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G
aussian elimination is universally
known as “the” method for solving
simultaneous linear equations. As
Leonhard Euler remarked, it is the
most natural way of proceeding (“der

natürlichste Weg” [Euler, 1771, part 2, sec. 1, chap.
4, art. 45]). Because Gaussian elimination solves
linear problems directly, it is an important tech-
nique in computational science and engineering,
through which it makes continuing, albeit indi-
rect, contributions to advancing knowledge and
to human welfare. What is natural depends on
the context, so the algorithm has changed many
times with the problems to be solved and with
computing technology.

Gaussian elimination illustrates a phenomenon
not often explained in histories of mathematics.
Mathematicians are usually portrayed as “discover-
ers”, as though progress is a curtain that gradually
rises to reveal a static edifice which has been there
all along awaiting discovery. Rather, Gaussian elim-
ination is living mathematics. It has mutated suc-
cessfully for the last two hundred years to meet
changing social needs.

Many people have contributed to Gaussian elim-
ination, including Carl Friedrich Gauss. His method
for calculating a special case was adopted by pro-
fessional hand computers in the nineteenth cen-
tury. Confusion about the history eventually made
Gauss not only the namesake but also the origina-
tor of the subject. We may write Gaussian elimina-
tion to honor him without intending an attribution.

This article summarizes the evolution of Gauss-
ian elimination through the middle of the twentieth
century [Grcar, 2011a,b]. The sole development
in ancient times was in China. An independent
origin in modern Europe has had three phases.
First came the schoolbook lesson, beginning with
Isaac Newton. Next were methods for profes-
sional hand computers, which began with Gauss,
who apparently was inspired by work of Joseph-
Louis Lagrange. Last was the interpretation in
matrix algebra by several authors, including John
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Figure 1. It began in cuneiform tablets like
VAT 8389. Vorderasiatisches Museum in

Berlin, 12.1 by 7.9 cm.

von Neumann. There may be no other subject
that has been molded by so many renowned
mathematicians.

Ancient Mathematics

Problems that can be interpreted as simultaneous
linear equations are present, but not prevalent, in
the earliest written mathematics. About a thou-
sand cuneiform tablets have been published that
record mathematics taught in the Tigris and Eu-
phrates valley of Iran and Iraq in 2000 BC [Robson,
2008, table B.22]. Most tablets contain tables
of various kinds, but some tablets are didactic
(Figure 1). The first problem on VAT 8389 asks for
the areas of two fields whose total area is 1800 sar,
when the rent for one field is 2 silà of grain per 3
sar, the rent for the other is 1 silà per 2 sar, and the
total rent on the first exceeds the other by 500 silà.
If you do not remember these numbers, then you
are not alone. The author of the tablet frequently
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reminds readers to “keep it in your head” in the
literal translation by Høyrup [2002, pp. 77–82].1

For perspective, when problems on these tablets
can be written as simultaneous equations, usu-
ally one equation is nonlinear [Bashmakova and
Smirnova, 2000, p. 3], which suggests that linear
systems were not a large part of the Babylonian
curriculum.

Simultaneous linear equations are prominent in
just one ancient source. The Jiuzhang Suanshu, or
Nine Chapters of the Mathematical Art , is a collec-
tion of problems that were composed in China over
2000 years ago [Shen et al., 1999] (Figure 2). The
first of eighteen similar problems in chapter 8 asks
for the grain yielded by sheaves of rice stalks from
three grades of rice paddies. The combined yield is
39 dou of grain for 3 sheaves from top-grade pad-
dies, 2 from medium-grade, and 1 from low-grade;
and similarly for two more collections of sheaves.
Mathematicians in ancient China made elaborate
calculations using counting rods to represent num-
bers, which they placed inside squares arranged
in a rectangle called a counting table (an ancient
spreadsheet essentially). The right column in the
following rectangle represents the first collection
of paddies in the problem.

