
Chapter 9

Dirichlet–Voronoi Diagrams and

Delaunay Triangulations

9.1 Dirichlet–Voronoi Diagrams

In this chapter we present very briefly the concepts of a
Voronoi diagram and of a Delaunay triangulation.

These are important tools in computational geometry,
and Delaunay triangulations are important in problems
where it is necessary to fit 3D data using surface splines.

It is usually useful to compute a good mesh for the pro-
jection of this set of data points onto the xy-plane, and
a Delaunay triangulation is a good candidate.

Our presentation will be rather sketchy. We are primar-
ily interested in defining these concepts and stating their
most important properties without proofs.
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For a comprehensive exposition of Voronoi diagrams, De-
launay triangulations, and more topics in computational
geometry, consult O’Rourke [?], Preparata and Shamos
[?], Boissonnat and Yvinec [?], de Berg, Van Kreveld,
Overmars, and Schwarzkopf [?], or Risler [?].

The survey by Graham and Yao [?] contains a very gentle
and lucid introduction to computational geometry.

For concreteness, one may safely assume that we work in
the affine space E = E

m, although what follows applies
to any Euclidean space of finite dimension.

Given a set P = {p1, . . . , pn} of n points in E , it is
often useful to find a partition of the space E into regions
each containing a single point of P and having some nice
properties.
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It is also often useful to find triangulations of the convex
hull of P having some nice properties.

We shall see that this can be done and that the two
problems are closely related. In order to solve the first
problem, we need to introduce bisector lines and bisector
planes.

For simplicity, let us first assume that E is a plane i.e.,
has dimension 2.

Given any two distinct points a, b ∈ E , the line orthog-
onal to the line segment (a, b) and passing through the
midpoint of this segment is the locus of all points having
equal distance to a and b.

It is called the bisector line of a and b. The bisector line
of two points is illustrated in Figure 9.1.
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Figure 9.1: The bisector line L of a and b

If h = 1
2
a + 1

2
b is the midpoint of the line segment (a, b),

letting m be an arbitrary point on the bisector line, the
equation of this line can be found by writing that hm is
orthogonal to ab.

In any orthogonal frame, letting m = (x, y), a = (a1, a2),
b = (b1, b2), the equation of this line can be written as

(b1 − a1)x + (b2 − a2)y = (b2
1 + b2

2)/2 − (a2
1 + a2

2)/2.
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The closed half-plane H(a, b) containing a and with bound-
ary the bisector line is the locus of all points such that

(b1 − a1)x + (b2 − a2)y ≤ (b2
1 + b2

2)/2 − (a2
1 + a2

2)/2,

and the closed half-plane H(b, a) containing b and with
boundary the bisector line is the locus of all points such
that

(b1 − a1)x + (b2 − a2)y ≥ (b2
1 + b2

2)/2 − (a2
1 + a2

2)/2.

The closed half-plane H(a, b) is the set of all points whose
distance to a is less that or equal to the distance to b,
and vice versa for H(b, a). Thus, points in the closed
half-plane H(a, b) are closer to a than they are to b.
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We now consider a problem called the post office problem
by Graham and Yao [?].

Given any set P = {p1, . . . , pn} of n points in the plane
(considered as post offices or sites), for any arbitrary
point x, find out which post office is closest to x.

Since x can be arbitrary, it seems desirable to precompute
the sets V (pi) consisting of all points that are closer to pi

than to any other point pj 6= pi.

Indeed, if the sets V (pi) are known, the answer is any
post office pi such that x ∈ V (pi).

Thus, it remains to compute the sets V (pi). For this, if
x is closer to pi than to any other point pj 6= pi, then x
is on the same side as pi with respect to the bisector line
of pi and pj for every j 6= i, and thus

V (pi) =
⋂

j 6=i

H(pi, pj).
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If E has dimension 3, the locus of all points having equal
distance to a and b is a plane. It is called the bisector
plane of a and b.

