1,3)-G(0,2)=\mathbb{R}^{2}-\{\text { one point }\}
$$

so $A G(1,2)$ is homeomorphic to the result of deleting one point from the projective plane $\mathbb{R P}^{2}$, a space homeomorphic to an open Möbius strip (a Möbius strip with its boundary removed). No wonder $A G(1,2)$ is hard to deal with!

Recall that the Euclidean group $\mathbf{E}(n)$ consists of all invertible affine maps (Q, u), with $Q \in \mathbf{O}(n)$ and $u \in \mathbb{R}^{n}$, and that the special Euclidean group $\mathbf{S E}(n)$ consists of all invertible affine maps (Q, u), with $Q \in \mathbf{S O}(n)$ and $u \in \mathbb{R}^{n}$. As usual, we represent an element (Q, u) of $\mathbf{E}(n)$ (or $\mathbf{S E}(n))$ by the $(n+1) \times(n+1)$ matrix

$$
\left(\begin{array}{cc}
Q & u \\
0 & 1
\end{array}\right),
$$

with \mathbb{R}^{n} embedded in \mathbb{R}^{n+1} by adding 1 as $(n+1)$ th coordinate.
Definition 1.2. Define an action of the group $\operatorname{SE}(n)$ on $A G(k, n)$ as follows: if $\mathcal{A} \in$ $A G(k, n)$, for any affine frame $\left(a_{0}, A\right)$ representing \mathcal{A} (where $A^{\top} A=I_{k}$), for any $(Q, u) \in$ $\mathrm{SE}(n)$, then

$$
(Q, u) \cdot \mathcal{A}=\left(Q a_{0}+u, Q A\right)
$$

We need to check that the above action does not depend on the affine frame $\left(a_{0}, A\right)$ chosen for \mathcal{A}. If $\left(b_{0}, B\right)$ is another affine frame of \mathcal{A}, then there is some orthogonal matrix $\Lambda \in \mathbf{O}(k)$ and some vector $c \in \mathbb{R}^{k}$ such that

$$
B=A \Lambda \quad \text { and } \quad b_{0}=a_{0}+A c,
$$

so we have

$$
Q b_{0}=Q a_{0}+Q A c,
$$

and

$$
Q B=Q A \Lambda,
$$

which shows that $\left(Q a_{0}+u, Q A\right)$ and $\left(Q b_{0}+u, Q B\right)$ are equivalent via (Λ, c), since $Q B=$ $(Q A) \Lambda$ and $Q b_{0}+u=Q a_{0}+u+(Q A) c$. Therefore, the action of $\mathbf{S E}(n)$ on $A G(k, n)$ defined above does not depend on the affine frame chosen in \mathcal{A}.

The above action is transitive.
Indeed, if $\left(a_{0}, A\right)$ and $\left(b_{0}, B\right)$ represent two affine subspaces, where $A^{\top} A=I_{k}$ and $B^{\top} B=$ I_{k}, then by Gram-Schmidt, we can extend the columns of A into an orthonormal basis A^{\prime} of \mathbb{R}^{n}, and similarly we can can extend the columns of B into an orthonormal basis B^{\prime} of \mathbb{R}^{n}. But then, the matrices A^{\prime} and B^{\prime} are $n \times n$ orthogonal matrices, and by changing the sign of the their first column if necessary, we may assume that $\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left(B^{\prime}\right)=1$, where the
first k columns of A^{\prime} still define the same subspace as the k columns of A, since they are obtained by multiplying on the right by the $k \times k$ orthogonal matrix $\operatorname{diag}(-1,1, \ldots, 1)$ (and similarly for B and $\left.B^{\prime}\right)$. Write $A^{\prime}[1 . . k]$ for the first k columns of A^{\prime} (and similarly for B^{\prime}). If we let $Q=B^{\prime}\left(A^{\prime}\right)^{\top}$ and $u=b_{0}-Q a_{0}$, we have $(Q, u) \in \mathbf{S E}(n)$, and

$$
(Q, u) \cdot\left(a_{0}, A^{\prime}[1 . . k]\right)=\left(Q a_{0}+b_{0}-Q a_{0}, Q A^{\prime}[1 . . k]\right)=\left(b_{0}, B^{\prime}[1 . . k]\right) ;
$$

this is because

$$
A^{\prime}=\left(\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right), \quad B^{\prime}=\left(\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right),
$$

and since A^{\prime} is orthogonal (so is B^{\prime}), $A_{2}^{\top} A_{1}=0$ and $A_{1}^{\top} A_{1}=I_{k}$, so we have

$$
\begin{aligned}
Q A^{\prime}[1 . . k] & =B^{\prime}\left(A^{\prime}\right)^{\top} A^{\prime}[1 . . k] \\
& =\left(\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right)\binom{A_{1}^{\top}}{A_{2}^{\top}} A_{1} \\
& =\left(B_{1} A_{1}^{\top}+B_{2} A_{2}^{\top}\right) A_{1} \\
& =B_{1} A_{1}^{\top} A_{1}+B_{2} A_{2}^{\top} A_{1} \\
& =B_{1}=B^{\prime}[1 . . k] .
\end{aligned}
$$

Therefore, our action is transitive.
Next, we determine the stabilizer of the affine subspace defined by the affine frame $\left(0,\left(e_{1}, \ldots, e_{k}\right)\right)$, where e_{1}, \ldots, e_{k} are the first k canonical basis vectors of \mathbb{R}^{n}. This affine subspace is also represented by $\left(0, P_{n, k}\right)$, where $P_{n, k}$ is the $n \times k$ matrix consisting of the first k columns of the identity matrix I_{n}; namely

$$
P_{n, k}=\binom{I_{k}}{0_{n-k, k}} .
$$

Proposition 1.1. The stabilizer of the affine subspace defined by $\left(0, P_{n, k}\right)$ is the group $H=$ $S(\mathbf{E}(k) \times \mathbf{O}(n-k))$ given by the set of matrices

$$
H=\left\{\left.\left(\begin{array}{ccc}
Q & 0 & u \\
0 & R & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, Q \in \mathbf{O}(k), R \in \mathbf{O}(n-k), \operatorname{det}(Q) \operatorname{det}(R)=1, u \in \mathbb{R}^{k}\right\}
$$

Proof. For any $(P, z) \in \mathbf{S E}(n)$, we have

$$
(P, z) \cdot\left(0, P_{n, k}\right)=\left(P 0+z, P P_{n, k}\right)=(z, P[1 . . k])
$$

In order for $(z, P[1 . . k])$ to represent the same affine subspace as $\left(0, P_{n, k}\right)$, there must be some pair (Λ, c) where $\Lambda \in \mathbf{O}(k)$ and $c \in \mathbb{R}^{k}$, so that

$$
P[1 . . k]=P_{n, k} \Lambda \quad \text { and } \quad z=P_{n, k} c .
$$

The vector $P_{n, k} c$ is obtained from c by adding 0 as the last $n-k$ coordinates, and the matrix $P_{n, k} \Lambda$ is obtained from Λ by adding $n-k$ rows consisting of the vector $\underbrace{(0, \ldots, 0)}_{k}$. Therefore, the last $n-k$ coordinates of z must be zero, and the last $n-k$ rows of $P[1 . . k]$ must be zero rows. Since P is an orthogonal matrix, it must be of the form

$$
P=\left(\begin{array}{cc}
Q & 0 \\
0 & R
\end{array}\right)
$$

with $Q \in \mathbf{O}(k)$ and $R \in \mathbf{O}(n-k)$. Since $\operatorname{det}(P)=1$, we must have $\operatorname{det}(P)=\operatorname{det}(Q) \operatorname{det}(R)=$ 1 , and the proposition follows.

1.2 The Grassmannian $A G(k, n)$ as a Reductive Homogeneous Space

In this section, we show that the affine Grassmannian $A G(k, n)$ is a reductive homogeneous space with a simple reductive decomposition $\mathfrak{s e}(n)=\mathfrak{h} \oplus \mathfrak{m}$. In fact, there is an involutive automorphism σ of $\mathbf{S E}(n)$ whose fixed subgroup is exactly the group $H=S(\mathbf{E}(k) \times \mathbf{O}(n-k))$ introduced in the previous section. It follows that, except for the fact that there is no $\operatorname{Ad}(H)$ invariant metric on \mathfrak{m} (because H is not compact), all the other properties of a symmetric space are satisfied.

Let $I_{k, n-k}$ be the matrix

$$
I_{k, n-k}=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{n-k}
\end{array}\right)
$$

Note that $I_{k, n-k}^{2}=I_{n}$. We define an automorphism σ of $\mathbf{S E}(n)$ as follows:

$$
\sigma\left(\begin{array}{cc}
Q & z \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
Q & z \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right) .
$$

Because $I_{k, n-k}^{2}=I_{n}$, we have $\sigma^{2}=$ id. Let us find the subgroup $\mathbf{S E}(n)^{\sigma}$ of $\mathbf{S E}(n)$ fixed by σ. Every matrix P in $\mathbf{S E}(n)$ can be written as

$$
P=\left(\begin{array}{ccc}
Q & R & u \\
S & T & v \\
0 & 0 & 1
\end{array}\right)
$$

with $u \in \mathbb{R}^{k}$ and $v \in \mathbb{R}^{n-k}$, and we have

$$
\begin{aligned}
\left(\begin{array}{ccc}
I_{k} & 0 & 0 \\
0 & -I_{n-k} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
Q & R & u \\
S & T & v \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
I_{k} & 0 & 0 \\
0 & -I_{n-k} & 0 \\
0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{ccc}
Q & R & u \\
-S & -T & -v \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
I_{k} & 0 & 0 \\
0 & -I_{n-k} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
Q & -R & u \\
-S & T & -v \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Then, $\sigma(P)=P$ iff

$$
R=-R, \quad S=-S, \quad v=-v
$$

which means that $R=0, S=0$, and $v=0$. Therefore $\mathbf{S E}(n)^{\sigma}=S(\mathbf{E}(k) \times \mathbf{O}(n-k))=H$.
The Lie algebras of $\mathbf{S E}(n)$ and $H=\mathbf{S E}(n)^{\sigma}$ are

$$
\mathfrak{s e}(n)=\left\{\left.\left(\begin{array}{ccc}
S & -A^{\top} & u \\
A & T & v \\
0 & 0 & 0
\end{array}\right) \right\rvert\, S \in \mathfrak{s o}(k), T \in \mathfrak{s o}(n-k), A \in \mathrm{M}_{n-k, k}, u \in \mathbb{R}^{k}, v \in \mathbb{R}^{n-k}\right\}
$$

and

$$
\mathfrak{h}=\left\{\left.\left(\begin{array}{ccc}
S & 0 & u \\
0 & T & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, S \in \mathfrak{s o}(k), T \in \mathfrak{s o}(n-k), u \in \mathbb{R}^{k}\right\} .
$$