1 2 3 top

2 3 2 medium

3 1 1 low

26 34 39 yield

The solution was by Gaussian elimination. The
right column was paired with each of the other
columns to remove their top numbers, etc. The
arithmetic retained integers by multiplying each
column in a pair by the number atop the other and
then subtracting right from left.

3

4 5 2

8 1 1

39 24 39

Hart [2011, pp. 70–81] explains the entire calcula-
tion.

The Nine Chapters and similar, apparently de-
rivative, work in Asia in later centuries [Hart, 2011;
Libbrecht, 1973; Martzloff, 1997] are the only treat-
ments of general linear problems until early mod-
ern Europe. The main surviving work of Greek and
Roman algebra is the Arithmetica problem book
by Diophantus, which is believed to be from the
third century. Problem 19 in chapter (or book) 1
is to find four numbers such that the sum of any
three exceeds the other by a given amount [Heath,
1910, p. 136]. Diophantus reduced the repetitive
conditions to one with a new unknown, such as the

1Exercise: Solve the problem in your head by any means
and then consult Høyrup [2002, pp. 81–82] for the
scribe’s method. Discuss.

Figure 2. A depiction of Liu Hui, who said the
Nine Chapters were already old when he wrote
explanations of them in the third century.

sum of all the numbers, from which the other un-
knowns can be found. The earliest surviving work
of ancient Hindu mathematics is the Āryabhat. ı̄ya
of Āryabhat.a from the end of the fifth century. His
linear problems are reminiscent of Diophantus but
more general, being for any quantity of unknowns.
Problem 29 in chapter 2 is to find several num-
bers given their total less each number [Plofker,
2009, p. 134]. The immediate sources for European
algebra were Arabic texts. Al-Khwarizmi of Bagh-
dad and his successors could solve the equivalent
of quadratic equations, but they do not appear to
have considered simultaneous linear equations be-
yond the special cases of Diophantus. For example,
Rāshid [1984, p. 39] cites a system of linear equa-
tions that Woepcke [1853, p. 94, prob. 20] traces to
a problem in the Arithmetica.

Schoolbook Elimination

Diophantus and Āryabhat.a solved what can be in-
terpreted as simultaneous linear equations with-
out the generality of the Nine Chapters. An obvious
prerequisite is technology able to express the prob-
lems of interest. The Nine Chapters had counting
tables, and Europe had symbolic algebra. Possess-
ing the expressive capability does not mean it is
used immediately. Some time was needed to de-
velop the concept of equations [Heeffer, 2011], and
even then, of 107 algebras printed between 1550
and 1660 in the late Renaissance, only four books
had simultaneous linear equations [Kloyda, 1938].

The earliest example found by Kloyda was from
Jacques Peletier du Mans [1554]. He solved a prob-
lem of Girolamo Cardano to find the money held
by three men when each man’s amount plus a
fraction of the others’ is given. Peletier first took
the approach of Cardano. This solution was by
verbal reasoning in which the symbolic algebra is a
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convenient shorthand. The discourse has variables
for just two amounts, and it represents the third
by the given formula of the other two. Peletier
[p. 111] then re-solved the problem almost as we
do, starting from three variables and equations
and using just symbolic manipulation (restated
here with modern symbols):

2R +A+ B = 64
R + 3A+ B = 84
R +A+ 4B = 124

2R + 4A+ 5B = 208
3A+ 4B = 144

3R + 4A+ 2B = 148
3R + 2A+ 5B = 188
6R + 6A+ 7B = 336

6R + 6A+ 24B = 744
17B = 408

Peletier’s overlong calculation suggests that
removing unknowns systematically was a further
advance. That step was soon made by Jean Bor-
rel, who wrote in Latin as Johannes Buteo [1560,
p. 190]. Borrel and the Nine Chapters both used
the same double-multiply elimination process
(restated with modern symbols):

3A+ B + C = 42
A+ 4B + C = 32
A+ B + 5C = 40

11B + 2C = 54
2B + 14C = 78

150C = 750

Lecturing on the algebra in Renaissance texts
became the job of Isaac Newton (Figure 3) upon
his promotion to the Lucasian professorship. In
1669–1670 Newton wrote a note saying that he
intended to close a gap in the algebra textbooks:
“This bee omitted by all that have writ introduc-
tions to this Art, yet I judge it very propper &
necessary to make an introduction compleate”
[Whiteside, 1968–1982, v. II, p. 400, n. 62]. New-
ton’s contribution lay unnoticed for many years
until his notes were published in Latin in 1707 and
then in English in 1720. Newton stated the recur-
sive strategy for solving simultaneous equations
whereby one equation is used to remove a variable
from the others.