The equation of this plane is also found by writing that
hm is orthogonal to ab. The equation of this plane can
be written as

(b1 − a1)x + (b2 − a2)y + (b3 − a3)z =

(b2
1 + b2

2 + b2
3)/2 − (a2

1 + a2
2 + a2

3)/2.

The closed half-space H(a, b) containing a and with bound-
ary the bisector plane is the locus of all points such that

(b1 − a1)x + (b2 − a2)y + (b3 − a3)z ≤

(b2
1 + b2

2 + b2
3)/2 − (a2

1 + a2
2 + a2

3)/2,

and the closed half-space H(b, a) containing b and with
boundary the bisector plane is the locus of all points such
that

(b1 − a1)x + (b2 − a2)y + (b3 − a3)z ≥

(b2
1 + b2

2 + b2
3)/2 − (a2

1 + a2
2 + a2

3)/2.
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The closed half-space H(a, b) is the set of all points whose
distance to a is less that or equal to the distance to b, and
vice versa for H(b, a). Again, points in the closed half-
space H(a, b) are closer to a than they are to b.

Given any set P = {p1, . . . , pn} of n points in E (of
dimension m = 2, 3), it is often useful to find for every
point pi the region consisting of all points that are closer
to pi than to any other point pj 6= pi, that is, the set

V (pi) = {x ∈ E | d(x, pi) ≤ d(x, pj), for all j 6= i},

where d(x, y) = (xy · xy)1/2, the Euclidean distance as-
sociated with the inner product · on E .

From the definition of the bisector line (or plane), it is
immediate that

V (pi) =
⋂

j 6=i

H(pi, pj).
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Families of sets of the form V (pi) were investigated by
Dirichlet [?] (1850) and Voronoi [?] (1908). Voronoi dia-
grams also arise in crystallography (Gilbert [?]).

Other applications, including facility location and path
planning, are discussed in O’Rourke [?]. For simplicity,
we also denote the set V (pi) by Vi, and we introduce the
following definition.

Definition 9.1.1 Let E be a Euclidean space of dimen-
sion m ≥ 1. Given any set P = {p1, . . ., pn} of n
points in E , the Dirichlet–Voronoi diagram V(P ) of
P = {p1, . . . , pn} is the family of subsets of E consist-
ing of the sets Vi =

⋂
j 6=i H(pi, pj) and of all of their

intersections.

Dirichlet–Voronoi diagrams are also called Voronoi di-
agrams , Voronoi tessellations , or Thiessen polygons .
Following common usage, we will use the terminology
Voronoi diagram .
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As intersections of convex sets (closed half-planes or closed
half-spaces), the Voronoi regions V (pi) are convex sets.
In dimension two, the boundaries of these regions are con-
vex polygons, and in dimension three, the boundaries are
convex polyhedra.

Whether a region V (pi) is bounded or not depends on
the location of pi.

If pi belongs to the boundary of the convex hull of the set
P , then V (pi) is unbounded, and otherwise bounded.

In dimension two, the convex hull is a convex polygon,
and in dimension three, the convex hull is a convex poly-
hedron.

As we will see later, there is an intimate relationship be-
tween convex hulls and Voronoi diagrams.

Generally, if E is a Euclidean space of dimension m, given
any two distinct points a, b ∈ E , the locus of all points
having equal distance to a and b is a hyperplane.
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It is called the bisector hyperplane of a and b. The
equation of this hyperplane is still found by writing that
hm is orthogonal to ab. The equation of this hyperplane
can be written as

(b1 − a1)x1 + · · · + (bm − am)xm =

(b2
1 + · · · + b2

m)/2 − (a2
1 + · · · + a2

m)/2.

The closed half-space H(a, b) containing a and with bound-
ary the bisector hyperplane is the locus of all points such
that

(b1 − a1)x1 + · · · + (bm − am)xm ≤

(b2
1 + · · · + b2

m)/2 − (a2
1 + · · · + a2

m)/2,

and the closed half-space H(b, a) containing b and with
boundary the bisector hyperplane is the locus of all points
such that

(b1 − a1)x1 + · · · + (bm − am)xm ≥

(b2
1 + · · · + b2

m)/2 − (a2
1 + · · · + a2

m)/2.
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Figure 9.2: A Voronoi diagram

The closed half-space H(a, b) is the set of all points whose
distance to a is less than or equal to the distance to b,
and vice versa for H(b, a).