The derivative $\theta=d \sigma_{I}$ is an involutive automorphism of $\mathfrak{s e}(n)$ which is easily found using curves through I. For any $X \in \mathfrak{s e}(n)$, if γ is the curve in $\mathbf{S E}(n)$ given by $\gamma(t)=e^{t X}$, then $\gamma(0)=I, \gamma^{\prime}(0)=X$, and by the chain rule

$$
\left.\frac{d(\sigma(\gamma(t))}{d t}\right|_{t=0}=d \sigma_{\gamma(0)}\left(\gamma^{\prime}(0)\right)=d \sigma_{I}(X)
$$

so we have

$$
\begin{aligned}
d \sigma_{I}(X) & =\frac{d}{d t}\left(\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right) e^{t X}\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right)\right)_{t=0} \\
& =\left(\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right) X e^{t X}\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right)\right)_{t=0} \\
& =\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right) X\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Therefore

$$
\theta\left(\begin{array}{ll}
S & z \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
S & z \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{k, n-k} & 0 \\
0 & 1
\end{array}\right) .
$$

Consequently, the Lie algebra \mathfrak{h} is the eigenspace of θ associated with the eigenvalue +1 , whereas the eigenspace of θ associated with the eigenvalue -1 is given by

$$
\mathfrak{m}=\left\{\left.\left(\begin{array}{ccc}
0 & -A^{\top} & 0 \\
A & 0 & v \\
0 & 0 & 0
\end{array}\right) \right\rvert\, A \in \mathrm{M}_{n-k, k}, v \in \mathbb{R}^{n-k}\right\}
$$

By Lemma 30 in O'Neill [4] (Chapter 11), the fact that σ is an involutive automorphism of $\mathrm{SE}(n)$ whose fixed subgroup is H has the following interesting implications.

Proposition 1.2. The following properties hold:
(1) We have a direct sum

$$
\mathfrak{s e}(n)=\mathfrak{h} \oplus \mathfrak{m}
$$

(2) $\operatorname{Ad}(h)(\mathfrak{m}) \subseteq \mathfrak{m}$ for all $h \in H$.
(3) We have

$$
[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}, \quad[\mathfrak{h}, \mathfrak{m}] \subseteq \mathfrak{m}, \quad[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{h}
$$

Consequently, $A G(k, n)$ is a reductive homogeneous space with the reductive decomposition $\mathfrak{s e}(n)=\mathfrak{h} \oplus \mathfrak{m}$.

The next step is to check whether it is possible to define a G-invariant metric on $A G(k, n)$. For this, let us figure out what the adjoint action of H on \mathfrak{m} is. For any

$$
h=\left(\begin{array}{ccc}
R & 0 & u \\
0 & S & 0 \\
0 & 0 & 1
\end{array}\right) \in H
$$

and any

$$
X=\left(\begin{array}{ccc}
0 & -A^{\top} & 0 \\
A & 0 & v \\
0 & 0 & 0
\end{array}\right) \in \mathfrak{m}
$$

we have

$$
\begin{aligned}
\operatorname{Ad}_{h}(X) & =\left(\begin{array}{ccc}
R & 0 & u \\
0 & S & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & -A^{\top} & 0 \\
A & 0 & v \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
R^{\top} & 0 & -R^{\top} u \\
0 & S^{\top} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & -R A^{\top} & 0 \\
S A & 0 & S v \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
R^{\top} & 0 & -R^{\top} u \\
0 & S^{\top} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & -R A^{\top} S^{\top} & 0 \\
S A R^{\top} & 0 & -S A R^{\top} u+S v \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Consider the matrices $h \in H$ such that $R=I, S=I$ and the first coordinate u_{1} in u is nonzero. The matrices $X \in \mathfrak{m}$ that either have a single nonzero entry equal to 1 in A (and A^{\top}) or a single nonzero entry in v form a basis of \mathfrak{m}. Let $E_{k+11} \in \mathfrak{m}$ be the matrix whose only nonzero entries are $e_{k+11}=1$ and $e_{1 k+1}=-1$, and let $E_{k+1 n} \in \mathfrak{m}$ be the matrix whose
only nonzero entry is $e_{k+1 n}=1$. Then, we have

$$
\operatorname{Ad}_{h}\left(E_{k+11}\right)=\left(\begin{array}{ccc}
0 & A^{\top} & 0 \\
A & 0 & -A u \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccccc}
0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
1 & \cdots & 0 & 0 & 0 & \cdots & -u_{1} \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right)=E_{k+11}-u_{1} E_{k+1 n} .
$$

Therefore, the matrix of Ad_{h} over the basis $\left(E_{i j}\right)$ has the entry $-u_{1}$ in the row corresponding to $E_{k+1 n}$ and the column corresponding to E_{k+11}, and since $u_{1} \in \mathbb{R}$ is arbitrary, we see that the matrices representing the linear maps Ad_{h} have unbounded entries (even for the special kinds of matrices in h that we are considering). Therefore, $\operatorname{Ad}(H)$ is not bounded, and thus it closure is not compact, which implies that there is no $\operatorname{Ad}(H)$-invariant inner product on \mathfrak{m} (by Theorem 2.42 of Gallot, Hullin, Lafontaine [1]). Therefore, there is no hope for a G-invariant metric on $A G(k, n)$. Except for that, $A G(k, n)$ has all the other properties of a symmetric space.

1.3 Metrics on G / H Induced by Right-Invariant Metrics on G

Given a reductive homogeneous manifold G / H with reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, if H is not compact, $\operatorname{Ad}(H)$-invariant metrics on \mathfrak{m} do not necessarily exist. It is still desirable to obtain metrics on G / H such that the projection $\pi: G \rightarrow G / H$ is a Riemannian submersion. Since H acts freely and properly on G on the right, for every right-invariant metric on G induced by an inner product $\langle-,-\rangle$ on \mathfrak{g}, the maps R_{h} are isometries for all $h \in H$, so by Proposition 2.28 in Gallot, Hullin, Lafontaine [1], (Chapter 2), there is a unique Riemannian metric $\langle-,-\rangle_{G / H}$ on G / H such that $\pi: G \rightarrow G / H$ is a Riemannian submersion.

Since G / H is reductive, we have

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}
$$

and this makes it possible to pick the horizontal subspaces in the tangent spaces $T_{a} G$ (with $a \in G)$ in terms of \mathfrak{m} and to give a more direct proof of Proposition 2.28 from Gallot, Hullin, Lafontaine [1].

Given an inner product $\langle-,-\rangle$ on \mathfrak{g}, recall that the induced right-invariant metric on G is given by

$$
\left.\langle u, v\rangle_{a}=\left\langle\left(d R_{a^{-1}}\right)_{a}(u), d R_{a^{-1}}\right)_{a}(v)\right\rangle, \quad \text { for all } u, v \in T_{a} G \text { and all } a \in G .
$$

We will show that a metric on G / H can be obtained by propagating by right-invariance a metric on \mathfrak{g} to all of the "horizontal subspaces" $\left(d L_{a}\right)_{1}(\mathfrak{m})$ of $T_{a}(G)=\left(d L_{a}\right)_{1}(\mathfrak{g})$.

Because of the invariance condition $\operatorname{Ad}_{h}(\mathfrak{m}) \subseteq \mathfrak{m}$ for all $h \in H$ (since G / H is a reductive homogeneous space), since \mathfrak{m} is finite-dimensional and Ad_{h} is injective, we have $\operatorname{Ad}_{h}(\mathfrak{m})=\mathfrak{m}$, and if $b=a h$ then

$$
\operatorname{Ad}_{b}=\operatorname{Ad}_{a} \circ \operatorname{Ad}_{h},
$$

which implies that

$$
\operatorname{Ad}_{b}(\mathfrak{m})=\operatorname{Ad}_{a}(\mathfrak{m}), \quad \text { for all } a, b \in G \text { such that } a^{-1} b \in H
$$

This means that $\operatorname{Ad}_{a}(\mathfrak{m})$ depends only on the point $p \in G / H$ for which $p=a H$.
Recall that for every $a \in G$, the map $\tau_{a}: G / H \rightarrow G / H$ is defined by

$$
\tau_{a}(b H)=a b H, \quad \text { for all } a, b \in G,
$$

and $\pi: G \rightarrow G / H$ is the projection given by $\pi(a)=a H$. For all $a, b \in G$, we have

$$
\tau_{a}(\pi(b))=a b H=\pi\left(L_{a}(b)\right)
$$

namely

$$
\tau_{a} \circ \pi=\pi \circ L_{a}
$$

By taking the derivative at 1 , we get

$$
\left(d \tau_{a}\right)_{o} \circ d \pi_{1}=d \pi_{a} \circ\left(d L_{a}\right)_{1} ;
$$

equivalently, the following diagram commutes (where $p=a H$):