And you are to know, that by each Æquation
one unknown Quantity may be taken away,
and consequently, when there are as many
Æquations and unknown Quantities, all at
length may be reduc’d into one, in which
there shall be only one Quantity unknown.

— Newton [1720, pp. 60–61]

Newton meant to solve any simultaneous algebraic
equations. He included rules to remove one vari-
able from two equations which need not be lin-
ear: substitution (solve an equation for a variable
and place the formula in the other) and equality-of-
values (solve in both and set the formulas equal).

Figure 3. Isaac Newton (1643–1727) closed a
gap in algebra textbooks. 1689 portrait by

Godfrey Kneller.

While Newton’s notes awaited publication,
Michel Rolle [1690, pp. 42ff.] also explained how
to solve simultaneous, specifically linear, equa-
tions. He arranged the work in two columns with
strict patterns of substitutions. We may speculate
that Rolle’s emphasis survived in the “method of
substitution” and that his “columne du retour”
is remembered as “backward” substitution. Nev-
ertheless, Newton influenced later authors more
strongly than Rolle.

In the eighteenth century many textbooks ap-
peared “all more closely resembling the algebra of
Newton than those of earlier writers” [Macomber,
1923, p. 132]. Newton’s direct influence is marked
by his choice of words. He wrote “extermino” in
his Latin notes [Whiteside, 1968–1982, v. II, p. 401,
no. 63] that became “exterminate” in the English
edition and the derivative texts. A prominent ex-
ample is the algebra of Thomas Simpson [1755, pp.
63ff.]. He augmented Newton’s lessons for “the Ex-
termination of unknown quantities” with the rule
of addition and/or subtraction (linear combination
of equations).

Among many similar algebras, Sylvestre Lacroix
(Figure 4) made an important contribution to the
nomenclature. His polished textbooks presented
the best material in a consistent style [Domingues,
2008], which included a piquant name for each
concept. Accordingly, Lacroix [1804, p. 114] wrote,
“This operation, by which one of the unknowns
is removed, is called elimination” (Cette opéra-
tion, par laquelle on chasse une des inconnues, se
nomme élimination). The first algebra printed in
the United States was a translation by John Farrar
of Harvard College [Lacroix, 1818]. As derivative
texts were written, “this is called elimination”
became a fixture of American algebras.

Gaussian elimination for the purpose of school-
books was thus complete by the turn of the nine-
teenth century. It was truly schoolbook elimination,
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Figure 4. Sylvestre Lacroix (1765–1843) called
it élimination. Image of an 1841 bas-relief by
David d’Angers.

because it had been developed to provide readily
undertaken exercises in symbolic algebra.

Professional Elimination

A societal need to solve simultaneous linear equa-
tions finally arose when Adrien-Marie Legendre
[1805] and Gauss [1809] (Figure 5) invented what
Legendre named the method of least squares
(“méthode des moindres quarrés,” modern “car-
rés”). It was a method to draw statistical inferences
for the unknowns in overdetermined, simultane-
ous linear equations by minimizing the sum
of the squares of the discrepancies. Gauss be-
came a celebrity by using unstated methods to
calculate the orbit of the “lost” dwarf planet
Ceres. Then Legendre succinctly stated what is
now called the general linear model, which led
to an unfortunate priority dispute once Gauss
disclosed his calculations [Stigler, 1986]. The ap-
proximate solutions in the least-squares sense
were obtained from Legendre’s “equations of the
minimum” or Gauss’s “normal equations”, which
could be solved, they respectively said, by “ordi-
nary methods” or “common elimination”, meaning
schoolbook elimination.2 Such was the importance
of the least-squares method that soon Gaussian
elimination would evolve with the technology of
professional hand computation.