Figure 9.2 shows the Voronoi diagram of a set of twelve
points.
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In the general case where E has dimension m, the defi-
nition of the Voronoi diagram V(P ) of P is the same as
Definition 9.1.1, except that H(pi, pj) is the closed half-
space containing pi and having the bisector hyperplane of
a and b as boundary.

Also, observe that the convex hull of P is a convex poly-
tope.

We will now state a lemma listing the main properties of
Voronoi diagrams.

It turns out that certain degenerate situations can be
avoided if we assume that if P is a set of points in an
affine space of dimension m, then no m + 2 points from
P belong to the same (m − 1)-sphere.

We will say that the points of P are in general position .

Thus when m = 2, no 4 points in P are cocyclic, and
when m = 3, no 5 points in P are on the same sphere.
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Lemma 9.1.2 Given a set P = {p1, . . . , pn} of n points
in some Euclidean space E of dimension m (say E

m),
if the points in P are in general position and not in
a common hyperplane then the Voronoi diagram of P
satisfies the following conditions:

(1) Each region Vi is convex and contains pi in its in-
terior.

(2) Each vertex of Vi belongs to m + 1 regions Vj and
to m + 1 edges.

(3) The region Vi is unbounded iff pi belongs to the
boundary of the convex hull of P .

(4) If p is a vertex that belongs to the regions V1, . . .,
Vm+1, then p is the center of the (m − 1)-sphere
S(p) determined by p1, . . . , pm+1. Furthermore, no
point in P is inside the sphere S(p) (i.e., in the
open ball associated with the sphere S(p)).

(5) If pj is a nearest neighbor of pi, then one of the
faces of Vi is contained in the bisector hyperplane
of (pi, pj).

(6)
n⋃

i=1

Vi = E , and
◦
V i ∩

◦
V j= ∅, for all i, j, i 6= j,
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Figure 9.3: Another Voronoi diagram

where
◦
V i denotes the interior of Vi.

For simplicity, let us again consider the case where E is
a plane. It should be noted that certain Voronoi regions,
although closed, may extend very far.

Figure 9.3 shows such an example.
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It is also possible for certain unbounded regions to have
parallel edges.

There are a number of methods for computing Voronoi
diagrams. A fairly simple (although not very efficient)
method is to compute each Voronoi region V (pi) by in-
tersecting the half-planes H(pi, pj).

One way to do this is to construct successive convex poly-
gons that converge to the boundary of the region.

At every step we intersect the current convex polygon
with the bisector line of pi and pj. There are at most two
intersection points. We also need a starting polygon, and
for this we can pick a square containing all the points.

A naive implementation will run in O(n3).

However, the intersection of half-planes can be done in
O(n log n), using the fact that the vertices of a convex
polygon can be sorted.
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Thus, the above method runs in O(n2 log n). Actually,
there are faster methods (see Preparata and Shamos [?]
or O’Rourke [?]), and it is possible to design algorithms
running in O(n log n).

The most direct method to obtain fast algorithms is to
use the “lifting method” discussed in Section 9.4, whereby
the original set of points is lifted onto a paraboloid, and
to use fast algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained
from the Voronoi diagram as follows: The vertices of this
graph are the points pi (each corresponding to a unique
region of V(P )), and there is an edge between pi and pj

iff the regions Vi and Vj share an edge.

The resulting graph is called a Delaunay triangulation of
the convex hull of P , after Delaunay, who invented this
concept in 1934. Such triangulations have remarkable
properties.
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Figure 9.4: Delaunay triangulation associated with a Voronoi diagram

Figure 9.4 shows the Delaunay triangulation associated
with the earlier Voronoi diagram of a set of twelve points.