Since Ker $d \pi_{1}=\mathfrak{h}$ and since $\left(d L_{a}\right)_{1}$ is an isomorphism, we see that

$$
\operatorname{Ker} d \pi_{a}=\left(d L_{a}\right)_{1}(\mathfrak{h})
$$

Also, since the restriction of $d \pi_{1}$ to \mathfrak{m} is an isomorphism and $\left(d L_{a}\right)_{1}$ and $\left(d \tau_{a}\right)_{o}$ are isomorphims, so is the restriction of $d \pi_{a}$ to $\left(d L_{a}\right)_{1}(\mathfrak{m})$. We have the following commutative diagram in which all the maps are isomorphisms (with $p=a H$):

For all $a \in G$ and all $h \in H$, we have

$$
\pi(a)=a H=a h H=\pi(a h)=\pi\left(R_{h}(a)\right) ;
$$

that is, $\pi=\pi \circ R_{h}$, and by taking derivatives at a, we get

$$
\begin{equation*}
d \pi_{a}=d \pi_{a h} \circ d\left(R_{h}\right)_{a} \tag{*}
\end{equation*}
$$

Equivalently, if we write $b=a h$ and $p=a H$ for $a \in G$ and $h \in H$, we have the following commutative diagram:

$$
T_{a} G=\left(d L_{a}\right)_{1}(\mathfrak{g}) \longrightarrow\left(d L_{b}\right)_{1}(\mathfrak{g})=T_{b} G
$$

Since

$$
T_{a} G=\left(d L_{a}\right)_{1}(\mathfrak{g})
$$

we have

$$
T_{a} G=\left(d L_{a}\right)_{1}(\mathfrak{h}) \oplus\left(d L_{a}\right)_{1}(\mathfrak{m})
$$

and since Ker $d \pi_{a}=\left(d L_{a}\right)_{1}(\mathfrak{h})$ and the restriction of $d \pi_{a}$ to $\left(d L_{a}\right)_{1}(\mathfrak{m})$ is an isomorphism onto $T_{p}(G / H)$, we can take $\left(d L_{a}\right)_{1}(\mathfrak{m})$ as the horizontal subspace \mathcal{H}_{a} of $T_{a} G$.

As a consequence, for any $p \in G / H$ and any $a \in G$ such that $p=a H$, since the map $d \pi_{a}:\left(d L_{a}\right)_{1}(\mathfrak{m}) \rightarrow T_{p}(G / H)$ is an isomorphism, for any $u \in T_{p}(G / H)$, there is a unique $X \in \mathfrak{m}$ such that

$$
u=\left(d \pi_{a} \circ\left(d L_{a}\right)_{1}\right)(X)
$$

namely, $X=\left(\left(d L_{a^{-1}}\right)_{a} \circ\left(d \pi_{a}\right)^{-1}\right)(u)$.
Let us find out how X changes when we express u in terms of b, with $b=a h$ for some $h \in H$.

Proposition 1.3. For any $p=a H=b H$ in G / H, if $b=$ ah for some $h \in H$, for any $u \in T_{p}(G / H)$ and any $X \in \mathfrak{m}$ such that $u=\left(d \pi_{a} \circ\left(d L_{a}\right)_{1}\right)(X)$, we have

$$
u=\left(d \pi_{b} \circ\left(d L_{b}\right)_{1}\right)\left(X^{\prime}\right), \quad \text { with } \quad X^{\prime}=\operatorname{Ad}_{h^{-1}}(X)
$$

Proof. Since $a=b h^{-1}$, by $(*) d \pi_{a}=d \pi_{b} \circ d\left(R_{h}\right)_{a}, L_{a}$ and R_{h} commute, and since $\operatorname{Ad}_{a}=$ $d\left(L_{a} \circ R_{a^{-1}}\right)_{1}=\left(d L_{a}\right)_{a^{-1}} \circ\left(d R_{a^{-1}}\right)_{1}$, we have

$$
\begin{aligned}
u & =\left(d \pi_{a} \circ\left(d L_{a}\right)_{1}\right)(X) \\
& =\left(d \pi_{b} \circ\left(d R_{h}\right)_{a} \circ\left(d L_{a}\right)_{1}\right)(X) \\
& =\left(d \pi_{b} \circ\left(d L_{a}\right)_{h} \circ\left(d R_{h}\right)_{1}\right)(X) \\
& =\left(d \pi_{b} \circ\left(d L_{b}\right)_{1} \circ\left(d L_{h^{-1}}\right)_{h} \circ\left(d R_{h}\right)_{1}\right)(X) \\
& =\left(d \pi_{b} \circ\left(d L_{b}\right)_{1} \circ \operatorname{Ad}_{h^{-1}}\right)(X),
\end{aligned}
$$

which shows that

$$
u=\left(d \pi_{b} \circ\left(d L_{b}\right)_{1}\right)\left(X^{\prime}\right), \quad \text { with } \quad X^{\prime}=\operatorname{Ad}_{h^{-1}}(X)
$$

as claimed.

For any $a \in G$, the map $\operatorname{Ad}_{a}: \mathfrak{g} \rightarrow \mathfrak{g}$ is a linear isomorphism of \mathfrak{g}, so $\operatorname{Ad}_{a}(\mathfrak{m})$ is always a subspace of \mathfrak{g}. In the special case where $a \in H$, we have $\operatorname{Ad}_{a}(\mathfrak{m})=\mathfrak{m}$, but for $a \in G-H$, this is generally false and we can only claim that $\operatorname{Ad}_{a}(\mathfrak{m}) \subseteq \mathfrak{g}$. Here is the main theorem of this section.

Theorem 1.4. Given any homogeneous reductive manifold G / H with reductive decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}
$$

every inner product $\langle-,-\rangle$ on \mathfrak{g} yields a Riemannian metric on G / H such that if G is endowed with the right-invariant Riemannian metric induced by $\langle-,-\rangle$, then $\pi: G \rightarrow G / H$ is a Riemannian submersion. For every $a \in G$, the horizontal subspace \mathcal{H}_{a} at a is given by

$$
\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m})
$$

and the restriction of $d \pi_{a}$ to $\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m})$ is an isomorphism onto $T_{p}(G / H)$, with $p=a H$. The metric on $T_{p}(G / H)$ is defined as follows: For every $p=a H \in G / H$, for any two vectors $u, v \in T_{p}(G / H)$,

$$
\langle u, v\rangle_{G / H, p}=\left\langle\left(d \pi_{a}\right)^{-1}(u),\left(d \pi_{a}\right)^{-1}(v)\right\rangle_{a}
$$

where $\langle-,-\rangle_{a}$ is the right-invariant metric on $\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m})$ induced by the inner product on \mathfrak{g}, which means that

$$
\langle u, v\rangle_{G / H, p}=\left\langle\left(d R_{a^{-1}}\right)_{a}\left(\left(d \pi_{a}\right)^{-1}(u)\right),\left(d R_{a^{-1}}\right)_{a}\left(\left(d \pi_{a}\right)^{-1}(v)\right)\right\rangle .
$$

Equivalently, if X and Y are the unique vectors in \mathfrak{m} such that $X=\left(\left(d L_{a^{-1}}\right)_{a} \circ\left(d \pi_{a}\right)^{-1}\right)(u)$ and $Y=\left(\left(d L_{a^{-1}}\right)_{a} \circ\left(d \pi_{a}\right)^{-1}\right)(v)$, then

$$
\langle u, v\rangle_{G / H, p}=\left\langle\operatorname{Ad}_{a}(X), \operatorname{Ad}_{a}(Y)\right\rangle
$$

Furthermore, $\operatorname{Ad}_{a}(\mathfrak{m})$ depends only on the point $p \in G / H$ for which $p=a H$. We can choose an inner product on \mathfrak{g} by picking any inner product on \mathfrak{m} and any inner product on \mathfrak{h} and asserting that \mathfrak{h} and \mathfrak{m} are orthogonal. This, way

$$
T_{a} G=\left(d L_{a}\right)_{1}(\mathfrak{h}) \oplus\left(d L_{a}\right)_{1}(\mathfrak{m})
$$

where the vertical subspace $\mathcal{V}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{h})$ and the horizontal subspace $\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m})$ are orthogonal for every $a \in G$. Furthermore, for all $a, b \in G$ and all $h \in H$, if $b=a h$, then $\left(d R_{h}\right)_{a}$ is an isometry between \mathcal{H}_{a} and \mathcal{H}_{b}.

Proof. We define the metric $\langle-,-\rangle_{G / H}$ using the isomorphisms $d \pi_{a}: \mathcal{H}_{a} \rightarrow T_{p}(G / H)$, where $\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m}), a \in G$, and $p=a H \in G / H$, as follows. For any two vectors $u, v \in$ $T_{p}(G / H)$, if X and Y are the unique vectors in \mathfrak{m} such that $X=\left(\left(d L_{a^{-1}}\right)_{a} \circ\left(d \pi_{a}\right)^{-1}\right)(u)$ and $Y=\left(\left(d L_{a^{-1}}\right)_{a} \circ\left(d \pi_{a}\right)^{-1}\right)(v)$, then we have

$$
\begin{aligned}
\langle u, v\rangle_{G / H, p} & =\left\langle\left(d R_{a^{-1}}\right)_{a}\left(\left(d \pi_{a}\right)^{-1}(u)\right),\left(d R_{a^{-1}}\right)_{a}\left(\left(d \pi_{a}\right)^{-1}(v)\right)\right\rangle \\
& =\left\langle\left(d R_{a^{-1}}\right)_{a}\left(\left(d L_{a}\right)_{1}(X)\right),\left(d R_{a^{-1}}\right)_{a}\left(\left(d L_{a}\right)_{1}(Y)\right)\right\rangle \\
& =\left\langle\operatorname{Ad}_{a}(X), \operatorname{Ad}_{a}(Y)\right\rangle .
\end{aligned}
$$

Thus, the metric on $T_{p}(G / H)$ is completely determined by the metric on $\operatorname{Ad}_{a}(\mathfrak{m})$, a subspace which depends only on the point $p \in G / H$ for which $p=a H$.