2The quoted phrases are: “d’équations du minimum” and
“méthodes ordinares” [Legendre, 1805, p. 73], “elimina-
tionem vulgarem” [Gauss, 1809, p. 214], and “Normal-
gleichungen” [Gauss, 1822, p. 84]. Following Gauss, the
name normal equations is still given to the first-order
differential conditions for the minimum.

In modern notation of numerical analysis rather than
statistics, for a matrix A of full column rank and suitably
sized column vectors b and x, the least-squares problem
is minx ‖b−Ax‖2, and the normal equations are AtAx =
Atb, to which elimination was applied.

Figure 5. Carl Friedrich Gauss (1777–1855)
devised the first professional method,
replacing “common elimination”. Lithograph
by Siegfried Detlev Bendixen for the 1828
frontispiece of Astronomische Nachrichten.

Gauss himself was an incorrigible computer,
who estimated that his prodigious calculations
involved a million numbers [Dunnington, 2004,
p. 138]. His least-squares publications mostly dealt
with statistical justifications, but in one passage he
described his own calculations. He reformulated
the problem to reexpress the sum of squares in the
canonical form of Lagrange [1759]. Gauss [1810,
p. 22] wrote the overdetermined equations as

n + a p + b q + c r + . . . = w
n ′ + a ′ p + b ′ q + c ′ r + . . . = w ′

n ′′ + a ′′p + b ′′ q + c ′′ r + . . . = w ′′

etc.,

where p,q, r , . . . are the unknown parameters of
the linear model, while n,a, b, c, . . . are numbers
that differ with each observed instance of the
model (as indicated by the growing quantities of
primes). The w,w ′,w ′′, . . . are the discrepancies
whose sum of squares, Ω, is to be minimized.
Gauss chose an unnamed notation,

[xy] = xy + x ′y ′ + x ′′y ′′ + . . . ,

which he used to represent the numeric coeffi-
cients in the normal equations, equivalently, in
the quadratic form Ω. Gauss then extended his
bracket notation to

[xy,1] = [xy]−
[ax][ay]

[aa]
,

[xy,2] = [xy,1]−
[bx,1][by,1]

[bb,1]
,

and so on, in terms of which he constructed linear
combinations of successively fewer parameters:

A = [an] + [aa]p + [ab]q + [ac]r + . . .

B = [bn,1] + [bb,1]q + [bc,1]r + . . .

C = [cn,2] + [cc,2]r + . . .

etc.
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These formulas complete the squares of successive
parameters in the quadratic form, leaving

Ω =
A2

[aa]
+

B2

[bb,1]
+

C2

[cc,2]
+ · · · + [nn,µ],

where µ is the quantity of variables. Thus A = 0,
B = 0, C = 0, … can be solved in reverse order to
obtain values for p,q, r , . . . , also in reverse order,
at which Ω attains its minimum, [nn,µ].

Solving least-squares problems by Gauss’s
method required the numbers [xy, k] for in-
creasing indices k. Gauss halved the work of
schoolbook elimination, because he needed x, y
only in alphabetic order. More importantly, his
notation discarded the equations of symbolic al-
gebra, thereby freeing computers to organize the
work more efficiently. When Gauss calculated, he
simply wrote down lists of numbers using his
bracket notation to identify the values [Gauss,
1810, p. 25].

The subsequent evolution of Gaussian elimi-
nation illustrates the meta-disciplinary nature of
mathematics [Grcar, 2011c]. People such as Gauss
with significant knowledge of fields besides math-
ematics were responsible for these developments.
The advances do not superficially resemble either
schoolbook elimination or what is taught at uni-
versities today, but they are no less important,
because through them social needs were met.

