Affine Grassmannians and G-Invariant Connections on Homogeneous Reductive Spaces

Jean Gallier Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@seas.upenn.edu

© Jean Gallier

May 8, 2024

Contents

1	Affine Grassmannians	3
	1.1 The Grassmannian $AG(k, n)$ of Affine Subspaces	3
	1.2 The Grassmannian $AG^{o}(k, n)$ of Oriented Affine Subspaces	7
	1.3 $AG(k,n)$ and $AG^{o}(k,n)$ as Reductive Homogeneous Spaces	9
	1.4 A Connection on $\mathbf{SE}(n)$	13
2	Metrics on G/H And Right-Invariant Metrics on G	17
3	G-Invariant Connection	23
	3.1 Connections on Reductive Homogeneous Spaces	23
	3.2 <i>G</i> -Invariant Connections and Cartan Connections	31

Chapter 1

Affine Grassmannians

1.1 The Grassmannian AG(k, n) of Affine Subspaces

In this section, we show that the Grassmannian AG(k, n) of k-dimensional affine subspaces of \mathbb{R}^n arises as the homogeneous space $\mathbf{SE}(n)/S(\mathbf{E}(k) \times \mathbf{O}(n-k))$, in terms of a transitive action of $\mathbf{SE}(n)$ on AG(n, k).

Recall that a nonempty k-dimensional affine subspace \mathcal{A} of \mathbb{R}^n is determined by a pair (a_0, U) , where $a_0 \in \mathbb{R}^n$ is any point in \mathcal{A} and U is a k-dimensional subspace of \mathbb{R}^n called the *direction* of \mathcal{A} , with

$$\mathcal{A} = a_0 + U = \{ a_0 + u \mid u \in U \}.$$

Two pairs (a_0, U) and (b_0, U) define the same affine subspace \mathcal{A} iff $b_0 - a_0 \in U$ (in fact, U consists of all vectors of the form b - a, with $a, b \in \mathcal{A}$).

The subspace U can be represented by any basis (u_1, \ldots, u_k) of vectors $u_i \in U$, and so \mathcal{A} is represented by the affine frame $(a_0, (u_1, \ldots, u_k))$.

Two affine frames $(a_0, (u_1, \ldots, u_k))$ and $(b_0, (v_1, \ldots, v_k))$ represent the same affine subspace \mathcal{A} iff there is an invertible $k \times k$ matrix $\Lambda = (\lambda_{ij})$ such that

$$v_j = \sum_{i=1}^k \lambda_{ij} u_i, \quad 1 \le j \le k,$$

and if there is some vector $c \in \mathbb{R}^k$ such that

$$b_0 = a_0 + \sum_{i=1}^k c_i u_i.$$

Note that (Λ, c) defines an invertible affine map of \mathbb{R}^k .

A basis (u_1, \ldots, u_k) of U is represented by a $n \times k$ matrix of rank k, say A, so the affine subspace \mathcal{A} is represented by the pair (a_0, A) , where $a_0 \in \mathbb{R}^n$ and A is a $n \times k$ matrix of rank k. The equivalence relation on pairs (a_0, A) is given by

$$(a_0, A) \equiv (b_0, B)$$

iff there exists a pair (Λ, c) , where Λ is an invertible $k \times k$ matrix $(\Lambda \in \mathbf{GL}(k, \mathbb{R}))$ and c is some vector in \mathbb{R}^k , such that

$$B = A\Lambda$$
 and $b_0 = a_0 + Ac$.

Using Gram-Schmidt, we may assume that (u_1, \ldots, u_k) is an orthonormal basis, which means that the columns of the matrix A are orthonormal; that is,

$$A^{\top}A = I_k$$

Then, in the equivalence relation defined above, the matrix Λ is an orthogonal $k \times k$ matrix $(\Lambda \in \mathbf{O}(k))$.

Definition 1.1. The (real) affine Grassmannian AG(k, n) consists of all k-dimensional affine subspaces of \mathbb{R}^n $(1 \le k \le n)$.

In the special case k = 1, the affine Grassmannian AG(1, n) consists of all affine lines in \mathbb{R}^n . This is already a topologically complicated space (more complicated than projective space \mathbb{RP}^{n-1}).

The (linear) Grassmannian G(k, n) consists of all k-dimensional (linear) subspaces of \mathbb{R}^n ($1 \leq k \leq n$). By linear duality between a finite-dimensional vector space and its dual, G(k, n) is isomorphic to G(n - k, n).

There is a relationship between the affine Grassmannians and the linear Grassmannians. Indeed, we have

$$AG(k,n) = G(k+1, n+1) - G(k+1, n).$$

This is because G(k + 1, n + 1) corresponds to the projective subspaces of dimension k in \mathbb{RP}^n . In \mathbb{R}^{n+1} , there is a bijection between the set G(k + 1, n + 1) - G(k + 1, n) of linear subspaces V of dimension k + 1 that are not contained in the hyperplane of equation $x_{n+1} = 0$, and the set AG(k, n) of k-dimensional affine subspaces of \mathbb{R}^n , given by

$$V \mapsto V \cap H_1,$$

where H_1 is the affine hyperplane in \mathbb{R}^{n+1} of equation $x_{n+1} = 1$. The (k+1)-dimensional linear subspaces contained in the hyperplane $x_{n+1} = 0$ correspond to the k-dimensional projective subspaces of \mathbb{RP}^n "at infinity" (if we choose the hyperplane $x_{n+1} = 0$ as the hyperplane at infinity in \mathbb{RP}^n). As a consequence of the equation AG(k,n) = G(k+1, n+1) - G(k+1, n), the space AG(k,n) is an open subspace of the set of k-dimensional projective subspaces of \mathbb{RP}^n , and thus is not compact. Observe that if $0 \le k \le n-1$, then

$$A(n - k - 1, n) = G(n - k, n + 1) - G(n - k, n)$$

$$\cong G(k + 1, n + 1) - G(k, n),$$

so A(k,n) is not isomorphic to A(n-k-1,n), except in the trivial case where n = 2k+1.

When n = 2 and k = 1, we have

$$AG(1,2) = G(2,3) - G(2,2) \cong G(1,3) - G(0,2) = \mathbb{RP}^2 - \{\text{one point}\},\$$

so AG(1,2) is homeomorphic to the result of deleting one point from the projective plane \mathbb{RP}^2 , a space homeomorphic to an open Möbius strip (a Möbius strip with its boundary removed). No wonder AG(1,2) is hard to deal with!

Recall that the Euclidean group $\mathbf{E}(n)$ consists of all invertible affine maps (Q, u), with $Q \in \mathbf{O}(n)$ and $u \in \mathbb{R}^n$, and that the special Euclidean group $\mathbf{SE}(n)$ consists of all invertible affine maps (Q, u), with $Q \in \mathbf{SO}(n)$ and $u \in \mathbb{R}^n$. As usual, we represent an element (Q, u) of $\mathbf{E}(n)$ (or $\mathbf{SE}(n)$) by the $(n + 1) \times (n + 1)$ matrix

$$\begin{pmatrix} Q & u \\ 0 & 1 \end{pmatrix},$$

with \mathbb{R}^n embedded in \mathbb{R}^{n+1} by adding 1 as (n+1)th coordinate.

Definition 1.2. Define an action of the group $\mathbf{SE}(n)$ on AG(k, n) as follows: if $\mathcal{A} \in AG(k, n)$, for any affine frame (a_0, A) representing \mathcal{A} (where $A^{\top}A = I_k$), for any $(Q, u) \in \mathbf{SE}(n)$, then

$$(Q, u) \cdot \mathcal{A} = (Qa_0 + u, QA).$$

We need to check that the above action does not depend on the affine frame (a_0, A) chosen for \mathcal{A} . If (b_0, B) is another affine frame of \mathcal{A} (with $B^{\top}B = I_k$), then there is some orthogonal matrix $\Lambda \in \mathbf{O}(k)$ and some vector $c \in \mathbb{R}^k$ such that

$$B = A\Lambda$$
 and $b_0 = a_0 + Ac$,

and since $Q \in \mathbf{SO}(n)$ we have

$$Qb_0 = Qa_0 + QAc,$$

$$QB = QA\Lambda,$$

$$(QA)^{\top}QA = A^{\top}Q^{\top}QA = A^{\top}A = I_k$$

$$(QB)^{\top}QB = B^{\top}Q^{\top}QB = B^{\top}B = I_k,$$

which shows that $(Qa_0 + u, QA)$ and $(Qb_0 + u, QB)$ are equivalent via (Λ, c) , since $QB = (QA)\Lambda$ and $Qb_0 + u = Qa_0 + u + (QA)c$. Therefore, the action of $\mathbf{SE}(n)$ on AG(k, n) defined above does not depend on the affine frame chosen in \mathcal{A} .

The above action is transitive.

Indeed, if (a_0, A) and (b_0, B) represent two affine subspaces, where $A^{\top}A = I_k$ and $B^{\top}B = I_k$, then by Gram-Schmidt, we can extend the columns of A into an orthonormal basis A'

of \mathbb{R}^n , and similarly we can can extend the columns of B into an orthonormal basis B' of \mathbb{R}^n . But then, the matrices A' and B' are $n \times n$ orthogonal matrices, and by changing the sign of their last column if necessary, we may assume that $\det(A') = \det(B') = 1$, where the first k columns of A' still define the same subspace as the k columns of A, since the first k < n columns are identical, and if k = n, the *n*th columns have opposite signs. If we let $Q = B'(A')^{\top}$ and $u = b_0 - Qa_0$, we have $(Q, u) \in \mathbf{SE}(n)$, and

$$(Q, u) \cdot (a_0, A'[1..k]) = (Qa_0 + b_0 - Qa_0, QA'[1..k]) = (b_0, B'[1..k]);$$

this is because

$$A' = \begin{pmatrix} A_1 & A_2 \end{pmatrix}, \quad B' = \begin{pmatrix} B_1 & B_2 \end{pmatrix}$$

and since A' is orthogonal (so is B'), $A_2^{\top}A_1 = 0$ and $A_1^{\top}A_1 = I_k$, so we have

$$QA'[1..k] = B'(A')^{\top}A'[1..k]$$

= $(B_1 \quad B_2) \begin{pmatrix} A_1^{\top} \\ A_2^{\top} \end{pmatrix} A_1$
= $(B_1A_1^{\top} + B_2A_2^{\top}) A_1$
= $B_1A_1^{\top}A_1 + B_2A_2^{\top}A_1$
= $B_1 = B'[1..k].$

Therefore, our action is transitive.