Let us check that this definition does not depend on the choice of the coset representative $a H=p$. If $b H=a H$, we have $b=a h$ for some $h \in H$, and then by Proposition 1.3 we have $X^{\prime}=\left(\left(d L_{b^{-1}}\right)_{b} \circ\left(d \pi_{b}\right)^{-1}\right)(u)=\operatorname{Ad}_{h^{-1}}(X) \quad$ and $\quad Y^{\prime}=\left(\left(d L_{b^{-1}}\right)_{b} \circ\left(d \pi_{b}\right)^{-1}\right)(v)=\operatorname{Ad}_{h^{-1}}(Y)$, so for $p=b H$, we have

$$
\begin{aligned}
\langle u, v\rangle_{G / H, p} & =\left\langle\operatorname{Ad}_{b}\left(X^{\prime}\right), \operatorname{Ad}_{b}\left(Y^{\prime}\right)\right\rangle \\
& =\left\langle\operatorname{Ad}_{b}\left(\operatorname{Ad}_{h^{-1}}(X)\right), \operatorname{Ad}_{b}\left(\operatorname{Ad}_{h^{-1}}(Y)\right)\right\rangle \\
& =\left\langle\operatorname{Ad}_{a}(X), \operatorname{Ad}_{a}(Y)\right\rangle
\end{aligned}
$$

proving that the definition of $\langle u, v\rangle_{G / H, p}$ does not depend on the coset representative of $p=a H$. The smoothness of this metric follows from the standard argument; namely, G is a principal H-bundle over G / H, and so local sections exist.

Observe that the definition

$$
\langle u, v\rangle_{G / H, p}=\left\langle\left(d R_{a^{-1}}\right)_{a}\left(\left(d \pi_{a}\right)^{-1}(u)\right),\left(d R_{a^{-1}}\right)_{a}\left(\left(d \pi_{a}\right)^{-1}(v)\right)\right\rangle
$$

means that

$$
\langle u, v\rangle_{G / H, p}=\left\langle\left(d \pi_{a}\right)^{-1}(u),\left(d \pi_{a}\right)^{-1}(v)\right\rangle_{a},
$$

where $\langle-,-\rangle_{a}$ is the right-invariant metric on $\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m})$ induced by the inner product on \mathfrak{g}. Consequently, for all $p \in G / H$ and for all $a \in G$ such that $p=a H$, the isomorphism $d \pi_{a}: \mathcal{H}_{A} \rightarrow T_{p}(G / H)$ is an isometry, which shows that the submersion π is a Riemannian submersion. Furthermore, for all $a, b \in G$ and all $h \in H$, if $b=a h$, then $\left(d R_{h}\right)_{a}$ is an isometry between $\mathcal{H}_{a}=\left(d L_{a}\right)_{1}(\mathfrak{m})$ and $\mathcal{H}_{b}=\left(d L_{b}\right)_{1}(\mathfrak{m})$.

1.4 Connections on Reductive Homogeneous Spaces

Given a reductive homogeneous space G / H with reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, we know that there is a one-to-one correspondence between G-invariant metrics on G / H and inner products $\langle-,\rangle_{\mathfrak{m}}$ on \mathfrak{m} that are $\operatorname{Ad}(H)$-invariant, which means that

$$
\langle u, v\rangle_{\mathfrak{m}}=\left\langle\operatorname{Ad}_{h}(u), \operatorname{Ad}_{h}(v)\right\rangle_{\mathfrak{m}}, \quad \text { for all } h \in H \text { and all } u, v \in \mathfrak{m}
$$

Unfortunately, if H is not compact, such inner products do not exist.
Instead of trying to define a connection on G / H in terms of a metric, we may try to define a connection on G / H in terms of a bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ on \mathfrak{m}. Since the Levi-Civita connection is invariant under diffeomorphisms, the Levi-Civita connection induced by an $\operatorname{Ad}(H)$-invariant inner product on \mathfrak{m} is G-invariant, so it it natural to look for G-invariant connections. Let us review what it means for a connection on G / H to be G-invariant.

Every group element $a \in G$ defines a diffeomorphism $\tau_{a}: G / H \rightarrow G / H$ given by

$$
\tau_{a}(g H)=a g H, \quad \text { for all } g \in G .
$$

Oberve that

$$
\tau_{a b}=\tau_{a} \circ \tau_{b},
$$

since

$$
\tau_{a b}(g H)=a b g H=\tau_{a}(b g H)=\tau_{a}\left(\tau_{b}(g H)\right)
$$

and

$$
\tau_{h}(H)=H, \quad \text { for all } h \in H
$$

Given a diffeomorphism $\varphi: M \rightarrow N$ between two manifolds M and N, for any vector field V on M, recall that we define the push-forward $\varphi_{*} V$ of V by

$$
\left(\varphi_{*} V\right)_{\varphi(p)}=d \varphi_{p} V_{p}, \quad \text { for all } p \in M
$$

If ψ is a diffeomorphism from N to P, then

$$
\begin{aligned}
\left((\psi \circ \varphi)_{*} V\right)_{\psi(\varphi(p))} & =d(\psi \circ \varphi)_{p} V_{p} \\
& =d \psi_{\varphi(p)}\left(d \varphi_{p} V_{p}\right) \\
& =d \psi_{\varphi(p)}\left(\varphi_{*} V\right)_{\varphi(p)} \\
& =\left(\psi_{*}\left(\varphi_{*} V\right)\right)_{\psi(\varphi(p))}
\end{aligned}
$$

which shows that

$$
(\psi \circ \varphi)_{*}=\psi_{*} \circ \varphi_{*} .
$$

Definition 1.3. A connection ∇ on a homogeneous space G / H is G-invariant if

$$
\begin{equation*}
\left(\tau_{a}\right)_{*}\left(\nabla_{V} W\right)=\nabla_{\left(\tau_{a}\right)_{*} V}\left(\left(\tau_{a}\right)_{*} W\right), \quad \text { for all } V, W \in \mathcal{X}(G / H) \text { and all } a \in G . \tag{*}
\end{equation*}
$$

Recall that $\left(\nabla_{V} W\right)_{p}$ depend only of V_{p}, so

$$
\left(\nabla_{V} W\right)_{p}=\left(\nabla_{V_{p}} W\right)_{p}
$$

We make constant use of the above fact.
The natural projection from G onto G / H is denoted by $\pi: G \rightarrow G / H$. Recall that the restriction of the map $d \pi_{1}: \mathfrak{g} \rightarrow T_{0}(G / H)$ to \mathfrak{m} is a linear isomorphism (where o denotes the
point in G / H corresponding to the coset $1 H=H)$. Since $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, every vector $X \in \mathfrak{g}$ has a unique decomposition as

$$
X=X_{\mathfrak{h}}+X_{\mathfrak{m}}, \quad X_{\mathfrak{h}} \in \mathfrak{h}, X_{\mathfrak{m}} \in \mathfrak{m} .
$$

The fact that every $X \in \mathfrak{g}$ induces a vector field X^{*} on G / H (an action field or infinitesimal generator) through the left action of G on G / H plays a crucial role. For any $X \in \mathfrak{g}$, the vector field X^{*} is given by

$$
X_{p}^{*}=\left.\frac{d}{d t}(\exp (t X) a H)\right|_{t=0}
$$

for any $a \in G$ such that $p=a H$. Recall that the linear map $d \pi_{1}: \mathfrak{g} \rightarrow T_{o}(G / H)$ can be expressed as

$$
d \pi_{1}(X)=X_{0}^{*}=\left.\frac{d}{d t}(\exp (t X) H)\right|_{t=0}
$$

and $\operatorname{Ker}\left(d \pi_{1}\right)=\mathfrak{h}$.
It turns out that any G-invariant connection on G / H is uniquely determined by the bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ given by

$$
\alpha(X, Y)=\left(d \pi_{1}\right)^{-1}\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o}, \quad \text { for all } X, Y \in \mathfrak{m}
$$

Furhermore, there is a one-to-one correspondence between G-invariant connection on G / H and bilinear maps $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ satifying the condition

$$
\operatorname{Ad}_{h}(\alpha(X, Y))=\alpha\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right), \quad \text { for all } X, Y \in \mathfrak{m} \text { and all } h \in H
$$

It is also possible to characterize torsion-free G-invariant connections and G-invariant connections for which the geodesics through o are of the form $\gamma(t)=e^{t X} \cdot o$. In this case, the bilinear map α is given by

$$
\alpha(X, Y)=-\frac{1}{2}[X, Y]_{\mathfrak{m}}, \quad X, Y \in \mathfrak{m}
$$

This connection is known as the Cartan connection on G / H. The Levi-Civita connection associated with a G-invariant metric on G / H coincides with the Cartan connection on G / H iff G / H is naturally reductive.