Professional elimination began to develop due
to the economic and military value of cartogra-
phy. Gauss took government funds to map the
German principality where he lived. Maps were
drawn from networks of triangles using angles
that were measured by surveyors. The angles had
to be adjusted to make the triangles consistent. To
that end, Gauss [1826] devised a method to find
least-squares solutions of underdetermined equa-
tions by a quadratic-form calculation similar
to the overdetermined case.3 Once Friedrich
Bessel [1838] popularized Gauss’s approach,
cartographic bureaus adopted the bracket no-
tation. Gauss’s calculations became part of the
mathematics curriculum for geodesists.

By whatever method of elimination is per-
formed, we shall necessarily arrive at the
same final values …; but when the number
of equations is considerable, the method of
substitution, with Gauss’s convenient nota-
tion, is universally followed.

— Chauvenet [1868, p. 514] (Figure 6)

The first innovations after Gauss came from
Myrick Doolittle [1881] (Figure 7). He was a com-
puter at the United States Coast Survey who could
solve forty-one normal equations in a week. This

3For A of full row rank, these problems were
minAx=b ‖x‖2, where x are the angle adjustments
and Ax = b are the consistency conditions. The solu-
tion was given by correlate equations x = Atu, where
AAtu = b are again normal equations to be solved.
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Figure 6. William Chauvenet (1820–1870) and
others taught Gauss’s computing methods.

Portrait circa 1839 by Eunice Makepeace
Towle.

feat was astounding, because in principle it re-
quires about 23000 ≈ n3/3 arithmetic operations
for n = 41. Doolittle dispensed with Gauss’s brack-
ets and instead identified the numbers by their
positions in tables. He replaced the divisions in
the bracket formulas by reciprocal multiplications.
Doolittle’s tables colocated values to help him use
the product tables of August Leopold Crelle [1864].
An unrecognized but prescient feature of Doolit-
tle’s work combined graphs with algebra to reduce
computational complexity. He used the carto-
graphic triangulation to suggest an ordering of
the overdetermined equations (equivalently, an
arrangement of coefficients in the normal equa-
tions) to preserve zeroes in the work. The zeroes
obviated many of the 23000 operations.

The next innovations were made by the French
military geodesist André-Louis Cholesky [Benoit,
1924] (Figure 8). He, too, addressed the nor-
mal equations of the underdetermined, angle-
adjustment problem. Although Cholesky is re-
membered for the square roots in his formulas,4

his innovation was to order the arithmetic steps
to exploit a feature of multiplying calculators. The
machines were mass-produced starting in 1890
[Apokin, 2001], and Cholesky personally used a
Dactyle (Figure 9). A side effect of long multi-
plication is that the machines could internally
accumulate sums of products.5 Calculations thus
arranged were quicker to perform because fewer

4Cholesky originated a construction that is now inter-
preted as decomposing a symmetric and positive definite
matrix into a product LLt , where L is a lower triangular
matrix and t is transposition.
5The sums of products became known as dot-, inner-, or
scalar-products of vectors after the adoption of matrix
notation. Calculations employing sums were described as
“abbreviated” or “compact”.
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Figure 7. Myrick Hascall Doolittle (1830–1911),
circa 1862.
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Figure 8. André-Louis Cholesky (1875–1918),
circa 1895.

intermediate results had to be recorded on paper.
Cholesky’s tables for n equations held only O(n2)
numbers compared to Doolittle’s O(n3).

Statistical analysis in the form of regression
analysis became the primary use for least-squares
problems after the First World War. Doolittle’s
method was so prominent that it successfully
made the transition to statistics. For example,
United States government employees insisted on
using Doolittle’s method when they moved from
the Coast Survey to the Department of Agriculture
[Tolley and Ezekiel, 1927]. The department used
least-squares methods for regression analyses in
econometrics [Fox, 1989]. Cholesky’s method was
superior, but it received little notice [Brezinski,
2006] because it appeared in geodesy after statis-
tics had begun to develop its own methods. The
“square root method” did become widely used
[Laderman, 1948] once it was reinvented by the
American statistician Paul Dwyer [1945].
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Figure 9. Dactyle calculator based on the
pinwheel design of the Russian-Swedish
entrepreneur Willgodt Odhner. Dactyle resold
machines made by Brunsviga in Braunschweig
and from 1905 by Chateau Bros. in
Foncine-le-Haut.