Next, we determine the stabilizer of the affine subspace defined by the affine frame $(0, (e_1, \ldots, e_k))$, where e_1, \ldots, e_k are the first k canonical basis vectors of \mathbb{R}^n . This affine subspace is also represented by $(0, P_{n,k})$, where $P_{n,k}$ is the $n \times k$ matrix consisting of the first k columns of the identity matrix I_n ; namely

$$P_{n,k} = \begin{pmatrix} I_k \\ 0_{n-k,k} \end{pmatrix}.$$

Proposition 1.1. The stabilizer of the affine subspace defined by $(0, P_{n,k})$ is the group $H = S(\mathbf{E}(k) \times \mathbf{O}(n-k))$ given by the set of matrices

$$H = \left\{ \begin{pmatrix} Q & 0 & u \\ 0 & R & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| Q \in \mathbf{O}(k), R \in \mathbf{O}(n-k), \det(Q) \det(R) = 1, u \in \mathbb{R}^k \right\}.$$

Proof. For any $(P, z) \in \mathbf{SE}(n)$, we have

$$(P, z) \cdot (0, P_{n,k}) = (P0 + z, PP_{n,k}) = (z, P[1..k]).$$

In order for (z, P[1..k]) to represent the same affine subspace as $(0, P_{n,k})$, there must be some pair (Λ, c) where $\Lambda \in \mathbf{O}(k)$ and $c \in \mathbb{R}^k$, so that

$$P[1..k] = P_{n,k}\Lambda$$
 and $z = P_{n,k}c$.

The vector $P_{n,k}c$ is obtained from c by adding 0 as the last n-k coordinates, and the matrix $P_{n,k}\Lambda$ is obtained from Λ by adding n-k rows consisting of the vector $\underbrace{(0,\ldots,0)}_{k}$. Therefore,

the last n - k coordinates of z must be zero, and the last n - k rows of P[1..k] must be zero rows. Since P is an orthogonal matrix, it must be of the form

$$P = \begin{pmatrix} \Lambda & 0 \\ 0 & R \end{pmatrix}$$

with $R \in \mathbf{O}(n-k)$. Since $\det(P) = 1$, we must have $\det(P) = \det(\Lambda) \det(R) = 1$, and the proposition follows with $Q = \Lambda$.

As a consequence, as a homogeneous space, the grassmannian of affine subspaces GA(k, n) is isomorphic to $\mathbf{SE}(n)/S(\mathbf{E}(k) \times \mathbf{O}(n-k))$.

1.2 The Grassmannian $AG^o(k, n)$ of Oriented Affine Subspaces

An oriented affine subspace (other than \emptyset) is an affine subspace $\mathcal{A} = a_0 + U$ where U is a linear subspace with a chosen orthonormal basis (u_1, \ldots, u_k) which defines the orientation \mathcal{A} . What this means is that if (v_1, \ldots, v_k) is another orthonormal basis of U, if \mathcal{A} is the $n \times k$ matrix whose columns are (u_1, \ldots, u_k) and if B is the $n \times k$ matrix whose columns are (v_1, \ldots, v_k) and if B is the $n \times k$ matrix whose columns are (v_1, \ldots, v_k) and if B is the $n \times k$ matrix whose columns are (v_1, \ldots, v_k) and if B is the $n \times k$ matrix whose columns are (v_1, \ldots, v_k) and if B is the $n \times k$ matrix whose columns are (v_1, \ldots, v_k) , then there is a rotation $\Lambda \in \mathbf{SO}(k)$ such that

$$B = A\Lambda.$$

The difference with unoriented affine subspaces is that if $\mathcal{A} = a_0 + U$ is an unoriented affine subspace, then we only require that $\Lambda \in \mathbf{O}(k)$, and so we may have $\det(\Lambda) = -1$, in which case (u_1, \ldots, u_k) and (v_1, \ldots, v_k) do not have the same orientation. This leads to the following technical definition.

Definition 1.3. A real oriented affine subspace of dimension k (in $\mathbb{R}^n, 1 \leq k \leq n$) is an equivalence class of the set of pairs (a_0, A) , where $a_0 \in \mathbb{R}^n$ and A is an $n \times k$ matrix with orthogonal columns, which means that $A^{\top}A = I_k$, under the equivalence relation on pairs (a_0, A) and (b_0, B) with $A^{\top}A = B^{\top}B = I_k$ given by

$$(a_0, A) \equiv (b_0, B)$$

iff there exists a pair (Λ, c) with $\Lambda \in \mathbf{SO}(k)$ and $c \in \mathbb{R}^k$, such that

$$B = A\Lambda$$
 and $b_0 = a_0 + Ac$.

The space of oriented affine subspaces of dimension k is the Grassmannian of oriented affine subspaces, $AG^{o}(k, n)$.

The reader should check that for k = 1, the set of oriented affine subspaces (a_0, A) with $a_0 = 0$ is the sphere S^{n-1} . In contrast, the set of nonoriented affine subspaces (a_0, A) with $a_0 = 0$ is the projective space \mathbb{RP}^{n-1} . The affine Grassmannian $AG^o(1, n)$ is the space of oriented affine lines in \mathbb{R}^n .

Next we would like to define a transitive action of $\mathbf{SE}(n)$ on $AG^{o}(k,n)$ $(1 \leq k \leq n)$, but this time there is no transitive action of $\mathbf{SE}(n)$ on $AG^{o}(n,n)$. The problem is that $AG^{o}(n,n)$ consists of two *n*-dimensional oriented spaces \mathbb{R}^{n}_{+} and \mathbb{R}^{n}_{-} , corresponding to the choice of an orthonormal basis as orientation. These two subspaces are not equivalent, because an isometry that maps an orthonormal basis of \mathbb{R}^{n}_{+} to an orthonormal basis of \mathbb{R}^{n}_{-} must have determinant -1. In the sequel we exclude this case an assume that $1 \leq k < n$. Our goal is to show that if $1 \leq k < n$, then as a homogeneous space, the grassmannian of oriented affine subpaces $GA^{o}(k,n)$ is isomorphic to $\mathbf{SE}(n)/\mathbf{SE}(k) \times \mathbf{SO}(n-k)$. Observe that $AG^{o}(n,n)$ is isomorphic to $\mathbf{O}(n)/\mathbf{SO}(n)$.

Definition 1.4. Define an action of the group $\mathbf{SE}(n)$ on $AG({}^{o}k, n)$ with $1 \leq k < n$, as follows: if $\mathcal{A} \in AG(k, n)$, for any affine frame (a_0, A) representing \mathcal{A} (where $A^{\top}A = I_k$), for any $(Q, u) \in \mathbf{SE}(n)$,

$$(Q, u) \cdot \mathcal{A} = (Qa_0 + u, QA)$$

The proof that the above action does not depend on the affine frame (a_0, A) chosen for \mathcal{A} is the same as in the unoriented case, because if

$$B = A\Lambda$$
 and $b_0 = a_0 + Ac$, $\Lambda \in \mathbf{SO}(k)$,

then

$$QB = QA\Lambda, \quad \Lambda \in \mathbf{SO}(k),$$

which shows that $(Qa_0 + u, QA)$ and $(Qb_0 + u, QB)$ are equivalent via (Λ, c) . Therefore, the action of $\mathbf{SE}(n)$ on $AG^o(k, n)$ defined above does not depend on the affine frame chosen in \mathcal{A} . The above action is transitive if $1 \leq k < n$.

Indeed, if (a_0, A) and (b_0, B) represent two oriented affine subspaces, where $A^{\top}A = I_k$ and $B^{\top}B = I_k$, then by Gram-Schmidt, we can extend the columns of A into an orthonormal basis A' of \mathbb{R}^n , and similarly we can can extend the columns of B into an orthonormal basis B' of \mathbb{R}^n . But then, the matrices A' and B' are $n \times n$ orthogonal matrices, and by changing the sign of their last column if necessary, we may assume that $\det(A') = \det(B') = 1$, where the first k < n columns of A' are equal to the first k < n columns of A (and similarly for Band B' who have the first identical k < n columns). The rest of the proof is the same as in the unoriented case.

Next, we determine the stabilizer of the oriented affine subspace is represented by $(0, P_{n,k})$, where $P_{n,k}$ is the $n \times k$ matrix consisting of the first k columns of the identity matrix I_n ; namely

$$P_{n,k} = \begin{pmatrix} I_k \\ 0_{n-k,k} \end{pmatrix}.$$

Proposition 1.2. If $1 \le k < n$, then the stabilizer of the oriented affine subspace defined by $(0, P_{n,k})$ is the group $H_0 = \mathbf{SE}(k) \times \mathbf{SO}(n-k)$ given by the set of matrices

$$H = \left\{ \begin{pmatrix} Q & 0 & u \\ 0 & R & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| Q \in \mathbf{SO}(k), R \in \mathbf{SO}(n-k), u \in \mathbb{R}^k \right\}.$$

Proof. For any $(P, z) \in \mathbf{SE}(n)$, we have

$$(P, z) \cdot (0, P_{n,k}) = (P0 + z, PP_{n,k}) = (z, P[1..k]).$$

In order for (z, P[1..k]) to represent the same oriented affine subspace as $(0, P_{n,k})$, there must be some pair (Λ, c) where $\Lambda \in \mathbf{SO}(k)$ and $c \in \mathbb{R}^k$, so that

$$P[1..k] = P_{n,k}\Lambda$$
 and $z = P_{n,k}c$.

The vector $P_{n,k}c$ is obtained from c by adding 0 as the last n-k coordinates, and the matrix $P_{n,k}\Lambda$ is obtained from Λ by adding n-k rows consisting of the vector $\underbrace{(0,\ldots,0)}_{k}$. Therefore,

the last n - k coordinates of z must be zero, and the last n - k rows of P[1..k] must be zero rows. Since $P \in \mathbf{SO}(n)$, it must be of the form

$$P = \begin{pmatrix} \Lambda & 0\\ 0 & R \end{pmatrix},$$

with $R \in \mathbf{O}(n-k)$, and since $\det(P) = 1$ and $\det(\Lambda) = 1$, we must have $\det(R) = 1$, and so $R \in \mathbf{SO}(n-k)$.

As a consequence, if $1 \le k < n$, as a homogeneous space, the grassmannian of oriented affine subpaces $GA^{o}(k, n)$ is isomorphic to $\mathbf{SE}(n)/\mathbf{SE}(k) \times \mathbf{SO}(n-k)$. The grassmannian of oriented affine subpaces $GA^{o}(n, n)$ has two elements and so it is isomorphic to $\mathbf{O}(n)/\mathbf{SO}(n)$.