The following technical results will be needed.
Proposition 1.5. For any $X \in \mathfrak{g}$ and any $a \in G$, we have

$$
\left(\tau_{a}\right)_{*} X^{*}=\left(\operatorname{Ad}_{a}(X)\right)^{*}
$$

Proof. By definition, for any $p=b H$, we have $\tau_{a}(b H)=a b H$, and

$$
\begin{aligned}
\left(\left(\tau_{a}\right)_{*} X^{*}\right)_{\tau_{a}(p)} & =\left(d \tau_{a}\right)_{p}\left(X^{*}(p)\right) \\
& =\left.\frac{d}{d t}(a \exp (t X) b H)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(a \exp (t X) a^{-1} a b H\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\exp \left(t \operatorname{Ad}_{a}(X)\right) a b H\right)\right|_{t=0} \\
& =\left(\operatorname{Ad}_{a}(X)\right)_{\tau_{a}(p)}^{*}
\end{aligned}
$$

which shows that $\left(\tau_{a}\right)_{*} X^{*}=\left(\operatorname{Ad}_{a}(X)\right)^{*}$.
In the special case where $p=o$, since $X_{o}^{*}=d \pi_{1}(X)$ for any $X \in \mathfrak{g}$, the above derivation shows that

$$
\begin{aligned}
\left(\left(\tau_{a}\right)_{*} X^{*}\right)_{\tau_{a}(o)} & =d \tau_{a}\left(X_{0}^{*}\right) \\
& =d \tau_{a}\left(d \pi_{o}(X)\right) \\
& =\left(\left(d \tau_{a}\right)_{o} \circ d \pi_{1}\right)(X) \\
& =\left(\operatorname{Ad}_{a}(X)\right)_{\tau_{a}(o)}^{*},
\end{aligned}
$$

so $\left(\left(d \tau_{a}\right)_{o} \circ d \pi_{1}\right)(X)=\left(\operatorname{Ad}_{a}(X)\right)_{\tau_{a}(o)}^{*}$. If we restrict X to belong to \mathfrak{m} and if we let $p=a H=$ $\tau_{a}(o)$ and define $\eta_{a}: \operatorname{Ad}_{a}(\mathfrak{m}) \rightarrow T_{p}(G / H)$ by

$$
\eta_{a}(Y)=Y_{p}^{*}, \quad Y \in \operatorname{Ad}_{a}(\mathfrak{m})
$$

then we obtain the following commutative diagram:

Since the maps $\operatorname{Ad}_{a}, d \pi_{1}$ and $\left(d \tau_{a}\right)_{o}$ are linear isomorphisms, the map η_{a} is an isomorphism between $\operatorname{Ad}_{a}(\mathfrak{m})$ and $T_{p}(G / H)$, with $p=a H$. Observe that if $h \in H$, then $p=o, \operatorname{Ad}_{h}(\mathfrak{m})=$ \mathfrak{m}, and $\eta_{h}=d \pi_{1}$.

Proposition 1.6. For any $p \in G / H$, for any two coset representatives $b H=a H=p$, if $b=a h$ for some $h \in \mathfrak{m}$, then

$$
\eta_{b} \circ \operatorname{Ad}_{b}=\eta_{a} \circ \operatorname{Ad}_{a} \circ \operatorname{Ad}_{h} .
$$

Proof. Indeed, by ($* *$) we have

$$
\begin{aligned}
\eta_{a} \circ \mathrm{Ad}_{a} & =\left(d \tau_{a}\right)_{o} \circ d \pi_{1} \\
\eta_{b} \circ \mathrm{Ad}_{b} & =\left(d \tau_{b}\right)_{o} \circ d \pi_{1} \\
d \pi_{1} \circ \mathrm{Ad}_{h} & =\left(d \tau_{h}\right)_{o} \circ d \pi_{1},
\end{aligned}
$$

and we deduce that

$$
\begin{aligned}
\eta_{b} \circ \mathrm{Ad}_{b} & =\left(d \tau_{b}\right)_{o} \circ d \pi_{1} \\
& =\left(d \tau_{a}\right)_{o} \circ\left(d \tau_{h}\right)_{o} \circ d \pi_{1} \\
& =\left(d \tau_{a}\right)_{o} \circ d \pi_{1} \circ \mathrm{Ad}_{h} \\
& =\eta_{a} \circ \mathrm{Ad}_{a} \circ \mathrm{Ad}_{h},
\end{aligned}
$$

as claimed.

We begin with a necessary condition for a connection on G / H to be G-invariant. Recall that as a special case of $(* *)$, we have

$$
d \pi_{1} \circ \operatorname{Ad}_{h}=\left(d \tau_{h}\right)_{o} \circ d \pi_{1} \quad \text { for all } h \in H
$$

which can be expressed as

$$
\left(\operatorname{Ad}_{h}(X)\right)_{o}^{*}=\left(d \tau_{h}\right)_{o}\left(X_{o}^{*}\right) \quad \text { for all } h \in H \text { and all } X \in \mathfrak{m} .
$$

This equation is also shown in O'Neill [4] (Chapter 11, Proposition 22) and Gallier (Proposition 19.16).

If we apply the identity $(*)$ at $\tau_{h}(o)=o$ to $V=X^{*}, W=Y^{*}$ with $X, Y \in \mathfrak{m}$, and to $a=h \in H$, we get

$$
\left(\tau_{h}\right)_{*}\left(\nabla_{X^{*}} Y^{*}\right)_{o}=\left(\nabla_{\left(\left(\tau_{h}\right)_{*} X^{*}\right)_{o}}\left(\tau_{h}\right)_{*} Y^{*}\right)_{o},
$$

which is equivalent to

$$
\begin{aligned}
\left(d \tau_{h}\right)_{o}\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o} & =\left(\nabla_{\left(d \tau_{h}\right)_{o} X_{o}^{*}}\left(\operatorname{Ad}_{h}(Y)\right)^{*}\right)_{o} \\
& =\left(\nabla_{\left(\operatorname{Ad}_{h}(X)\right)_{o}^{*}}\left(\operatorname{Ad}_{h}(Y)\right)^{*}\right)_{o} .
\end{aligned}
$$

Definition 1.4. The bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ is given by

$$
\alpha(X, Y)=\left(d \pi_{1}\right)^{-1}\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o}, \quad \text { for all } X, Y \in \mathfrak{m},
$$

where $d \pi_{1}$ is the isomorphism from \mathfrak{m} onto $T_{o}(G / H)$. Equivalently, $\alpha(X, Y)$ is determined by

$$
\alpha(X, Y)_{o}^{*}=\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o}, \quad \text { for all } X, Y \in \mathfrak{m}
$$

Proposition 1.7. The bilinear map α associated with a G-invariant connection ∇ on G / H as in Definition 1.4 satisfies the condition

$$
\operatorname{Ad}_{h}(\alpha(X, Y))=\alpha\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right), \quad \text { for all } X, Y \in \mathfrak{m} \text { and all } h \in H
$$

Proof. The equation

$$
\left(d \tau_{h}\right)_{o}\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o}=\left(\nabla_{\left(\operatorname{Ad}_{h}(X)\right)_{o}^{*}}\left(\operatorname{Ad}_{h}(Y)\right)^{*}\right)_{o}
$$

proved earlier shows that

$$
\left(d \tau_{h}\right)_{o}\left(d \pi_{1}(\alpha(X, Y))\right)=d \pi_{1}\left(\alpha\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right)\right)
$$

so

$$
d \pi_{1}\left(\operatorname{Ad}_{h}(\alpha(X, Y))\right)=d \pi_{1}\left(\alpha\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right)\right)
$$

which, since $d \pi_{1}$ is an isomorphism from \mathfrak{m} onto $T_{o}(G / H)$, implies the condition

$$
\operatorname{Ad}_{h}(\alpha(X, Y))=\alpha\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right), \quad \text { for all } X, Y \in \mathfrak{m} \text { and all } h \in H
$$

as claimed.
Here is the main theorem of this section.
Theorem 1.8. Given any homogeneous reductive space G / H with reductive decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}
$$

there is a one-to-one correspondence between G-invariant connection on G / H and bilinear maps $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ satifying the condition

$$
\operatorname{Ad}_{h}(\alpha(X, Y))=\alpha\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right), \quad \text { for all } X, Y \in \mathfrak{m} \text { and all } h \in H
$$

Given any G-invariant connection ∇ on G / H, the bilinear map α is given by

$$
\alpha(X, Y)=\left(d \pi_{1}\right)^{-1}\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o}, \quad \text { for all } X, Y \in \mathfrak{m}
$$

where $d \pi_{1}$ is the isomorphism from \mathfrak{m} onto $T_{o}(G / H)$. Conversely, given a bilinear map α satisfying condition (\dagger), the unique G-invariant connection ∇ associated with α is defined as follows. For any $p \in G / H$, for any coset representative $a H=p$ with $a \in G$, the map $\eta_{a}: \operatorname{Ad}_{a}(\mathfrak{m}) \rightarrow T_{p}(G / H)$ given by

$$
\eta_{a}(Y)=Y_{p}^{*}, \quad Y \in \operatorname{Ad}_{a}(\mathfrak{m})
$$

is a linear isomorphism such that the following diagram commutes:

Then, for any $V \in T_{p}(G / H)$ and for any vector field W on G / H of the form $W=\left(\operatorname{Ad}_{a}(Y)\right)^{*}$, with $Y \in \mathfrak{m}$, if $X \in \mathfrak{m}$ is the unique vector such that $V=\left(\eta_{a} \circ \operatorname{Ad}_{a}\right)(X)$, we set

$$
\left(\nabla_{V} W\right)_{p}=\left(d \tau_{a}\right)_{o}\left(\nabla_{\left(d \tau_{a-1}\right)_{p}(V)}\left(\tau_{a^{-1}}\right)_{*} W\right)_{o}=\left(d \tau_{a}\right)_{o} \circ d \pi_{1}(\alpha(X, Y))
$$

Furthermore, the G-invariant connection on G / H associated with α is torsion-free iff

$$
\alpha(X, Y)-\alpha(Y, X)=-[X, Y]_{\mathfrak{m}}, \quad \text { for all } X, Y \in \mathfrak{m} .
$$

Proof. It was shown in Proposition 1.7 that the bilinear map α associated with a G-invariant connection ∇ on G / H satisfies (\dagger).

Conversely, we show that any bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ satisfying (\dagger) induces a G-invariant connection on G / H.