The methods of Gauss, Doolittle, and Cholesky
sufficed only for normal equations. In modern
terms, the matrix of coefficients must be symmet-
ric and positive definite. The need to routinely
solve more kinds of simultaneous linear equations
gradually developed in engineering. Unaware of
the earlier work by Cholesky, a mathematician
at the Massachusetts Institute of Technology,
Prescott Crout [1941] (Figure 10), reorganized
schoolbook Gaussian elimination to accumulate
sums of products. Crout’s method was publicized
by a leading manufacturer of calculating machines
(Figure 11).

Matrix Interpretation

The milieu of using symbolic algebra to modify
Gaussian elimination ended with the adoption of
matrix algebra. Several authors had developed ma-
trices in the second half of the nineteenth century
[Hawkins, 1975, 1977a,b, 2008]. Although matrices
were not needed to compute by hand, the new rep-
resentational technology showed that all the pro-
liferating elimination algorithms were trivially re-
lated through matrix decompositions. Eventually
matrices would help organize calculations for the
purpose of programming electronic computers.

This development leads from the astronomical
observatory of the Jagiellonian University to the
numerical analysis textbooks that are presently in
your campus bookstore. Manual computing moti-
vated astronomer Tadeusz Banachiewicz [1938a,b]
(Figure 12) to independently invent matrices in the
form called Cracovians. They have a column-by-
column product, which is the natural way to cal-
culate with columns of figures by hand.

It must, however, be conceded that in prac-
tice it is easier to multiply column by column
than to multiply row by column …. It may, in
fact, be said that the computations are made
by Cracovians and the theory by matrices.

— Jensen [1944]
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Figure 10. Prescott Durand Crout (1907–1984),
circa 1936.
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Figure 11. Crout’s method was performed with
machines such as this Marchant calculator,

model 10ACT. It was manufactured in Oakland,
California, in the 1930s and 1940s.

Banachiewicz advocated using Cracovians to
represent calculations as early as 1933. The idea
was realized in Arthur Cayley’s matrix algebra by
two people. Henry Jensen [1944] (Figure 13) of
the Danish Geodætisk Institut used pictograms,
= , to emphasize that three algorithms for

solving normal equations amounted to express-
ing a square matrix as a triangular product: the
“Gaussian algorithm” (the calculation with Gauss’s
brackets), the Cracovian method, and Cholesky’s
method. A noteworthy aspect of Jensen’s presen-
tation was suggested by Frazer et al. [1938]: to
represent arithmetic operations through multipli-
cation by “elementary matrices”. In the same year
Paul Dwyer [1944] (Figure 14) of the University
of Michigan showed that Doolittle’s method was
an “efficient way of building up” some “so-called
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Figure 12. Tadeusz Banachiewicz (1882–1954)
used Cracovian algebra to describe computing

methods. Photo from 1946.

triangular” matrices. He found no similar inter-
pretation except in the work of Banachiewicz. The
coincident papers of Jensen and Dwyer are the
earliest to depict Gaussian elimination in roughly
the modern form, that is, in terms of Cayleyan
matrices.

A deep use for the matrix interpretation came
from John von Neumann (Figure 15) and his col-
laborator Herman Goldstine. They and others were
in the process of building the first programmable,
electronic computers. Concerns over the efficacy of
the machines motivated von Neumann and Golds-
tine to study Gaussian elimination. The initial part
of their analysis introduced the matrix decompo-
sition.

We may therefore interpret the elimination
method as … the combination of two tricks:
First, it decomposes A into a product of two
[triangular] matrices … [and second] it forms
their inverses by a simple, explicit, inductive
process.