1.3 The Grassmannians AG(k, n) and $AG^{o}(k, n)$ as Reductive Homogeneous Spaces

In this section, we show that the Grassmannian AG(k, n) $(1 \le k \le n)$ and $AG^{o}(k, n)$ $(1 \le k < n)$ are reductive homogeneous space with a simple reductive decomposition $\mathfrak{se}(n) = \mathfrak{h} \oplus \mathfrak{m}$. In fact, there is an involutive automorphism σ of $\mathbf{SE}(n)$ whose fixed subgroup \mathbf{SE}^{σ} is exactly the group $H = S(\mathbf{E}(k) \times \mathbf{O}(n-k))$ introduced in Section 1.1, and A(k, n) is isomorphic to $\mathbf{SE}(n)/S(\mathbf{E}(k) \times \mathbf{O}(n-k))$. If $1 \le k < n$, the group $\mathbf{SE}_0^{\sigma} = H_0 = \mathbf{SE}(k) \times \mathbf{SO}(n-k)$ is the connected component of \mathbf{SE}^{σ} containing the identity, and $A^{o}(k, n)$ is isomorphic to $\mathbf{SE}(n)/\mathbf{SE}(k) \times \mathbf{SO}(n-k)$. The groups \mathbf{SE}^{σ} and \mathbf{SE}_0^{σ} have the same Lie algebra \mathfrak{h} given by

$$\mathfrak{h} = \left\{ \begin{pmatrix} S & 0 & u \\ 0 & T & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| S \in \mathfrak{so}(k), \ T \in \mathfrak{so}(n-k), \ u \in \mathbb{R}^k \right\}.$$

It follows that, except for the fact that there is no Ad(H)-invariant metric on \mathfrak{m} (because H is not compact), all the other properties of a symmetric space are satisfied.

Let $I_{k,n-k}$ be the matrix

$$I_{k,n-k} = \begin{pmatrix} I_k & 0\\ 0 & -I_{n-k} \end{pmatrix}$$

Note that $I_{k,n-k}^2 = I_n$. We define an automorphism σ of $\mathbf{SE}(n)$ as follows:

$$\sigma \begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} I_{k,n-k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I_{k,n-k} & 0 \\ 0 & 1 \end{pmatrix}.$$

Because $I_{k,n-k}^2 = I_n$, we have $\sigma^2 = \text{id.}$ Let us find the subgroup $\mathbf{SE}(n)^{\sigma}$ of $\mathbf{SE}(n)$ fixed by σ . Every matrix P in $\mathbf{SE}(n)$ can be written as

$$P = \begin{pmatrix} Q & R & u \\ S & T & v \\ 0 & 0 & 1 \end{pmatrix},$$

with $u \in \mathbb{R}^k$ and $v \in \mathbb{R}^{n-k}$, and we have

$$\begin{pmatrix} I_k & 0 & 0 \\ 0 & -I_{n-k} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Q & R & u \\ S & T & v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} I_k & 0 & 0 \\ 0 & -I_{n-k} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} Q & R & u \\ -S & -T & -v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} I_k & 0 & 0 \\ 0 & -I_{n-k} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} Q & -R & u \\ -S & T & -v \\ 0 & 0 & 1 \end{pmatrix}.$$

Then, $\sigma(P) = P$ iff

 $R = -R, \quad S = -S, \quad v = -v,$

which means that R = 0, S = 0, and v = 0. Therefore $\mathbf{SE}(n)^{\sigma} = S(\mathbf{E}(k) \times \mathbf{O}(n-k)) = H$.

If $1 \leq k < n$, since there is no continuous path in $\mathbf{O}(n-k)$ from I_{n-k} to a matrix $Q \in \mathbf{O}(n-k)$ with $\det(Q) = -1$, we see that the connected component $\mathbf{SE}(n)_0^{\sigma}$ of the identity I_{n+1} in $\mathbf{SE}(n)^{\sigma}$ is the group $H_0 = \mathbf{SE}(k) \times \mathbf{SO}(n-k)$ from Section 1.2.

The Lie algebras of $\mathbf{SE}(n)$ and $H = \mathbf{SE}(n)^{\sigma}$ are

$$\mathfrak{se}(n) = \left\{ \begin{pmatrix} S & -A^{\top} & u \\ A & T & v \\ 0 & 0 & 0 \end{pmatrix} \middle| S \in \mathfrak{so}(k), \ T \in \mathfrak{so}(n-k), \ A \in \mathcal{M}_{n-k,k}, \ u \in \mathbb{R}^k, \ v \in \mathbb{R}^{n-k} \right\}$$

and

$$\mathfrak{h} = \left\{ \begin{pmatrix} S & 0 & u \\ 0 & T & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| S \in \mathfrak{so}(k), \ T \in \mathfrak{so}(n-k), \ u \in \mathbb{R}^k \right\}.$$

The derivative $\theta = d\sigma_I$ is an involutive automorphism of $\mathfrak{se}(n)$ which is easily found using curves through I. For any $X \in \mathfrak{se}(n)$, if γ is the curve in $\mathbf{SE}(n)$ given by $\gamma(t) = e^{tX}$, then $\gamma(0) = I$, $\gamma'(0) = X$, and by the chain rule

$$\left. \frac{d(\sigma(\gamma(t)))}{dt} \right|_{t=0} = d\sigma_{\gamma(0)}(\gamma'(0)) = d\sigma_I(X).$$

so we have

$$d\sigma_I(X) = \frac{d}{dt} \left(\begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix} e^{tX} \begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix} \right)_{t=0}$$
$$= \left(\begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix} X e^{tX} \begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix} \right)_{t=0}$$
$$= \begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix} X \begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix}.$$

Therefore

$$\theta \begin{pmatrix} S & z \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_{k,n-k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S & z \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_{k,n-k} & 0 \\ 0 & 1 \end{pmatrix}$$

Consequently, the Lie algebra \mathfrak{h} is the eigenspace of θ associated with the eigenvalue +1, whereas the eigenspace of θ associated with the eigenvalue -1 is given by

$$\mathfrak{m} = \left\{ \begin{pmatrix} 0 & -A^{\top} & 0 \\ A & 0 & v \\ 0 & 0 & 0 \end{pmatrix} \middle| A \in \mathcal{M}_{n-k,k}, v \in \mathbb{R}^{n-k} \right\}.$$

By Lemma 30 in O'Neill [4] (Chapter 11), the fact that σ is an involutive automorphism of $\mathbf{SE}(n)$ whose fixed subgroup is H has the following interesting implications.

Proposition 1.3. The following properties hold:

(1) We have a direct sum

$$\mathfrak{se}(n) = \mathfrak{h} \oplus \mathfrak{m}.$$

(2) $\operatorname{Ad}(h)(\mathfrak{m}) \subseteq \mathfrak{m}$ for all $h \in H$.

(3) We have

$$[\mathfrak{h},\mathfrak{h}]\subseteq\mathfrak{h},\quad [\mathfrak{h},\mathfrak{m}]\subseteq\mathfrak{m},\quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{h}.$$

Consequently, if $1 \le k \le n$, then AG(k, n) is a reductive homogeneous space $\mathbf{SE}(n)/S(\mathbf{E}(k) \times \mathbf{O}(n-k))$ with the reductive decomposition $\mathfrak{se}(n) = \mathfrak{h} \oplus \mathfrak{m}$, and if $1 \le k < n$, then $AG^{\circ}(k, n)$ is also a reductive homogeneous space $\mathbf{SE}(n)/\mathbf{SE}(k) \times \mathbf{SO}(n-k)$ with the same reductive decomposition $\mathfrak{se}(n) = \mathfrak{h} \oplus \mathfrak{m}$

The next step is to check whether it is possible to define a G-invariant metric on AG(k, n). For this, let us figure out what the adjoint action of H on \mathfrak{m} is. For any

$$h = \begin{pmatrix} R & 0 & u \\ 0 & S & 0 \\ 0 & 0 & 1 \end{pmatrix} \in H,$$

and any

$$X = \begin{pmatrix} 0 & -A^{\top} & 0 \\ A & 0 & v \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{m},$$

we have

$$\begin{aligned} \operatorname{Ad}_{h}(X) &= \begin{pmatrix} R & 0 & u \\ 0 & S & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -A^{\top} & 0 \\ A & 0 & v \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} R^{\top} & 0 & -R^{\top}u^{*} \\ 0 & S^{\top} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & -RA^{\top} & 0 \\ SA & 0 & Sv \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} R^{\top} & 0 & -R^{\top}u \\ 0 & S^{\top} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & -RA^{\top}S^{\top} & 0 \\ SAR^{\top} & 0 & -SAR^{\top}u + Sv \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$

Consider the matrices $h \in H$ such that R = I, S = I and the first coordinate u_1 in u is nonzero. The matrices $X \in \mathfrak{m}$ that either have a single nonzero entry equal to 1 in A (and A^{\top}) or a single nonzero entry in v form a basis of \mathfrak{m} . Let $E_{k+11} \in \mathfrak{m}$ be the matrix whose only nonzero entries are $e_{k+11} = 1$ and $e_{1k+1} = -1$, and let $E_{k+1n} \in \mathfrak{m}$ be the matrix whose only nonzero entry is $e_{k+1n} = 1$. Then, we have

$$\operatorname{Ad}_{h}(E_{k+11}) = \begin{pmatrix} 0 & A^{\top} & 0 \\ A & 0 & -Au \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & -u_{1} \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} = E_{k+11} - u_1 E_{k+1n}.$$

Therefore, the matrix of Ad_h over the basis (E_{ij}) has the entry $-u_1$ in the row corresponding to E_{k+1n} and the column corresponding to E_{k+11} , and since $u_1 \in \mathbb{R}$ is arbitrary, we see that the matrices representing the linear maps Ad_h have unbounded entries (even for the special kinds of matrices in H that we are considering). Therefore, $\operatorname{Ad}(H)$ is not bounded, and thus it closure is not compact, which implies that there is no Ad(H)-invariant inner product on \mathfrak{m} (by Theorem 2.42 of Gallot, Hullin, Lafontaine [1]). Therefore, there is no hope for a G-invariant metric on AG(k, n). Except for that, AG(k, n) has all the other properties of a symmetric space. A similar result applies to $AG^{o}(k, n)$ when $1 \leq k < n$.