For any $a \in G$, since τ_{a} is a diffeomorphism with inverse $\tau_{a^{-1}}$, for any two vector fields V and W over G / H, if the connection $\nabla_{V} W$ is G-invariant, since

$$
\left(\tau_{a}\right)_{*} \circ\left(\tau_{a^{-1}}\right)_{*}=\left(\tau_{a} \circ \tau_{a^{-1}}\right)_{*}=\mathrm{id}_{*},
$$

we must have

$$
\begin{aligned}
\nabla_{V} W & =\left(\tau_{a}\right)_{*}\left(\left(\tau_{a^{-1}}\right)_{*} \nabla_{V} W\right) \\
& =\left(\tau_{a}\right)_{*}\left(\nabla_{\left(\tau_{a-1}\right)_{*} V}\left(\tau_{a^{-1}}\right)_{*} W\right) .
\end{aligned}
$$

At $p=a H$, since $p=\tau_{a}(o)$, we get

$$
\begin{aligned}
\left(\nabla_{V} W\right)_{p} & =\left(d \tau_{a}\right)_{o}\left(\nabla_{\left(\tau_{a-1}\right)_{*} V}\left(\tau_{a^{-1}}\right)_{*} W\right)_{o} \\
& =\left(d \tau_{a}\right)_{o}\left(\nabla_{\left(d \tau_{a-1}\right)_{p}\left(V_{p}\right)}\left(\tau_{a^{-1}}\right)_{*} W\right)_{o} .
\end{aligned}
$$

Moreover, $\left(\nabla_{\left(d \tau_{a^{-1}}\right)_{p}\left(V_{p}\right)}\left(\tau_{a^{-1}}\right)_{*} W\right)_{o} \in T_{o}(G / H) \cong \mathfrak{m}$, with $\left(d \tau_{a^{-1}}\right)_{p}\left(V_{p}\right) \in T_{o}(G / H)$ and where $\left(\tau_{a^{-1}}\right)_{*} W$ is a vector field whose value at o belongs to $T_{o}(G / H)$. We can pick some chart of G / H at o with domain U, and then we know that over U, the vector field $\left(\tau_{a^{-1}}\right)_{*} W$ can be written as

$$
\widehat{W}=\left(\tau_{a^{-1}}\right)_{*} W=f_{1} X_{1}^{*}+\cdots+f_{n} X_{n}^{*}
$$

for some basis $\left(X_{1}, \ldots, X_{n}\right)$ of \mathfrak{m} and for some smooth functions f_{1}, \ldots, f_{n} on U. Since $\left(\tau_{a^{-1}}\right)_{*} W$ and \widehat{W} agree near o, we have

$$
\begin{aligned}
\nabla_{\left(d \tau_{a-1}\right)_{p}\left(V_{p}\right)}\left(\tau_{a^{-1}}\right)_{*} W & =\nabla_{\left(d \tau_{a-1}\right)_{p}\left(V_{p}\right)} \widehat{W} \\
& =\sum_{i=1}^{n} f_{i} \nabla_{\left(d \tau_{a-1}\right)_{p}\left(V_{p}\right)} X_{i}^{*}+\sum_{i=1}^{n}\left(\left(\left(d \tau_{a^{-1}}\right)_{p}\left(V_{p}\right)\right) f_{i}\right) X_{i}^{*}
\end{aligned}
$$

(where $\left(\left(d \tau_{a^{-1}}\right)_{p}\left(V_{p}\right)\right) f_{i}$ denotes the directional derivative of f_{i} in the direction $\left.\left(d \tau_{a^{-1}}\right)_{p}\left(V_{p}\right)\right)$, which shows that $\nabla_{\left(d \tau_{a-1}\right)_{p}\left(V_{p}\right)}\left(\tau_{a^{-1}}\right)_{*} W$ is completely determined by the $\nabla_{\left(d \tau_{a-1}\right)_{p}\left(V_{p}\right)} X_{i}^{*}$, for $i=1 \ldots, n$.

Given any $p \in G / H$, for any coset representative $a H=p$, recall that we have an isomorphism $\eta_{a}: \operatorname{Ad}_{a}(\mathfrak{m}) \rightarrow T_{p}(G / H)$, so for any $V \in T_{p}(G / H)$, there is a unique $X \in \mathfrak{m}$ so that $V=\eta_{a}\left(\operatorname{Ad}_{a}(X)\right)$. Furthermore, we have

$$
\begin{aligned}
\left(d \tau_{a^{-1}}\right)_{p}(V) & =\left(d \tau_{a^{-1}}\right)_{p}\left(\eta_{a}\left(\operatorname{Ad}_{a}(X)\right)\right) \\
& \left.=\left(d \tau_{a^{-1}}\right)_{p}\left(\left(d \tau_{a}\right)_{o} \circ d \pi_{1}\right)(X)\right) \\
& =d \pi_{1}(X)=X_{o}^{*}
\end{aligned}
$$

As a consequence, for any $V \in T_{p}(G / H)$ and for any vector field W on G / H of the form $W=\left(\operatorname{Ad}_{a}(Y)\right)^{*}$ with $Y \in \mathfrak{m}$, since

$$
\left(\tau_{a^{-1}}\right)_{*}(W)=\left(\tau_{a^{-1}}\right)_{*}\left(\operatorname{Ad}_{a}(Y)\right)^{*}=\left(\operatorname{Ad}_{a^{-1}}\left(\operatorname{Ad}_{a}(Y)\right)\right)^{*}=Y^{*}
$$

we have

$$
\begin{aligned}
\left(\nabla_{\left(d \tau_{a-1}\right)_{p}(V)}\left(\tau_{a^{-1}}\right)_{*} W\right)_{o} & =\left(\nabla_{X_{o}^{*}} Y^{*}\right)_{o} \\
& =d \pi_{1}(\alpha(X, Y))
\end{aligned}
$$

Therefore, for any coset representative $a H=p$ with $a \in G$, for any $V \in T_{p}(G / H)$ and for any vector field W on G / H of the form $W=\left(\operatorname{Ad}_{a}(Y)\right)^{*}$, with $Y \in \mathfrak{m}$, if $X \in \mathfrak{m}$ is the unique vector such that $V=\left(\eta_{a} \circ \operatorname{Ad}_{a}\right)(X)$, we set

$$
\left.\left(\nabla_{V} W\right)_{p}=\left(d \tau_{a}\right)_{o}\left(\nabla_{\left(d \tau_{a}-1\right.}\right)_{p}(V)\left(\tau_{a^{-1}}\right)_{*} W\right)_{o}=\left(d \tau_{a}\right)_{o} \circ d \pi_{1}(\alpha(X, Y))
$$

We need to show that the above definition does not depend on the representative of p, so let $b \in G$ such that $a H=b H$. Then, $b=a h$ for some $h \in H$, and we have

$$
V=\left(\eta_{a} \circ \operatorname{Ad}_{a}\right)(X)=\left(\eta_{b} \circ \operatorname{Ad}_{b}\right)\left(\operatorname{Ad}_{h^{-1}}(X)\right)
$$

and

$$
W=\left(\operatorname{Ad}_{a}(Y)\right)^{*}=\left(\operatorname{Ad}_{b}\left(\operatorname{Ad}_{h^{-1}}(Y)\right)^{*} .\right.
$$

Since $d \pi_{1} \circ \operatorname{Ad}_{h}=\left(d \tau_{h}\right)_{o} \circ d \pi_{1}$, we get

$$
\begin{aligned}
\left(d \tau_{b}\right)_{o}\left(\nabla_{\left(d \tau_{b-1}\right)_{p}(V)}\left(\tau_{b^{-1}}\right)_{*} W\right)_{o} & =\left(d \tau_{a}\right)_{o} \circ\left(d \tau_{h}\right)_{o}\left(\nabla_{\left(d \tau_{b-1}\right)_{p}(V)}\left(\tau_{b^{-1}}\right)_{*} W\right)_{o} \\
& =\left(d \tau_{a}\right)_{o} \circ\left(d \tau_{h}\right)_{o} \circ d \pi_{1}\left(\alpha\left(\operatorname{Ad}_{h^{-1}}(X), \operatorname{Ad}_{h^{-1}}(Y)\right)\right) \\
& =\left(d \tau_{a}\right)_{o} \circ d \pi_{1} \circ \operatorname{Ad}_{h}\left(\alpha\left(\operatorname{Ad}_{h^{-1}}(X), \operatorname{Ad}_{h^{-1}}(Y)\right)\right) .
\end{aligned}
$$

Using (\dagger), this yield

$$
\begin{aligned}
\left(d \tau_{a}\right)_{o} \circ d \pi_{1} \circ \operatorname{Ad}_{h}\left(\alpha\left(\operatorname{Ad}_{h^{-1}}(X), \operatorname{Ad}_{h^{-1}}(Y)\right)\right) & =\left(d \tau_{a}\right)_{o} \circ d \pi_{1} \circ \operatorname{Ad}_{h} \circ \operatorname{Ad}_{h^{-1}}(\alpha(X, Y)) \\
& =\left(d \tau_{a}\right)_{o} \circ d \pi_{1}(\alpha(X, Y))
\end{aligned}
$$

which proves that our definition does not depend on the choice of the representative of the coset p. The definition also makes it clear that the resulting connection is G-invariant.

If the connection ∇ is torsion-free, let us find out which condition is imposed on α. Recall that the torsion of a connection ∇ is given by

$$
T(V, W)=\nabla_{V} W-\nabla_{W} V-[V, W]
$$

If the connection ∇ is torsion-free, which means that

$$
\nabla_{V} W-\nabla_{W} V=[V, W], \quad \text { for all } V, W \in \mathcal{X}(G / H)
$$

then we have

$$
\nabla_{X^{*}} Y^{*}-\nabla_{Y^{*}} X^{*}=\left[X^{*}, Y^{*}\right], \quad \text { for all } X, Y \in \mathfrak{m}
$$

which implies that

$$
d \pi_{1}(\alpha(X, Y))-d \pi_{1}(\alpha(Y, X))=-[X, Y]_{o}^{*} .
$$

However, $[X, Y]_{\mathfrak{m}}$ is the unique vector in \mathfrak{m} such that $d \pi_{1}\left([X, Y]_{\mathfrak{m}}\right)=[X, Y]_{o}^{*}$, so we get $d \pi_{1}(\alpha(X, Y))-d \pi_{1}(\alpha(Y, X))=-d \pi_{1}\left([X, Y]_{\mathfrak{m}}\right)$, and since $d \pi_{1}$ is a bijection from \mathfrak{m} onto $T_{o}(G / H)$, we obtain

$$
\alpha(X, Y)-\alpha(Y, X)=-[X, Y]_{\mathfrak{m}}, \quad \text { for all } X, Y \in \mathfrak{m} .
$$

Therefore, if the G-invariant connection ∇ is torsion-free, then $\alpha_{S}=(\alpha(X, Y)-\alpha(Y, X)) / 2$, the skew-symmetric part of α, is given by

$$
\alpha_{S}(X, Y)=-\frac{1}{2}[X, Y]_{\mathfrak{m}} .
$$

The converse is clear.