One has to be careful to make sure that all the Voronoi
vertices have been computed before computing a Delau-
nay triangulation, since otherwise, some edges could be
missed.
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Figure 9.5: Another Delaunay triangulation associated with a Voronoi diagram

In Figure 9.5 illustrating such a situation, if the lowest
Voronoi vertex had not been computed (not shown on the
diagram!), the lowest edge of the Delaunay triangulation
would be missing.

The concept of a triangulation can be generalized to di-
mension 3, or even to any dimension m.
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9.2 Simplicial Complexes and Triangulations

The concept of a triangulation relies on the notion of
pure simplicial complex defined in Chapter 7. The reader
should review Definition 7.1.2 and Definition 7.1.3.

Definition 9.2.1 Given a subset, S ⊆ E
m (where

m ≥ 1), a triangulation of S is a pure (finite) simplicial
complex, K, of dimension m such that S = |K|, that is,
S is equal to the geometric realization of K.

Given a finite set P of n points in the plane, and given a
triangulation of the convex hull of P having P as its set
of vertices, observe that the boundary of P is a convex
polygon.
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Similarly, given a finite set P of points in 3-space, and
given a triangulation of the convex hull of P having P
as its set of vertices, observe that the boundary of P is a
convex polyhedron.

It is interesting to know how many triangulations exist
for a set of n points (in the plane or in 3-space), and it
is also interesting to know the number of edges and faces
in terms of the number of vertices in P .

These questions can be settled using the Euler–Poincaré
characteristic.

We say that a polygon in the plane is a simple polygon
iff it is a connected closed polygon such that no two edges
intersect (except at a common vertex).
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Lemma 9.2.2

(1) For any triangulation of a region of the plane whose
boundary is a simple polygon, letting v be the num-
ber of vertices, e the number of edges, and f the
number of triangles, we have the “Euler formula”

v − e + f = 1.

(2) For any region S in E
3 homeomorphic to a closed

ball and for any triangulation of S, letting v be the
number of vertices, e the number of edges, f the
number of triangles, and t the number of tetrahe-
dra, we have the “Euler formula”

v − e + f − t = 1.

(3) Furthermore, for any triangulation of the combi-
natorial surface, B(S), that is the boundary of S,
letting v′ be the number of vertices, e′ the number
of edges, and f ′ the number of triangles, we have
the “Euler formula”

v′ − e′ + f ′ = 2.
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Proof . All the statements are immediate consequences
of Theorem 8.2.2.

For example, part (1) is obtained by mapping the trian-
gulation onto a sphere using inverse stereographic projec-
tion, say from the North pole.

Then, we get a polytope on the sphere with an extra facet
corresponding to the “outside” of the triangulation.

We have to deduct this facet from the Euler characteristic
of the polytope and this is why we get 1 instead of 2.

It is now easy to see that in case (1), the number of edges
and faces is a linear function of the number of vertices
and boundary edges, and that in case (3), the number
of edges and faces is a linear function of the number of
vertices.
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If there are eb edges in the boundary and ei edges not in
the boundary, we have

3f = eb + 2ei,

and togeher with

v − eb − ei + f = 1,

we get

v − eb − ei + eb/3 + 2ei/3 = 1,

2eb/3 + ei/3 = v − 1,

and thus, ei = 3v − 3 − 2eb. Since f = eb/3 + 2ei/3, we
have f = 2v − 2 − eb.

Similarly, since v′ − e′ + f ′ = 2 and 3f ′ = 2e′, we easily
get e = 3v − 6 and f = 2v − 4.
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Thus, given a set P of n points, the number of triangles
(and edges) for any triangulation of the convex hull of P
using the n points in P for its vertices is fixed.

Case (2) is trickier, but it can be shown that

v − 3 ≤ t ≤ (v − 1)(v − 2)/2.

Thus, there can be different numbers of tetrahedra for
different triangulations of the convex hull of P .

Remark: The numbers of the form v − e + f and
v− e+f − t are called Euler–Poincaré characteristics .

They are topological invariants, in the sense that they are
the same for all triangulations of a given polytope. This
is a fundamental fact of algebraic topology.