1.4 A Connection on SE(n)

We compute the Levi-Civita connection associated with the left-invariant metric on $\mathbf{SE}(n)$ induced by the inner product in $\mathfrak{se}(n)$ given by

$$\langle X, Y \rangle = \operatorname{tr}(XY^{\top}) = \operatorname{tr}(X^{\top}Y).$$

For left-invariant vector fields, the inner products $\langle X, Y \rangle$ are constant, so the Koszul formula reduces to

$$2\langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle - \langle [X, Z], Y \rangle.$$

If

$$X = \begin{pmatrix} S_1 & u_1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} S_2 & u_2 \\ 0 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} S_3 & u_3 \\ 0 & 0 \end{pmatrix},$$

then we have

$$[Y, Z] = YZ - ZY = \begin{pmatrix} S_2 S_3 & S_2 u_3 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} S_3 S_3 & S_3 u_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} S_2 S_3 - S_3 S_2 & S_2 u_3 - S_3 u_2 \\ 0 & 0 \end{pmatrix},$$

and

$$\langle [Y, Z], X \rangle = \operatorname{tr} \begin{pmatrix} S_2 S_3 - S_3 S_2 & S_2 u_3 - S_3 u_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} S_1^\top & 0 \\ u_1^\top & 0 \end{pmatrix}$$

$$= \operatorname{tr} \begin{pmatrix} (S_2 S_3 - S_3 S_2) S_1^\top + (S_2 u_3 - S_3 u_2) u_1^\top & 0 \\ 0 & 0 \end{pmatrix}$$

$$= \operatorname{tr} (S_2 S_3 S_1^\top - S_3 S_2 S_1^\top + S_2 u_3 u_1^\top - S_3 u_2 u_1^\top).$$

Similarly,

$$\langle [X, Z], Y \rangle = \operatorname{tr}(S_1 S_3 S_2^{\top} - S_3 S_1 S_2^{\top} + S_1 u_3 u_2^{\top} - S_3 u_1 u_2^{\top}),$$

so we get

$$\langle [Y, Z], X \rangle + \langle [X, Z], Y \rangle = \operatorname{tr}(S_2 S_3 S_1^\top - S_3 S_2 S_1^\top + S_1 S_3 S_2^\top - S_3 S_1 S_2^\top + S_2 u_3 u_1^\top - S_3 u_2 u_1^\top + S_1 u_3 u_2^\top - S_3 u_1 u_2^\top)$$

and since $S_1^{\top} = -S_1, S_2^{\top} = -S_2$, we obtain

$$\langle [Y,Z],X \rangle + \langle [X,Z],Y \rangle = \operatorname{tr}(-S_2 S_3 S_1 + S_3 S_2 S_1 - S_1 S_3 S_2 + S_3 S_1 S_2 + S_2 u_3 u_1^\top + S_1 u_3 u_2^\top - S_3 (u_2 u_1^\top + u_1 u_2^\top)).$$

Now, the first and the fourth terms cancel out since

$$\operatorname{tr}(S_2 S_3 S_1) = \operatorname{tr}(S_3 S_1 S_2),$$

and the second and the third terms cancel out since

$$\operatorname{tr}(S_3 S_2 S_1) = \operatorname{tr}(S_1 S_3 S_2)$$

Furthermore, because $u_2 u_1^\top + u_1 u_2^\top$ is symmetric and S_3 is skew symmetric, we have

$$\operatorname{tr}(S_3(u_2u_1^{\top} + u_1u_2^{\top})) = 0.$$

Indeed, if S is a skew symmetric and H is a symmetric matrix

$$\operatorname{tr}(SH) = \operatorname{tr}((SH)^{\top}) = \operatorname{tr}(H^{\top}S^{\top}) = -\operatorname{tr}(HS) = -\operatorname{tr}(SH),$$

so tr(SH) = 0. After simplifications, we get

$$\langle [Y,Z],X \rangle + \langle [X,Z],Y \rangle = \operatorname{tr}(S_2 u_3 u_1^\top + S_1 u_3 u_2^\top) = \operatorname{tr}(S_2^\top u_1 u_3^\top + S_1^\top u_2 u_3^\top).$$

Then, if we observe that

$$\operatorname{tr}(S_2^{\top} u_1 u_3^{\top} + S_1^{\top} u_2 u_3^{\top}) = \operatorname{tr}\begin{pmatrix} 0 & S_2^{\top} u_1 + S_1^{\top} u_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} S_3^{\top} & 0 \\ u_3^{\top} & 0 \end{pmatrix},$$

we can write

$$2\langle \nabla_X Y, Z \rangle = \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle - \langle [X, Z], Y \rangle$$
$$= \langle [X, Y], Z \rangle - \left\langle \begin{pmatrix} 0 & S_2^\top u_1 + S_1^\top u_2 \\ 0 & 0 \end{pmatrix}, Z \right\rangle$$
$$= \langle [X, Y], Z \rangle + \left\langle \begin{pmatrix} 0 & S_2 u_1 + S_1 u_2 \\ 0 & 0 \end{pmatrix}, Z \right\rangle,$$

which yields

$$\nabla_X Y = \frac{1}{2} \left([X, Y] + \begin{pmatrix} 0 & S_2 u_1 + S_1 u_2 \\ 0 & 0 \end{pmatrix} \right).$$

Since

$$[X,Y] = \begin{pmatrix} S_1 S_2 - S_2 S_1 & S_1 u_2 - S_2 u_1 \\ 0 & 0 \end{pmatrix},$$

we also have

$$\nabla_X Y = \frac{1}{2} \begin{pmatrix} S_1 S_2 - S_2 S_1 & 2S_1 u_2 \\ 0 & 0 \end{pmatrix}.$$

Consider the inner product

$$\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y)$$

on $\mathfrak{se}(n)$. We claim that this inner product is invariant under the left action of $G = \mathbf{SE}(n)$. If

$$X = \begin{pmatrix} S & u \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} T & v \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad R = \begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} \in \mathbf{SE}(n),$$

with $S^{\top} = -S, T^{\top} = -T, Q^{\top}Q = QQ^{\top} = I$, and $u, v, z \in \mathbb{R}^n$, then we have

$$\begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S & u \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} QS & Qu \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} T & v \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} QT & Qv \\ 0 & 0 \end{pmatrix},$$

 \mathbf{SO}

$$\langle RX, RY \rangle = \operatorname{tr} \begin{pmatrix} S^{\top}Q^{\top} & 0 \\ u^{\top}Q^{\top} & 0 \end{pmatrix} \begin{pmatrix} QT & Qv \\ 0 & 0 \end{pmatrix}$$

$$= \operatorname{tr} \begin{pmatrix} S^{\top}Q^{\top}QT & S^{\top}Q^{\top}Qv \\ u^{\top}Q^{\top}QT & u^{\top}Q^{\top}Qv \end{pmatrix}$$

$$= \operatorname{tr} \begin{pmatrix} S^{\top}T & S^{\top}v \\ u^{\top}T & u^{\top}v \end{pmatrix}$$

$$= \operatorname{tr} (S^{\top}T + u^{\top}v).$$

However

$$\langle X, Y \rangle = \operatorname{tr} \begin{pmatrix} S^{\top} & 0 \\ u^{\top} & 0 \end{pmatrix} \begin{pmatrix} T & v \\ 0 & 0 \end{pmatrix} = \operatorname{tr} \begin{pmatrix} S^{\top}T & S^{\top}v \\ u^{\top}T & u^{\top}v \end{pmatrix} = \operatorname{tr}(S^{\top}T + u^{\top}v),$$

which proves that

$$\langle RX, RY \rangle = \langle X, Y \rangle.$$

Chapter 2

Metrics on G/H And Right-Invariant Metrics on G

Given a reductive homogeneous manifold G/H with reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, if H is not compact, $\operatorname{Ad}(H)$ -invariant metrics on \mathfrak{m} do not necessarily exist. It is still desirable to obtain metrics on G/H such that the projection $\pi \colon G \to G/H$ is a Riemannian submersion. Since H acts freely and properly on G on the right, for every right-invariant metric on G induced by an inner product $\langle -, - \rangle$ on \mathfrak{g} , the maps R_h are isometries for all $h \in H$, so by Proposition 2.28 in Gallot, Hullin, Lafontaine [1], (Chapter 2), there is a unique Riemannian metric $\langle -, - \rangle_{G/H}$ on G/H such that $\pi \colon G \to G/H$ is a Riemannian submersion.

Since G/H is reductive, we have

 $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m},$

and this makes it possible to pick the horizontal subspaces in the tangent spaces T_aG (with $a \in G$) in terms of \mathfrak{m} and to give a more direct proof of Proposition 2.28 from Gallot, Hullin, Lafontaine [1].

Given an inner product $\langle -, - \rangle$ on \mathfrak{g} , recall that the induced right-invariant metric on G is given by

$$\langle u, v \rangle_a = \langle (dR_{a^{-1}})_a(u), dR_{a^{-1}})_a(v) \rangle, \text{ for all } u, v \in T_a G \text{ and all } a \in G$$

We will show that a metric on G/H can be obtained by propagating by right-invariance a metric on \mathfrak{g} to all of the "horizontal subspaces" $(dL_a)_1(\mathfrak{m})$ of $T_a(G) = (dL_a)_1(\mathfrak{g})$.

Because of the invariance condition $\operatorname{Ad}_h(\mathfrak{m}) \subseteq \mathfrak{m}$ for all $h \in H$ (since G/H is a reductive homogeneous space), since \mathfrak{m} is finite-dimensional and Ad_h is injective, we have $\operatorname{Ad}_h(\mathfrak{m}) = \mathfrak{m}$, and if b = ah then

$$\operatorname{Ad}_b = \operatorname{Ad}_a \circ \operatorname{Ad}_h,$$

which implies that

$$\operatorname{Ad}_b(\mathfrak{m}) = \operatorname{Ad}_a(\mathfrak{m}), \text{ for all } a, b \in G \text{ such that } a^{-1}b \in H.$$

This means that $\operatorname{Ad}_a(\mathfrak{m})$ depends only on the point $p \in G/H$ for which p = aH.