Remark: It should be possible to derive Theorem 1.8 from Theorem 2.1 in Kobayashi and Nomizu [3] (Chapter X), a more general result which applies to certain principal subbundles of the bundle of linear frames with structure group some subgroup of $\mathbf{G L}(n, \mathbb{R})$, on a reductive homogeneous space. However, Kobayashi and Nomizu use a different definition of a connection, namely in terms of \mathfrak{g}-valued one-forms (so called Ereshmann connections; see Kobayashi and Nomizu [2], Chapters II and III). The translation of their results to connections defined as operators ∇ on vector fields appears to require as much work as proving our theorem directly.

We now find a necessary and sufficient condition on the bilinear map α associated with a G-invariant connection ∇ on G / H so that the curves $\gamma(t)=e^{t X} O=\tau_{e^{t X}}(o)$ through o with $X \in \mathfrak{m}$ are geodesics. Such a condition is given in Kobayashi and Nomizu [3] (Chapter X, Proposition 2.9 and Theorem 2.10). However, as noted earlier, Kobayashi and Nomizu use a different definition of a connection, namely in terms of \mathfrak{g}-valued one-forms. The translation
of their results to connections defined as operators ∇ on vector fields requires a fair amount of work.

We need a preliminary result. First, observe that for any fixed $t, e^{t X} \in G$ defines the diffeomorphisn $\tau_{e}{ }^{t X}$ of G / H.

Proposition 1.9. For any reductive homogeneous manifold G / H, for any $X \in \mathfrak{g}$, if γ is the curve in G / H given by $\gamma(t)=e^{t X} \cdot o=\tau_{e^{t X}}(o)$, then for every $t \in \mathbb{R}$, we have

$$
\left(\tau_{\gamma(t)}\right)_{*} X^{*}=X^{*}
$$

Proof. Since the action vector field X^{*} is defined such that for any $p \in G / H$,

$$
X_{p}^{*}=\left.\frac{d}{d s}\left(e^{s X} a H\right)\right|_{s=0}
$$

for any $a \in G$ such that $p=a H$, we have

$$
\begin{aligned}
\left(\tau_{\gamma(t)}\right)_{*} X_{p}^{*} & =\left.\frac{d}{d s}\left(e^{t X} e^{s X} a H\right)\right|_{s=0} \\
& =\left.\frac{d}{d s}\left(e^{s X} e^{t X} a H\right)\right|_{s=0} \\
& =X_{\tau_{\gamma(t)}(p)}^{*}
\end{aligned}
$$

which proves our claim.
Proposition 1.10. Given any reductive homogeneous manifold G / H and any G-invariant connection ∇ on G / H, for any $X \in \mathfrak{m}$, if γ is the curve in G / H given by $\gamma(t)=e^{t X} \cdot o=$ $\tau_{e^{t X}}(o)$, then γ is a geodesic in G / H iff the bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ associated with ∇ is skew-symmetric (that is, $\alpha(X, X)=0$ for all $X \in \mathfrak{m}$).

Proof. (After Kobayashi and Nomizu [3], Proposition 2.9). The curve $\gamma(t)=e^{t X} \cdot o$ is a geodesic iff

$$
\left(\nabla_{X^{*}} X^{*}\right)_{\tau_{\gamma(t)}(o)}=0, \quad \text { for all } t \in \mathbb{R}
$$

Now, since $\tau_{\gamma(t)}$ is a diffeomorphism of G / H for every t and since ∇ is G-invariant, we have

$$
\left(\tau_{\gamma(t)}\right)_{*}\left(\nabla_{X^{*}} X^{*}\right)=\nabla_{\left(\tau_{\gamma(t)}\right)_{*} X^{*}}\left(\tau_{\gamma(t)}\right)_{*} X^{*},
$$

and from Proposition 1.9, we have

$$
\left(\tau_{\gamma(t)}\right)_{*} X^{*}=X^{*}
$$

so we obtain

$$
\left(\tau_{\gamma(t)}\right)_{*}\left(\nabla_{X^{*}} X^{*}\right)=\nabla_{X^{*}} X^{*}
$$

which evaluated at $\tau_{\gamma(t)}(o)$ yields

$$
\left(\tau_{\gamma(t)}\right)_{*}\left(\nabla_{X^{*}} X^{*}\right)_{\tau_{\gamma(t)(o)}}=\left(\nabla_{X^{*}} X^{*}\right)_{\tau_{\gamma(t)(o)}} ;
$$

that is,

$$
\left(d \tau_{\gamma(t)}\right)_{o}\left(\nabla_{X^{*}} X^{*}\right)_{o}=\left(\nabla_{X^{*}} X^{*}\right)_{\tau_{\gamma(t)(o)}} .
$$

Since $\left(d \tau_{\gamma(t)}\right)_{o}$ is a bijection, we have $\left(\nabla_{X^{*}} X^{*}\right)_{\tau_{\gamma(t)}(o)}=0$ for all $t \in \mathbb{R}$ iff $\left(\nabla_{X^{*}} X^{*}\right)_{o}=0$ iff $\alpha(X, X)=0$ for all $X \in \mathfrak{m}$, establishing our claim.

Since we showed that a G-invariant connection on G / H corresponds to a bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ whose skew-symmetric part α_{S} is given by

$$
\alpha_{S}=\frac{1}{2}[X, Y]_{\mathfrak{m}},
$$

if there is a G-invariant torsion-free connection on G / H such that the the curves $t \mapsto \tau_{e^{t x}}(o)$ are geodesics through o for all $X \in \mathfrak{m}$, then

$$
\alpha(X, Y)=-\frac{1}{2}[X, Y]_{\mathfrak{m}} .
$$

Conversely, because Ad_{h} is induced by the Lie group isomorphism $R_{h^{-1}} \circ L_{h}$, it is a Lie algebra isomorphism, so the Lie bracket $[X, Y]$ is Ad_{h}-invariant for all $h \in H$, and Theorem 1.8 shows that there is G-invariant connection induced by

$$
\alpha(X, Y)=-\frac{1}{2}[X, Y]_{\mathfrak{m}}
$$

Now, if the curves $t \mapsto \tau_{e^{t X}}(o)$ are geodesics through o for all $X \in \mathfrak{m}$, since we have $d /\left.d t\left(\tau_{e^{t X}(o)}\right)\right|_{t=0}=X_{o}^{*}$, by the uniqueness of geodesics passing through o and with initial velocity X_{o}^{*}, we see that all geodesics through o are of the form $t \mapsto \tau_{e^{t X}}(o)$. Thus, we obtain the following result which is a version of Theorem 2.10 from Kobayashi and Nomizu [3] (Chapter X).

Theorem 1.11. Given any reductive homogeneous manifold G / H with reductive decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$, there is a unique G-invariant torsion-free connection ∇ on G / H such that all geodesics through o are given by the curves $t \mapsto \tau_{e^{t x}}(o)$ iff the bilinear map $\alpha: \mathfrak{m} \times \mathfrak{m} \rightarrow \mathfrak{m}$ associated with ∇ is given by

$$
\alpha(X, Y)=-\frac{1}{2}[X, Y]_{\mathfrak{m}}, \quad \text { for all } X, Y \in \mathfrak{m}
$$

We call the above connection the Cartan connection on G / H.
Remark: Theorem 2.10 In Kobayashi and Nomizu [3] states that

$$
\alpha(X, Y)=\frac{1}{2}[X, Y]_{\mathfrak{m}}
$$

with $a+\operatorname{sign}$. This appears to be in contradiction with our result. The reason is that Kobayashi and Nomizu define the action vector field X^{*} associated with a vector $X \in \mathfrak{g}$ in terms of the right action of $e^{t X}$ on G / H (see [2], page 42). We use the left action of $e^{t X}$ on G / H (as most other authors of books written after the 1980's do).

The Levi-Civita connection is preserved by diffeomorphims, so in particular, any LeviCivita connection on a homogeneous space is G-invariant. We also know that if G / H admits a G-invariant metric, then the Levi-Civita connection induced by that metric is given by

$$
\left(d \pi_{1}\right)^{-1}\left(\nabla_{X^{*}} Y^{*}\right)_{o}=-\frac{1}{2}[X, Y]_{\mathfrak{m}}+U(X, Y),
$$

where $[X, Y]_{\mathfrak{m}}$ is the component of $[X, Y]$ on \mathfrak{m} and $U(X, Y)$ is determined by

$$
2\langle U(X, Y), Z\rangle=\left\langle[Z, X]_{\mathfrak{m}}, Y\right\rangle+\left\langle X,[Z, Y]_{\mathfrak{m}}\right\rangle
$$

for all $Z \in \mathfrak{m}$. Therefore, we deduce that the Levi-Civita connection associated with a G-invariant metric on G / H coincides with the Cartan connection on G / H iff $U \equiv 0$ iff G / H is naturally reductive (see Kobayashi and Nomizu [3] (Chapter X, Theorem 3.3).