— von Neumann and Goldstine [1947]

Von Neumann and Goldstine used matrix alge-
bra to establish bounds on the rounding errors of
what they anticipated would be the mechanized al-
gorithm once computers became available. When
the matrix is symmetric and positive definite, their
bound remains the best that has been achieved.
Although Gaussian elimination is observed to be
accurate, a comparable error bound has yet to be
established in the general case.6

The next step to the campus bookstore was
aided by Mathematical Reviews. John Todd (Fig-
ure 16) found Jensen’s paper through MR and

6No exercise: The end result of much study is, do not try
to prove what von Neumann did not.
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Figure 13. Henry Jensen (1915–1974) was
inspired by Banachiewicz to use Cayleyan
algebra.
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Figure 14. Paul Sumner Dwyer (1901–1982)
independently used matrix algebra. Photo
circa 1960s.

lectured on it at King’s College London [Taussky
and Todd, 2006]. An auditor communicated the
matrix formalism to staff at the National Phys-
ical Laboratory. Among them was Alan Turing
(Figure 17), who evidently learned of the matrix
interpretation both from Jensen through Todd
and also during a visit to von Neumann and Gold-
stine, whom Turing [1948] cited. He described
Gaussian elimination in the manner of von Neu-
mann and Goldstine by treating the general case
of schoolbook elimination and in the manner of
Jensen with elementary matrices. Turing wrote
with a brevity of expression that made ideas clear
without overworking them.

The invention of electronic computers created
a discipline that was at first populated by those
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Figure 15. John von Neumann (1903–1957) saw
“the combination of two tricks”. Photo from
March 1947.

who made scientific calculations [Traub, 1972;
Wilkinson, 1970]. Among them, George Forsythe
(Figure 18) was a visionary mathematician who
is reputed to have named “computer science”
[Knuth, 1972]. Gauss’s involvement lent credence
to the subject matter of the new discipline. The
terminology that geodesists had used to describe
the calculations of Gauss suggested an origin for
what then was named simply “elimination”. In an
address to the American Mathematical Society,
Forsythe [1953] misattributed “high school” elimi-
nation to Gauss and appears to have been the first
to call it “Gaussian elimination” [Grcar, 2011a, tab.
1]. The name was widely used within a decade.

The university mathematics curriculum adopted
matrix descriptions more slowly. Linear algebra
itself was not commonly taught until the 1960s.
When Fox [1964] and Forsythe and Moler [1967]
wrote influential numerical analysis textbooks
that featured the matrix interpretation, then they
reprised Turing’s presentation.

Coda

An algorithm is a series of steps for solving a
mathematical problem. The matrix interpretation
of Gaussian elimination seldom becomes an al-
gorithm in a straightforward way, because the
speed of computing depends on whether the cal-
culation is well adapted to the problem and the
computer. Just as Gauss developed the first pro-
fessional method for least-squares calculations
and then Doolittle developed a method for use
with multiplication tables, other methods were
developed more recently to solve the equations of
finite-element analysis [Irons, 1970] with parallel
computers [Duff and Reid, 1983]. While Cholesky
and Crout emphasized sums of products for cal-
culating machines, the arithmetic steps can be

June/July 2011 Notices of the AMS 789



C
o
u

rt
es

y
o
f

th
e

A
rc

h
iv

es
,
C

a
li

fo
rn

ia
In

st
it

u
te

o
f

T
ec

h
n

o
lo

g
y
.

Figure 16. John Todd (1911–2007) lectured on
Jensen’s work in 1946.
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Figure 17. Alan Turing (1912–1954) described
it in the way universities now teach it.

Photograph circa 1951.

reordered automatically to suit different com-
puter architectures [Whaley and Dongarra, 1998].
More radical transformations are possible that
reduce the work to solve n equations below O(n3)
arithmetic operations [Strassen, 1969; Cohn and
Umans, 2003; Demmel et al., 2007]. Perhaps the
only certainty about future algorithms is their
name. Rather than being a Platonic archetype,
Gaussian elimination is an evolving technique.
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it “Gaussian elimination”.

(Figures 19, 20, 21), which made it possible to
identify Newton’s contribution.
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