Recall that for every $a \in G$, the map $\tau_a \colon G/H \to G/H$ is defined by

$$au_a(bH) = abH$$
, for all $a, b \in G$,

and $\pi: G \to G/H$ is the projection given by $\pi(a) = aH$. For all $a, b \in G$, we have

$$\tau_a(\pi(b)) = abH = \pi(L_a(b)),$$

namely

$$\tau_a \circ \pi = \pi \circ L_a$$

By taking the derivative at 1, we get

$$(d\tau_a)_o \circ d\pi_1 = d\pi_a \circ (dL_a)_1;$$

equivalently, the following diagram commutes (where p = aH):

$$\mathfrak{g} \xrightarrow{(dL_a)_1} (dL_a)_1(\mathfrak{g}) = T_a G$$

$$\begin{array}{c} d\pi_1 \\ \downarrow \\ T_o(G/H) \xrightarrow{} T_p(G/H). \end{array}$$

Since Ker $d\pi_1 = \mathfrak{h}$ and since $(dL_a)_1$ is an isomorphism, we see that

$$\operatorname{Ker} d\pi_a = (dL_a)_1(\mathfrak{h}).$$

Also, since the restriction of $d\pi_1$ to \mathfrak{m} is an isomorphism and $(dL_a)_1$ and $(d\tau_a)_o$ are isomorphims, so is the restriction of $d\pi_a$ to $(dL_a)_1(\mathfrak{m})$. We have the following commutative diagram in which all the maps are isomorphisms (with p = aH):

For all $a \in G$ and all $h \in H$, we have

$$\pi(a) = aH = ahH = \pi(ah) = \pi(R_h(a));$$

that is, $\pi = \pi \circ R_h$, and by taking derivatives at a, we get

$$d\pi_a = d\pi_{ah} \circ d(R_h)_a. \tag{*}$$

Equivalently, if we write b = ah and p = aH for $a \in G$ and $h \in H$, we have the following commutative diagram:

Since

$$T_a G = (dL_a)_1(\mathfrak{g}),$$

we have

$$T_a G = (dL_a)_1(\mathfrak{h}) \oplus (dL_a)_1(\mathfrak{m}),$$

and since $\operatorname{Ker} d\pi_a = (dL_a)_1(\mathfrak{h})$ and the restriction of $d\pi_a$ to $(dL_a)_1(\mathfrak{m})$ is an isomorphism onto $T_p(G/H)$, we can take $(dL_a)_1(\mathfrak{m})$ as the horizontal subspace \mathcal{H}_a of T_aG .

As a consequence, for any $p \in G/H$ and any $a \in G$ such that p = aH, since the map $d\pi_a: (dL_a)_1(\mathfrak{m}) \to T_p(G/H)$ is an isomorphism, for any $u \in T_p(G/H)$, there is a unique $X \in \mathfrak{m}$ such that

$$u = (d\pi_a \circ (dL_a)_1)(X);$$

namely, $X = ((dL_{a^{-1}})_a \circ (d\pi_a)^{-1})(u).$

Let us find out how X changes when we express u in terms of b, with b = ah for some $h \in H$.

Proposition 2.1. For any p = aH = bH in G/H, if b = ah for some $h \in H$, for any $u \in T_p(G/H)$ and any $X \in \mathfrak{m}$ such that $u = (d\pi_a \circ (dL_a)_1)(X)$, we have

$$u = (d\pi_b \circ (dL_b)_1)(X'), \quad with \quad X' = \operatorname{Ad}_{h^{-1}}(X).$$

Proof. Since $a = bh^{-1}$, by (*) $d\pi_a = d\pi_b \circ d(R_h)_a$, L_a and R_h commute, and since $Ad_a = d(L_a \circ R_{a^{-1}})_1 = (dL_a)_{a^{-1}} \circ (dR_{a^{-1}})_1$, we have

$$u = (d\pi_a \circ (dL_a)_1)(X) = (d\pi_b \circ (dR_h)_a \circ (dL_a)_1)(X) = (d\pi_b \circ (dL_a)_h \circ (dR_h)_1)(X) = (d\pi_b \circ (dL_b)_1 \circ (dL_{h^{-1}})_h \circ (dR_h)_1)(X) = (d\pi_b \circ (dL_b)_1 \circ \operatorname{Ad}_{h^{-1}})(X),$$

which shows that

$$u = (d\pi_b \circ (dL_b)_1)(X'), \text{ with } X' = \operatorname{Ad}_{h^{-1}}(X),$$

as claimed.

For any $a \in G$, the map $\operatorname{Ad}_a: \mathfrak{g} \to \mathfrak{g}$ is a linear isomorphism of \mathfrak{g} , so $\operatorname{Ad}_a(\mathfrak{m})$ is always a subspace of \mathfrak{g} . In the special case where $a \in H$, we have $\operatorname{Ad}_a(\mathfrak{m}) = \mathfrak{m}$, but for $a \in G - H$, this is generally false and we can only claim that $\operatorname{Ad}_a(\mathfrak{m}) \subseteq \mathfrak{g}$. Here is the main theorem of this section.

Theorem 2.2. Given any homogeneous reductive manifold G/H with reductive decomposition

 $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m},$

every inner product $\langle -, - \rangle$ on \mathfrak{g} yields a Riemannian metric on G/H such that if G is endowed with the right-invariant Riemannian metric induced by $\langle -, - \rangle$, then $\pi \colon G \to G/H$ is a Riemannian submersion. For every $a \in G$, the horizontal subspace \mathcal{H}_a at a is given by

$$\mathcal{H}_a = (dL_a)_1(\mathfrak{m})_2$$

and the restriction of $d\pi_a$ to $\mathcal{H}_a = (dL_a)_1(\mathfrak{m})$ is an isomorphism onto $T_p(G/H)$, with p = aH. The metric on $T_p(G/H)$ is defined as follows: For every $p = aH \in G/H$, for any two vectors $u, v \in T_p(G/H)$,

$$\langle u, v \rangle_{G/H,p} = \langle (d\pi_a)^{-1}(u), (d\pi_a)^{-1}(v) \rangle_a,$$

where $\langle -, - \rangle_a$ is the right-invariant metric on $\mathcal{H}_a = (dL_a)_1(\mathfrak{m})$ induced by the inner product on \mathfrak{g} , which means that

$$\langle u, v \rangle_{G/H,p} = \langle (dR_{a^{-1}})_a((d\pi_a)^{-1}(u)), (dR_{a^{-1}})_a((d\pi_a)^{-1}(v)) \rangle.$$

Equivalently, if X and Y are the unique vectors in \mathfrak{m} such that $X = ((dL_{a^{-1}})_a \circ (d\pi_a)^{-1})(u)$ and $Y = ((dL_{a^{-1}})_a \circ (d\pi_a)^{-1})(v)$, then

$$\langle u, v \rangle_{G/H,p} = \langle \operatorname{Ad}_a(X), \operatorname{Ad}_a(Y) \rangle.$$

Furthermore, $\operatorname{Ad}_{a}(\mathfrak{m})$ depends only on the point $p \in G/H$ for which p = aH. We can choose an inner product on \mathfrak{g} by picking any inner product on \mathfrak{m} and any inner product on \mathfrak{h} and asserting that \mathfrak{h} and \mathfrak{m} are orthogonal. This, way

$$T_a G = (dL_a)_1(\mathfrak{h}) \oplus (dL_a)_1(\mathfrak{m}),$$

where the vertical subspace $\mathcal{V}_a = (dL_a)_1(\mathfrak{h})$ and the horizontal subspace $\mathcal{H}_a = (dL_a)_1(\mathfrak{m})$ are orthogonal for every $a \in G$. Furthermore, for all $a, b \in G$ and all $h \in H$, if b = ah, then $(dR_h)_a$ is an isometry between \mathcal{H}_a and \mathcal{H}_b .

Proof. We define the metric $\langle -, - \rangle_{G/H}$ using the isomorphisms $d\pi_a \colon \mathcal{H}_a \to T_p(G/H)$, where $\mathcal{H}_a = (dL_a)_1(\mathfrak{m}), a \in G$, and $p = aH \in G/H$, as follows. For any two vectors $u, v \in T_p(G/H)$, if X and Y are the unique vectors in \mathfrak{m} such that $X = ((dL_{a^{-1}})_a \circ (d\pi_a)^{-1})(u)$ and $Y = ((dL_{a^{-1}})_a \circ (d\pi_a)^{-1})(v)$, then we have

$$\langle u, v \rangle_{G/H,p} = \langle (dR_{a^{-1}})_a((d\pi_a)^{-1}(u)), (dR_{a^{-1}})_a((d\pi_a)^{-1}(v)) \rangle = \langle (dR_{a^{-1}})_a((dL_a)_1(X)), (dR_{a^{-1}})_a((dL_a)_1(Y)) \rangle = \langle \operatorname{Ad}_a(X), \operatorname{Ad}_a(Y) \rangle.$$

Thus, the metric on $T_p(G/H)$ is completely determined by the metric on $\operatorname{Ad}_a(\mathfrak{m})$, a subspace which depends only on the point $p \in G/H$ for which p = aH.

Let us check that this definition does not depend on the choice of the coset representative aH = p. If bH = aH, we have b = ah for some $h \in H$, and then by Proposition 2.1 we have

$$X' = ((dL_{b^{-1}})_b \circ (d\pi_b)^{-1})(u) = \operatorname{Ad}_{h^{-1}}(X) \quad \text{and} \quad Y' = ((dL_{b^{-1}})_b \circ (d\pi_b)^{-1})(v) = \operatorname{Ad}_{h^{-1}}(Y),$$

so for p = bH, we have

proving that the definition of $\langle u, v \rangle_{G/H,p}$ does not depend on the coset representative of p = aH. The smoothness of this metric follows from the standard argument; namely, G is a principal H-bundle over G/H, and so local sections exist.

Observe that the definition

$$\langle u, v \rangle_{G/H,p} = \langle (dR_{a^{-1}})_a((d\pi_a)^{-1}(u)), (dR_{a^{-1}})_a((d\pi_a)^{-1}(v)) \rangle$$

means that

$$\langle u, v \rangle_{G/H,p} = \langle (d\pi_a)^{-1}(u), (d\pi_a)^{-1}(v) \rangle_a$$

where $\langle -, - \rangle_a$ is the right-invariant metric on $\mathcal{H}_a = (dL_a)_1(\mathfrak{m})$ induced by the inner product on \mathfrak{g} . Consequently, for all $p \in G/H$ and for all $a \in G$ such that p = aH, the isomorphism $d\pi_a \colon \mathcal{H}_A \to T_p(G/H)$ is an isometry, which shows that the submersion π is a Riemannian submersion. Furthermore, for all $a, b \in G$ and all $h \in H$, if b = ah, then $(dR_h)_a$ is an isometry between $\mathcal{H}_a = (dL_a)_1(\mathfrak{m})$ and $\mathcal{H}_b = (dL_b)_1(\mathfrak{m})$. \Box

Chapter 3

G-Invariant Connections on Reductive Homogeneous Spaces

3.1 Connections on Reductive Homogeneous Spaces

Given a reductive homogeneous space G/H with reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, we know that there is a one-to-one correspondence between G-invariant metrics on G/H and inner products $\langle -, \rangle_{\mathfrak{m}}$ on \mathfrak{m} that are $\mathrm{Ad}(H)$ -invariant, which means that

$$\langle u, v \rangle_{\mathfrak{m}} = \langle \operatorname{Ad}_{h}(u), \operatorname{Ad}_{h}(v) \rangle_{\mathfrak{m}}, \text{ for all } h \in H \text{ and all } u, v \in \mathfrak{m}.$$

Unfortunately, if H is not compact, such inner products do not exist.