1.5 A Connection on $\operatorname{SE}(n)$

We compute the Levi-Civita connection associated with the left-invariant metric on $\mathbf{S E}(n)$ induced by the inner product in $\mathfrak{s e}(n)$ given by

$$
\langle X, Y\rangle=\operatorname{tr}\left(X Y^{\top}\right)=\operatorname{tr}\left(X^{\top} Y\right)
$$

For left-invariant vector fields, the inner products $\langle X, Y\rangle$ are constant, so the Koszul formula reduces to

$$
2\left\langle\nabla_{X} Y, Z\right\rangle=\langle[X, Y], Z\rangle-\langle[Y, Z], X\rangle-\langle[X, Z], Y\rangle
$$

If

$$
X=\left(\begin{array}{cc}
S_{1} & u_{1} \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
S_{2} & u_{2} \\
0 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
S_{3} & u_{3} \\
0 & 0
\end{array}\right),
$$

then we have

$$
[Y, Z]=Y Z-Z Y=\left(\begin{array}{cc}
S_{2} S_{3} & S_{2} u_{3} \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
S_{3} S_{3} & S_{3} u_{2} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
S_{2} S_{3}-S_{3} S_{2} & S_{2} u_{3}-S_{3} u_{2} \\
0 & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
\langle[Y, Z], X\rangle & =\operatorname{tr}\left(\begin{array}{cc}
S_{2} S_{3}-S_{3} S_{2} & S_{2} u_{3}-S_{3} u_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
S_{1}^{\top} & 0 \\
u_{1}^{\top} & 0
\end{array}\right) \\
& =\operatorname{tr}\left(\begin{array}{cc}
\left(S_{2} S_{3}-S_{3} S_{2}\right) S_{1}^{\top}+\left(S_{2} u_{3}-S_{3} u_{2}\right) u_{1}^{\top} & 0 \\
0 & 0
\end{array}\right) \\
& =\operatorname{tr}\left(S_{2} S_{3} S_{1}^{\top}-S_{3} S_{2} S_{1}^{\top}+S_{2} u_{3} u_{1}^{\top}-S_{3} u_{2} u_{1}^{\top}\right) .
\end{aligned}
$$

Similarly,

$$
\langle[X, Z], Y\rangle=\operatorname{tr}\left(S_{1} S_{3} S_{2}^{\top}-S_{3} S_{1} S_{2}^{\top}+S_{1} u_{3} u_{2}^{\top}-S_{3} u_{1} u_{2}^{\top}\right)
$$

so we get

$$
\begin{aligned}
\langle[Y, Z], X\rangle+\langle[X, Z], Y\rangle= & \operatorname{tr}\left(S_{2} S_{3} S_{1}^{\top}-S_{3} S_{2} S_{1}^{\top}+S_{1} S_{3} S_{2}^{\top}-S_{3} S_{1} S_{2}^{\top}\right. \\
& \left.+S_{2} u_{3} u_{1}^{\top}-S_{3} u_{2} u_{1}^{\top}+S_{1} u_{3} u_{2}^{\top}-S_{3} u_{1} u_{2}^{\top}\right)
\end{aligned}
$$

and since $S_{1}^{\top}=-S_{1}, S_{2}^{\top}=-S_{2}$, we obtain

$$
\begin{aligned}
\langle[Y, Z], X\rangle+\langle[X, Z], Y\rangle= & \operatorname{tr}\left(-S_{2} S_{3} S_{1}+S_{3} S_{2} S_{1}-S_{1} S_{3} S_{2}+S_{3} S_{1} S_{2}\right. \\
& \left.+S_{2} u_{3} u_{1}^{\top}+S_{1} u_{3} u_{2}^{\top}-S_{3}\left(u_{2} u_{1}^{\top}+u_{1} u_{2}^{\top}\right)\right) .
\end{aligned}
$$

Now, the first and the fourth terms cancel out since

$$
\operatorname{tr}\left(S_{2} S_{3} S_{1}\right)=\operatorname{tr}\left(S_{3} S_{1} S_{2}\right)
$$

and the second and the third terms cancel out since

$$
\operatorname{tr}\left(S_{3} S_{2} S_{1}\right)=\operatorname{tr}\left(S_{1} S_{3} S_{2}\right)
$$

Furthermore, because $u_{2} u_{1}^{\top}+u_{1} u_{2}^{\top}$ is symmetric and S_{3} is skew symmetric, we have

$$
\operatorname{tr}\left(S_{3}\left(u_{2} u_{1}^{\top}+u_{1} u_{2}^{\top}\right)\right)=0
$$

Indeed, if S is a skew symmetric and H is a symmetric matrix

$$
\operatorname{tr}(S H)=\operatorname{tr}\left((S H)^{\top}\right)=\operatorname{tr}\left(H^{\top} S^{\top}\right)=-\operatorname{tr}(H S)=-\operatorname{tr}(S H),
$$

so $\operatorname{tr}(S H)=0$. After simplifications, we get

$$
\langle[Y, Z], X\rangle+\langle[X, Z], Y\rangle=\operatorname{tr}\left(S_{2} u_{3} u_{1}^{\top}+S_{1} u_{3} u_{2}^{\top}\right)=\operatorname{tr}\left(S_{2}^{\top} u_{1} u_{3}^{\top}+S_{1}^{\top} u_{2} u_{3}^{\top}\right)
$$

Then, if we observe that

$$
\operatorname{tr}\left(S_{2}^{\top} u_{1} u_{3}^{\top}+S_{1}^{\top} u_{2} u_{3}^{\top}\right)=\operatorname{tr}\left(\begin{array}{cc}
0 & S_{2}^{\top} u_{1}+S_{1}^{\top} u_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
S_{3}^{\top} & 0 \\
u_{3}^{\top} & 0
\end{array}\right)
$$

we can write

$$
\begin{aligned}
2\left\langle\nabla_{X} Y, Z\right\rangle & =\langle[X, Y], Z\rangle-\langle[Y, Z], X\rangle-\langle[X, Z], Y\rangle \\
& =\langle[X, Y], Z\rangle-\left\langle\left(\begin{array}{cc}
0 & S_{2}^{\top} u_{1}+S_{1}^{\top} u_{2} \\
0 & 0
\end{array}\right), Z\right\rangle \\
& =\langle[X, Y], Z\rangle+\left\langle\left(\begin{array}{cc}
0 & S_{2} u_{1}+S_{1} u_{2} \\
0 & 0
\end{array}\right), Z\right\rangle,
\end{aligned}
$$

which yields

$$
\nabla_{X} Y=\frac{1}{2}\left([X, Y]+\left(\begin{array}{cc}
0 & S_{2} u_{1}+S_{1} u_{2} \\
0 & 0
\end{array}\right)\right)
$$

Since

$$
[X, Y]=\left(\begin{array}{cc}
S_{1} S_{2}-S_{2} S_{1} & S_{1} u_{2}-S_{2} u_{1} \\
0 & 0
\end{array}\right)
$$

we also have

$$
\nabla_{X} Y=\frac{1}{2}\left(\begin{array}{cc}
S_{1} S_{2}-S_{2} S_{1} & 2 S_{1} u_{2} \\
0 & 0
\end{array}\right)
$$

Consider the inner product

$$
\langle X, Y\rangle=\operatorname{tr}\left(X^{\top} Y\right)
$$

on $\mathfrak{s e}(n)$. We claim that this inner product is invariant under the left action of $G=\mathrm{SE}(n)$. If

$$
X=\left(\begin{array}{cc}
S & u \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
T & v \\
0 & 0
\end{array}\right), \quad \text { and } \quad R=\left(\begin{array}{cc}
Q & z \\
0 & 1
\end{array}\right) \in \mathbf{S E}(n)
$$

with $S^{\top}=-S, T^{\top}=-T, Q^{\top} Q=Q Q^{\top}=I$, and $u, v, z \in \mathbb{R}^{n}$, then we have

$$
\begin{aligned}
& \left(\begin{array}{cc}
Q & z \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
S & u \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
Q S & Q u \\
0 & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
Q & z \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
T & v \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
Q T & Q v \\
0 & 0
\end{array}\right),
\end{aligned}
$$

so

$$
\begin{aligned}
\langle R X, R Y\rangle & =\operatorname{tr}\left(\begin{array}{ll}
S^{\top} Q^{\top} & 0 \\
u^{\top} Q^{\top} & 0
\end{array}\right)\left(\begin{array}{cc}
Q T & Q v \\
0 & 0
\end{array}\right) \\
& =\operatorname{tr}\left(\begin{array}{ll}
S^{\top} Q^{\top} Q T & S^{\top} Q^{\top} Q v \\
u^{\top} Q^{\top} Q T & u^{\top} Q^{\top} Q v
\end{array}\right) \\
& =\operatorname{tr}\left(\begin{array}{ll}
S^{\top} T & S^{\top} v \\
u^{\top} T & u^{\top} v
\end{array}\right) \\
& =\operatorname{tr}\left(S^{\top} T+u^{\top} v\right) .
\end{aligned}
$$

However

$$
\langle X, Y\rangle=\operatorname{tr}\left(\begin{array}{ll}
S^{\top} & 0 \\
u^{\top} & 0
\end{array}\right)\left(\begin{array}{ll}
T & v \\
0 & 0
\end{array}\right)=\operatorname{tr}\left(\begin{array}{ll}
S^{\top} T & S^{\top} v \\
u^{\top} T & u^{\top} v
\end{array}\right)=\operatorname{tr}\left(S^{\top} T+u^{\top} v\right)
$$

which proves that

$$
\langle R X, R Y\rangle=\langle X, Y\rangle
$$

Acknowlegments:

Bibliography

[1] S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Universitext. Springer Verlag, second edition, 1993.
[2] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, I. Wiley Classics. Wiley-Interscience, first edition, 1996.
[3] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, II. Wiley Classics. Wiley-Interscience, first edition, 1996.
[4] Barrett O'Neill. Semi-Riemannian Geometry With Applications to Relativity. Pure and Applies Math., Vol 103. Academic Press, first edition, 1983.