Instead of trying to define a connection on G/H in terms of a metric, we may try to define a connection on G/H in terms of a bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ on \mathfrak{m} . Since the Levi–Civita connection is invariant under diffeomorphisms, the Levi–Civita connection induced by an $\operatorname{Ad}(H)$ -invariant inner product on \mathfrak{m} is G-invariant, so it it natural to look for G-invariant connections. Let us review what it means for a connection on G/H to be G-invariant.

Every group element $a \in G$ defines a diffeomorphism $\tau_a \colon G/H \to G/H$ given by

$$au_a(gH) = agH, \quad \text{for all } g \in G.$$

Oberve that

 $\tau_{ab} = \tau_a \circ \tau_b,$

since

$$\tau_{ab}(gH) = abgH = \tau_a(bgH) = \tau_a(\tau_b(gH)),$$

and

$$au_h(H) = H, \quad \text{for all } h \in H.$$

Given a diffeomorphism $\varphi \colon M \to N$ between two manifolds M and N, for any vector field V on M, recall that we define the *push-forward* φ_*V of V by

$$(\varphi_*V)_{\varphi(p)} = d\varphi_p V_p, \text{ for all } p \in M.$$

If ψ is a diffeomorphism from N to P, then

$$\begin{aligned} ((\psi \circ \varphi)_* V)_{\psi(\varphi(p))} &= d(\psi \circ \varphi)_p V_p \\ &= d\psi_{\varphi(p)} (d\varphi_p V_p) \\ &= d\psi_{\varphi(p)} (\varphi_* V)_{\varphi(p)} \\ &= (\psi_*(\varphi_* V))_{\psi(\varphi(p))}, \end{aligned}$$

which shows that

$$(\psi \circ \varphi)_* = \psi_* \circ \varphi_*.$$

Definition 3.1. A connection ∇ on a homogeneous space G/H is *G*-invariant if

$$(\tau_a)_*(\nabla_V W) = \nabla_{(\tau_a)_*V}((\tau_a)_*W), \quad \text{for all } V, W \in \mathcal{X}(G/H) \text{ and all } a \in G.$$
(*)

Recall that $(\nabla_V W)_p$ depend only of V_p , so

$$(\nabla_V W)_p = (\nabla_{V_p} W)_p$$

We make constant use of the above fact.

The natural projection from G onto G/H is denoted by $\pi: G \to G/H$. Recall that the restriction of the map $d\pi_1: \mathfrak{g} \to T_0(G/H)$ to \mathfrak{m} is a linear isomorphism (where o denotes the point in G/H corresponding to the coset 1H = H). Since $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, every vector $X \in \mathfrak{g}$ has a unique decomposition as

$$X = X_{\mathfrak{h}} + X_{\mathfrak{m}}, \quad X_{\mathfrak{h}} \in \mathfrak{h}, X_{\mathfrak{m}} \in \mathfrak{m}.$$

The fact that every $X \in \mathfrak{g}$ induces a vector field X^* on G/H (an action field or infinitesimal generator) through the left action of G on G/H plays a crucial role. For any $X \in \mathfrak{g}$, the vector field X^* is given by

$$X_p^* = \left. \frac{d}{dt} (\exp(tX) aH) \right|_{t=0},$$

for any $a \in G$ such that p = aH. Recall that the linear map $d\pi_1 \colon \mathfrak{g} \to T_o(G/H)$ can be expressed as

$$d\pi_1(X) = X_0^* = \left. \frac{d}{dt} (\exp(tX)H) \right|_{t=0},$$

and Ker $(d\pi_1) = \mathfrak{h}$.

It turns out that any G-invariant connection on G/H is uniquely determined by the bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ given by

$$\alpha(X,Y) = (d\pi_1)^{-1} (\nabla_{X_o^*} Y^*)_o, \quad \text{for all } X, Y \in \mathfrak{m}.$$

Furthermore, there is a one-to-one correspondence between G-invariant connections on G/Hand bilinear maps $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ satisfying the condition

$$\operatorname{Ad}_h(\alpha(X,Y)) = \alpha(\operatorname{Ad}_h(X), \operatorname{Ad}_h(Y)), \text{ for all } X, Y \in \mathfrak{m} \text{ and all } h \in H.$$
 (†)

It is also possible to characterize torsion-free G-invariant connections and G-invariant connections for which the geodesics through o are of the form $\gamma(t) = e^{tX} \cdot o$. In this case, the bilinear map α is given by

$$\alpha(X,Y) = -\frac{1}{2}[X,Y]_{\mathfrak{m}}, \quad X,Y \in \mathfrak{m}.$$

This connection is known as the *Cartan connection* on G/H. The Levi–Civita connection associated with a *G*-invariant metric on G/H coincides with the Cartan connection on G/H iff G/H is naturally reductive.

The following technical results will be needed.

Proposition 3.1. For any $X \in \mathfrak{g}$ and any $a \in G$, we have

$$(\tau_a)_* X^* = (\mathrm{Ad}_a(X))^*.$$

Proof. By definition, for any p = bH, we have $\tau_a(bH) = abH$, and

$$((\tau_a)_*X^*)_{\tau_a(p)} = (d\tau_a)_p(X^*(p))$$

= $\frac{d}{dt}(a\exp(tX)bH)\Big|_{t=0}$
= $\frac{d}{dt}(a\exp(tX)a^{-1}abH)\Big|_{t=0}$
= $\frac{d}{dt}(\exp(t\operatorname{Ad}_a(X))abH)\Big|_{t=0}$
= $(\operatorname{Ad}_a(X))^*_{\tau_a(p)},$

which shows that $(\tau_a)_*X^* = (\operatorname{Ad}_a(X))^*$.

In the special case where p = o, since $X_o^* = d\pi_1(X)$ for any $X \in \mathfrak{g}$, the above derivation shows that

$$((\tau_a)_*X^*)_{\tau_a(o)} = d\tau_a(X_0^*) = d\tau_a(d\pi_o(X)) = ((d\tau_a)_o \circ d\pi_1)(X) = (\mathrm{Ad}_a(X))_{\tau_a(o)}^*,$$

so $((d\tau_a)_o \circ d\pi_1)(X) = (\operatorname{Ad}_a(X))^*_{\tau_a(o)}$. If we restrict X to belong to \mathfrak{m} and if we let $p = aH = \tau_a(o)$ and define $\eta_a \colon \operatorname{Ad}_a(\mathfrak{m}) \to T_p(G/H)$ by

$$\eta_a(Y) = Y_p^*, \quad Y \in \operatorname{Ad}_a(\mathfrak{m}),$$

then we obtain the following commutative diagram:

Since the maps $\operatorname{Ad}_a, d\pi_1$ and $(d\tau_a)_o$ are linear isomorphisms, the map η_a is an isomorphism between $\operatorname{Ad}_a(\mathfrak{m})$ and $T_p(G/H)$, with p = aH. Observe that if $h \in H$, then p = o, $\operatorname{Ad}_h(\mathfrak{m}) = \mathfrak{m}$, and $\eta_h = d\pi_1$.

Proposition 3.2. For any $p \in G/H$, for any two coset representatives bH = aH = p, if b = ah for some $h \in \mathfrak{m}$, then

$$\eta_b \circ \mathrm{Ad}_b = \eta_a \circ \mathrm{Ad}_a \circ \mathrm{Ad}_h.$$

Proof. Indeed, by (**) we have

$$\eta_a \circ \operatorname{Ad}_a = (d\tau_a)_o \circ d\pi_1$$
$$\eta_b \circ \operatorname{Ad}_b = (d\tau_b)_o \circ d\pi_1$$
$$d\pi_1 \circ \operatorname{Ad}_h = (d\tau_h)_o \circ d\pi_1,$$

and we deduce that

$$\eta_b \circ \operatorname{Ad}_b = (d\tau_b)_o \circ d\pi_1$$
$$= (d\tau_a)_o \circ (d\tau_h)_o \circ d\pi_1$$
$$= (d\tau_a)_o \circ d\pi_1 \circ \operatorname{Ad}_h$$
$$= \eta_a \circ \operatorname{Ad}_a \circ \operatorname{Ad}_h,$$

as claimed.

We begin with a necessary condition for a connection on G/H to be G-invariant. Recall that as a special case of (**), we have

$$d\pi_1 \circ \operatorname{Ad}_h = (d\tau_h)_o \circ d\pi_1 \quad \text{for all } h \in H,$$

which can be expressed as

$$(\mathrm{Ad}_h(X))_o^* = (d\tau_h)_o(X_o^*)$$
 for all $h \in H$ and all $X \in \mathfrak{m}$.

This equation is also shown in O'Neill [4] (Chapter 11, Proposition 22) and Gallier (Proposition 19.16).

If we apply the identity (*) at $\tau_h(o) = o$ to $V = X^*$, $W = Y^*$ with $X, Y \in \mathfrak{m}$, and to $a = h \in H$, we get

$$(\tau_h)_* (\nabla_{X^*} Y^*)_o = (\nabla_{((\tau_h)_* X^*)_o} (\tau_h)_* Y^*)_o,$$

which is equivalent to

$$(d\tau_h)_o(\nabla_{X_o^*}Y^*)_o = (\nabla_{(d\tau_h)_oX_o^*}(\mathrm{Ad}_h(Y))^*)_o$$
$$= (\nabla_{(\mathrm{Ad}_h(X))_o^*}(\mathrm{Ad}_h(Y))^*)_o.$$

Definition 3.2. The bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ is given by

$$\alpha(X,Y) = (d\pi_1)^{-1} (\nabla_{X_o^*} Y^*)_o, \quad \text{for all } X, Y \in \mathfrak{m},$$

where $d\pi_1$ is the isomorphism from \mathfrak{m} onto $T_o(G/H)$. Equivalently, $\alpha(X, Y)$ is determined by

$$\alpha(X,Y)_o^* = (\nabla_{X_o^*}Y^*)_o, \quad \text{for all } X, Y \in \mathfrak{m}.$$

Proposition 3.3. The bilinear map α associated with a G-invariant connection ∇ on G/H as in Definition 3.2 satisfies the condition

$$\operatorname{Ad}_{h}(\alpha(X,Y)) = \alpha(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)), \quad \text{for all } X, Y \in \mathfrak{m} \text{ and all } h \in H.$$
(†)

Proof. The equation

$$(d\tau_h)_o(\nabla_{X_o^*}Y^*)_o = (\nabla_{(\mathrm{Ad}_h(X))_o^*}(\mathrm{Ad}_h(Y))^*)_o$$

proved earlier shows that

$$(d\tau_h)_o(d\pi_1(\alpha(X,Y))) = d\pi_1(\alpha(\mathrm{Ad}_h(X),\mathrm{Ad}_h(Y))),$$

 \mathbf{SO}

$$d\pi_1(\mathrm{Ad}_h(\alpha(X,Y))) = d\pi_1(\alpha(\mathrm{Ad}_h(X),\mathrm{Ad}_h(Y)))$$

which, since $d\pi_1$ is an isomorphism from \mathfrak{m} onto $T_o(G/H)$, implies the condition

$$\operatorname{Ad}_h(\alpha(X,Y)) = \alpha(\operatorname{Ad}_h(X), \operatorname{Ad}_h(Y)), \text{ for all } X, Y \in \mathfrak{m} \text{ and all } h \in H,$$

as claimed.

Here is the main theorem of this section.

Theorem 3.4. Given any homogeneous reductive space G/H with reductive decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m},$$

there is a one-to-one correspondence between G-invariant connections on G/H and bilinear maps $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ satisfying the condition

$$\operatorname{Ad}_h(\alpha(X,Y)) = \alpha(\operatorname{Ad}_h(X), \operatorname{Ad}_h(Y)), \text{ for all } X, Y \in \mathfrak{m} \text{ and all } h \in H.$$
 (†)

Given any G-invariant connection ∇ on G/H, the bilinear map α is given by

$$\alpha(X,Y) = (d\pi_1)^{-1} (\nabla_{X_o^*} Y^*)_o, \quad for \ all \ X, Y \in \mathfrak{m},$$

where $d\pi_1$ is the isomorphism from \mathfrak{m} onto $T_o(G/H)$. Conversely, given a bilinear map α satisfying condition (\dagger), the unique G-invariant connection ∇ associated with α is defined as follows. For any $p \in G/H$, for any coset representative aH = p with $a \in G$, the map $\eta_a \colon \operatorname{Ad}_a(\mathfrak{m}) \to T_p(G/H)$ given by

$$\eta_a(Y) = Y_n^*, \quad Y \in \mathrm{Ad}_a(\mathfrak{m}),$$

is a linear isomorphism such that the following diagram commutes:

Then, for any $V \in T_p(G/H)$ and for any vector field W on G/H of the form $W = (\mathrm{Ad}_a(Y))^*$, with $Y \in \mathfrak{m}$, if $X \in \mathfrak{m}$ is the unique vector such that $V = (\eta_a \circ \mathrm{Ad}_a)(X)$, we set

$$(\nabla_V W)_p = (d\tau_a)_o (\nabla_{(d\tau_{a^{-1}})_p(V)}(\tau_{a^{-1}})_* W)_o = (d\tau_a)_o \circ d\pi_1 (\alpha(X, Y)).$$
(††)

Furthermore, the G-invariant connection on G/H associated with α is torsion-free iff

$$\alpha(X,Y)-\alpha(Y,X)=-[X,Y]_{\mathfrak{m}},\quad for \ all \ X,Y\in \mathfrak{m}.$$

Proof. It was shown in Proposition 3.3 that the bilinear map α associated with a *G*-invariant connection ∇ on G/H satisfies (†).

Conversely, we show that any bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ satisfying (†) induces a *G*-invariant connection on G/H.

For any $a \in G$, since τ_a is a diffeomorphism with inverse $\tau_{a^{-1}}$, for any two vector fields V and W over G/H, if the connection $\nabla_V W$ is G-invariant, since

$$(\tau_a)_* \circ (\tau_{a^{-1}})_* = (\tau_a \circ \tau_{a^{-1}})_* = \mathrm{id}_*,$$

we must have

$$\nabla_V W = (\tau_a)_* ((\tau_{a^{-1}})_* \nabla_V W)$$

= $(\tau_a)_* (\nabla_{(\tau_{a^{-1}})_* V} (\tau_{a^{-1}})_* W)$

At p = aH, since $p = \tau_a(o)$, we get

$$(\nabla_V W)_p = (d\tau_a)_o (\nabla_{(\tau_{a^{-1}})_* V} (\tau_{a^{-1}})_* W)_o$$

= $(d\tau_a)_o (\nabla_{(d\tau_{a^{-1}})_p (V_p)} (\tau_{a^{-1}})_* W)_o$

Moreover, $(\nabla_{(d\tau_{a^{-1}})_p(V_p)}(\tau_{a^{-1}})_*W)_o \in T_o(G/H) \cong \mathfrak{m}$, with $(d\tau_{a^{-1}})_p(V_p) \in T_o(G/H)$ and where $(\tau_{a^{-1}})_*W$ is a vector field whose value at o belongs to $T_o(G/H)$. We can pick some chart of G/H at o with domain U, and then we know that over U, the vector field $(\tau_{a^{-1}})_*W$ can be written as

$$\widehat{W} = (\tau_{a^{-1}})_* W = f_1 X_1^* + \dots + f_n X_n^*,$$

for some basis (X_1, \ldots, X_n) of \mathfrak{m} and for some smooth functions f_1, \ldots, f_n on U. Since $(\tau_{a^{-1}})_*W$ and \widehat{W} agree near o, we have

$$\nabla_{(d\tau_{a^{-1}})_{p}(V_{p})}(\tau_{a^{-1}})_{*}W = \nabla_{(d\tau_{a^{-1}})_{p}(V_{p})}\widehat{W}$$
$$= \sum_{i=1}^{n} f_{i}\nabla_{(d\tau_{a^{-1}})_{p}(V_{p})}X_{i}^{*} + \sum_{i=1}^{n} \Big(\big((d\tau_{a^{-1}})_{p}(V_{p}) \big)f_{i} \Big)X_{i}^{*}$$

(where $((d\tau_{a^{-1}})_p(V_p))f_i$ denotes the directional derivative of f_i in the direction $(d\tau_{a^{-1}})_p(V_p))$, which shows that $\nabla_{(d\tau_{a^{-1}})_p(V_p)}(\tau_{a^{-1}})_*W$ is completely determined by the $\nabla_{(d\tau_{a^{-1}})_p(V_p)}X_i^*$, for i = 1..., n.

Given any $p \in G/H$, for any coset representative aH = p, recall that we have an isomorphism $\eta_a \colon \operatorname{Ad}_a(\mathfrak{m}) \to T_p(G/H)$, so for any $V \in T_p(G/H)$, there is a unique $X \in \mathfrak{m}$ so that $V = \eta_a(\operatorname{Ad}_a(X))$. Furthermore, we have

$$(d\tau_{a^{-1}})_p(V) = (d\tau_{a^{-1}})_p(\eta_a(\mathrm{Ad}_a(X))) = (d\tau_{a^{-1}})_p((d\tau_a)_o \circ d\pi_1)(X)) = d\pi_1(X) = X_o^*.$$

As a consequence, for any $V \in T_p(G/H)$ and for any vector field W on G/H of the form $W = (\operatorname{Ad}_a(Y))^*$ with $Y \in \mathfrak{m}$, since

$$(\tau_{a^{-1}})_*(W) = (\tau_{a^{-1}})_*(\mathrm{Ad}_a(Y))^* = (\mathrm{Ad}_{a^{-1}}(\mathrm{Ad}_a(Y)))^* = Y^*,$$

we have

$$(\nabla_{(d\tau_{a^{-1}})_{p}(V)}(\tau_{a^{-1}})_{*}W)_{o} = (\nabla_{X_{o}^{*}}Y^{*})_{o}$$
$$= d\pi_{1}(\alpha(X,Y))$$

Therefore, for any coset representative aH = p with $a \in G$, for any $V \in T_p(G/H)$ and for any vector field W on G/H of the form $W = (\operatorname{Ad}_a(Y))^*$, with $Y \in \mathfrak{m}$, if $X \in \mathfrak{m}$ is the unique vector such that $V = (\eta_a \circ \operatorname{Ad}_a)(X)$, we set

$$(\nabla_V W)_p = (d\tau_a)_o (\nabla_{(d\tau_{a^{-1}})_p(V)}(\tau_{a^{-1}})_* W)_o = (d\tau_a)_o \circ d\pi_1 (\alpha(X, Y)).$$
(††)

We need to show that the above definition does not depend on the representative of p, so let $b \in G$ such that aH = bH. Then, b = ah for some $h \in H$, and we have

$$V = (\eta_a \circ \operatorname{Ad}_a)(X) = (\eta_b \circ \operatorname{Ad}_b)(\operatorname{Ad}_{h^{-1}}(X))$$

and

$$W = (\mathrm{Ad}_a(Y))^* = (\mathrm{Ad}_b(\mathrm{Ad}_{h^{-1}}(Y))^*.$$

Since $d\pi_1 \circ \operatorname{Ad}_h = (d\tau_h)_o \circ d\pi_1$, we get

$$(d\tau_b)_o(\nabla_{(d\tau_{b^{-1}})_p(V)}(\tau_{b^{-1}})_*W)_o = (d\tau_a)_o \circ (d\tau_h)_o(\nabla_{(d\tau_{b^{-1}})_p(V)}(\tau_{b^{-1}})_*W)_o$$

= $(d\tau_a)_o \circ (d\tau_h)_o \circ d\pi_1(\alpha(\operatorname{Ad}_{h^{-1}}(X), \operatorname{Ad}_{h^{-1}}(Y)))$
= $(d\tau_a)_o \circ d\pi_1 \circ \operatorname{Ad}_h(\alpha(\operatorname{Ad}_{h^{-1}}(X), \operatorname{Ad}_{h^{-1}}(Y))).$

Using (\dagger) , this yield

$$(d\tau_a)_o \circ d\pi_1 \circ \operatorname{Ad}_h \left(\alpha \left(\operatorname{Ad}_{h^{-1}}(X), \operatorname{Ad}_{h^{-1}}(Y) \right) \right) = (d\tau_a)_o \circ d\pi_1 \circ \operatorname{Ad}_h \circ \operatorname{Ad}_{h^{-1}} \left(\alpha \left(X, Y \right) \right)$$
$$= (d\tau_a)_o \circ d\pi_1 \left(\alpha \left(X, Y \right) \right),$$

which proves that our definition does not depend on the choice of the representative of the coset p. The definition also makes it clear that the resulting connection is G-invariant.

If the connection ∇ is torsion-free, let us find out which condition is imposed on α . Recall that the torsion of a connection ∇ is given by

$$T(V,W) = \nabla_V W - \nabla_W V - [V,W].$$

If the connection ∇ is torsion-free, which means that

$$\nabla_V W - \nabla_W V = [V, W], \text{ for all } V, W \in \mathcal{X}(G/H),$$

then we have

$$\nabla_{X^*}Y^* - \nabla_{Y^*}X^* = [X^*, Y^*], \quad \text{for all } X, Y \in \mathfrak{m},$$

which implies that

$$d\pi_1(\alpha(X,Y)) - d\pi_1(\alpha(Y,X)) = -[X,Y]_o^*.$$

However, $[X, Y]_{\mathfrak{m}}$ is the unique vector in \mathfrak{m} such that $d\pi_1([X, Y]_{\mathfrak{m}}) = [X, Y]_o^*$, so we get $d\pi_1(\alpha(X, Y)) - d\pi_1(\alpha(Y, X)) = -d\pi_1([X, Y]_{\mathfrak{m}})$, and since $d\pi_1$ is a bijection from \mathfrak{m} onto $T_o(G/H)$, we obtain

$$\alpha(X,Y) - \alpha(Y,X) = -[X,Y]_{\mathfrak{m}}, \text{ for all } X,Y \in \mathfrak{m}.$$

Therefore, if the G-invariant connection ∇ is torsion-free, then $\alpha_S = (\alpha(X, Y) - \alpha(Y, X))/2$, the skew-symmetric part of α , is given by

$$\alpha_S(X,Y) = -\frac{1}{2}[X,Y]_{\mathfrak{m}}.$$

The converse is clear.

Remark: It should be possible to derive Theorem 3.4 from Theorem 2.1 in Kobayashi and Nomizu [3] (Chapter X), a more general result which applies to certain principal subbundles of the bundle of linear frames with structure group some subgroup of $\mathbf{GL}(n, \mathbb{R})$, on a reductive homogeneous space. However, Kobayashi and Nomizu use a different definition of a connection, namely in terms of \mathfrak{g} -valued one-forms (so called Ereshmann connections; see Kobayashi and Nomizu [2], Chapters II and III). The translation of their results to connections defined as operators ∇ on vector fields appears to require as much work as proving our theorem directly.

3.2 G-Invariant Connections and Cartan Connections

We now find a necessary and sufficient condition on the bilinear map α associated with a G-invariant connection ∇ on G/H so that the curves $\gamma(t) = e^{tX}o = \tau_{e^{tX}}(o)$ through o with $X \in \mathfrak{m}$ are geodesics. Such a condition is given in Kobayashi and Nomizu [3] (Chapter X, Proposition 2.9 and Theorem 2.10). However, as noted earlier, Kobayashi and Nomizu use a different definition of a connection, namely in terms of \mathfrak{g} -valued one-forms. The translation of their results to connections defined as operators ∇ on vector fields requires a fair amount of work.

We need a preliminary result. First, observe that for any fixed $t, e^{tX} \in G$ defines the diffeomorphisn $\tau_{e^{tX}}$ of G/H.

Proposition 3.5. For any reductive homogeneous manifold G/H, for any $X \in \mathfrak{g}$, if γ is the curve in G/H given by $\gamma(t) = e^{tX} \cdot o = \tau_{e^{tX}}(o)$, then for every $t \in \mathbb{R}$, we have

$$(\tau_{\gamma(t)})_* X^* = X^*.$$

Proof. Since the action vector field X^* is defined such that for any $p \in G/H$,

$$X_p^* = \left. \frac{d}{ds} (e^{sX} a H) \right|_{s=0},$$

for any $a \in G$ such that p = aH, we have

$$(\tau_{\gamma(t)})_* X_p^* = \left. \frac{d}{ds} (e^{tX} e^{sX} aH) \right|_{s=0}$$
$$= \left. \frac{d}{ds} (e^{sX} e^{tX} aH) \right|_{s=0}$$
$$= X_{\tau_{\gamma(t)}(p)}^*,$$

which proves our claim.

Proposition 3.6. Given any reductive homogeneous manifold G/H and any G-invariant connection ∇ on G/H, for any $X \in \mathfrak{m}$, if γ is the curve in G/H given by $\gamma(t) = e^{tX} \cdot o = \tau_{e^{tX}}(o)$, then γ is a geodesic in G/H iff the bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ associated with ∇ is skew-symmetric (that is, $\alpha(X, X) = 0$ for all $X \in \mathfrak{m}$).

Proof. (After Kobayashi and Nomizu [3], Proposition 2.9). The curve $\gamma(t) = e^{tX} \cdot o$ is a geodesic iff

$$(\nabla_{X^*}X^*)_{\tau_{\gamma(t)}(o)} = 0, \text{ for all } t \in \mathbb{R}.$$

Now, since $\tau_{\gamma(t)}$ is a diffeomorphism of G/H for every t and since ∇ is G-invariant, we have

$$(\tau_{\gamma(t)})_*(\nabla_{X^*}X^*) = \nabla_{(\tau_{\gamma(t)})_*X^*}(\tau_{\gamma(t)})_*X^*,$$

and from Proposition 3.5, we have

$$(\tau_{\gamma(t)})_* X^* = X^*,$$

so we obtain

$$(\tau_{\gamma(t)})_*(\nabla_{X^*}X^*) = \nabla_{X^*}X^*,$$

which evaluated at $\tau_{\gamma(t)}(o)$ yields

$$(\tau_{\gamma(t)})_* (\nabla_{X^*} X^*)_{\tau_{\gamma(t)(o)}} = (\nabla_{X^*} X^*)_{\tau_{\gamma(t)(o)}};$$

that is,

$$(d\tau_{\gamma(t)})_o(\nabla_{X^*}X^*)_o = (\nabla_{X^*}X^*)_{\tau_{\gamma(t)(o)}}$$

Since $(d\tau_{\gamma(t)})_o$ is a bijection, we have $(\nabla_{X^*}X^*)_{\tau_{\gamma(t)}(o)} = 0$ for all $t \in \mathbb{R}$ iff $(\nabla_{X^*}X^*)_o = 0$ iff $\alpha(X, X) = 0$ for all $X \in \mathfrak{m}$, establishing our claim.

Since we showed that a *G*-invariant connection on G/H corresponds to a bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ whose skew-symmetric part α_S is given by

$$\alpha_S = \frac{1}{2} [X, Y]_{\mathfrak{m}},$$

if there is a G-invariant torsion-free connection on G/H such that the the curves $t \mapsto \tau_{e^{tX}}(o)$ are geodesics through o for all $X \in \mathfrak{m}$, then

$$\alpha(X,Y) = -\frac{1}{2}[X,Y]_{\mathfrak{m}}.$$

Conversely, because Ad_h is induced by the Lie group isomorphism $R_{h^{-1}} \circ L_h$, it is a Lie algebra isomorphism, so the Lie bracket [X, Y] is Ad_h -invariant for all $h \in H$, and Theorem 3.4 shows that there is *G*-invariant connection induced by

$$\alpha(X,Y) = -\frac{1}{2}[X,Y]_{\mathfrak{m}}$$

Now, if the curves $t \mapsto \tau_{e^{tX}}(o)$ are geodesics through o for all $X \in \mathfrak{m}$, since we have $d/dt(\tau_{e^{tX}(o)})|_{t=0} = X_o^*$, by the uniqueness of geodesics passing through o and with initial velocity X_o^* , we see that all geodesics through o are of the form $t \mapsto \tau_{e^{tX}}(o)$. Thus, we obtain the following result which is a version of Theorem 2.10 from Kobayashi and Nomizu [3] (Chapter X).

Theorem 3.7. Given any reductive homogeneous manifold G/H with reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, there is a unique G-invariant torsion-free connection ∇ on G/H such that all geodesics through o are given by the curves $t \mapsto \tau_{e^t X}(o)$ iff the bilinear map $\alpha \colon \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ associated with ∇ is given by

$$\alpha(X,Y) = -\frac{1}{2}[X,Y]_{\mathfrak{m}}, \quad for \ all \ X,Y \in \mathfrak{m}.$$

We call the above connection the Cartan connection on G/H.

Remark: Theorem 2.10 In Kobayashi and Nomizu [3] states that

$$\alpha(X,Y) = \frac{1}{2}[X,Y]_{\mathfrak{m}},$$

with a + sign. This appears to be in contradiction with our result. The reason is that Kobayashi and Nomizu define the action vector field X^* associated with a vector $X \in \mathfrak{g}$ in terms of the *right* action of e^{tX} on G/H (see [2], page 42). We use the *left* action of e^{tX} on G/H (as most other authors of books written after the 1980's do).

The Levi–Civita connection is preserved by diffeomorphims, so in particular, any Levi– Civita connection on a homogeneous space is G-invariant. We also know that if G/H admits a G-invariant metric, then the Levi–Civita connection induced by that metric is given by

$$(d\pi_1)^{-1}(\nabla_{X^*}Y^*)_o = -\frac{1}{2}[X,Y]_{\mathfrak{m}} + U(X,Y),$$

where $[X,Y]_{\mathfrak{m}}$ is the component of [X,Y] on \mathfrak{m} and U(X,Y) is determined by

$$2\langle U(X,Y),Z\rangle = \langle [Z,X]_{\mathfrak{m}},Y\rangle + \langle X,[Z,Y]_{\mathfrak{m}}\rangle,$$

for all $Z \in \mathfrak{m}$. Therefore, we deduce that the Levi–Civita connection associated with a G-invariant metric on G/H coincides with the Cartan connection on G/H iff $U \equiv 0$ iff G/H is naturally reductive (see Kobayashi and Nomizu [3] (Chapter X, Theorem 3.3).

Acknowlegments:

Bibliography

- [1] S. Gallot, D. Hulin, and J. Lafontaine. *Riemannian Geometry*. Universitext. Springer Verlag, second edition, 1993.
- [2] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, I. Wiley Classics. Wiley-Interscience, first edition, 1996.
- [3] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, II. Wiley Classics. Wiley-Interscience, first edition, 1996.
- [4] Barrett O'Neill. Semi-Riemannian Geometry With Applications to Relativity. Pure and Applies Math., Vol 103. Academic Press, first edition, 1983.