We shall now investigate triangulations induced by Voronoi
diagrams.



414 CHAPTER 9. DIRICHLET–VORONOI DIAGRAMS

9.3 Delaunay Triangulations

Given a set P = {p1, . . . , pn} of n points in the plane
and the Voronoi diagram V(P ) for P , we explained in
Section 9.1 how to define an (undirected) graph:

The vertices of this graph are the points pi (each corre-
sponding to a unique region of V(P )), and there is an
edge between pi and pj iff the regions Vi and Vj share an
edge.

The resulting graph turns out to be a triangulation of the
convex hull of P having P as its set of vertices. Such a
complex can be defined in general.

For any set P = {p1, . . . , pn} of n points in E
m, we say

that a triangulation of the convex hull of P is associated
with P if its set of vertices is the set P .
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Definition 9.3.1 Let P = {p1, . . . , pn} be a set of n
points in E

m, and let V(P ) be the Voronoi diagram of P .
We define a complex D(P ) as follows:

The complex D(P ) contains the k-simplex {p1, . . . , pk+1}
iff V1 ∩ · · · ∩ Vk+1 6= ∅, where 0 ≤ k ≤ m.

The complex D(P ) is called the Delaunay triangulation
of the convex hull of P .

Thus, {pi, pj} is an edge iff Vi ∩ Vj 6= ∅, {pi, pj, ph} is a
triangle iff Vi∩Vj∩Vh 6= ∅, {pi, pj, ph, pk} is a tetrahedron
iff Vi ∩ Vj ∩ Vh ∩ Vk 6= ∅, etc.

For simplicity, we often write D instead of D(P ). A De-
launay triangulation for a set of twelve points is shown in
Figure 9.6.

Actually, it is not obvious that D(P ) is a triangulation
of the convex hull of P , but this can be shown, as well as
the properties listed in the following lemma.
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Figure 9.6: A Delaunay triangulation
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Lemma 9.3.2 Let P = {p1, . . . , pn} be a set of n
points in E

m, and assume that they are in general po-
sition. Then the Delaunay triangulation of the convex
hull of P is indeed a triangulation associated with P ,
and it satisfies the following properties:

(1) The boundary of D(P ) is the convex hull of P .

(2) A triangulation T associated with P is the Delau-
nay triangulation D(P ) iff every (m − 1)-sphere
S(σ) circumscribed about an m-simplex σ of T
contains no other point from P (i.e., the open ball
associated with S(σ) contains no point from P ).

The proof can be found in Risler [?] and O’Rourke [?].

In the case of a planar set P , it can also be shown that
the Delaunay triangulation has the property that it max-
imizes the minimum angle of the triangles involved in any
triangulation of P . However, this does not characterize
the Delaunay triangulation.
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Given a connected graph in the plane, it can also be shown
that any minimal spanning tree is contained in the Delau-
nay triangulation of the convex hull of the set of vertices
of the graph (O’Rourke [?]).

We will now explore briefly the connection between De-
launay triangulations and convex hulls.
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9.4 Delaunay Triangulations and Convex Hulls

We will see that given a set P of points in the Euclidean
space E

m of dimension m, we can “lift” these points onto
a paraboloid living in the space E

m+1 of dimension m+1,
and that the Delaunay triangulation of P is the projection
of the downward-facing faces of the convex hull of the set
of lifted points.

This remarkable connection was first discovered by Brown
[?], and refined by Edelsbrunner and Seidel [?].

For simplicity, we consider the case of a set P of points
in the plane E

2, and we assume that they are in general
position.

Consider the paraboloid of revolution of equation
z = x2 + y2.
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A point p = (x, y) in the plane is lifted to the point
l(p) = (X, Y, Z) in E

3, where X = x, Y = y, and
Z = x2 + y2.

The first crucial observation is that a circle in the plane
is lifted into a plane curve (an ellipse).

The intersection of the cylinder of revolution consisting
of the lines parallel to the z-axis and passing through a
point of the circle C with the paraboloid z = x2 + y2 is
a planar curve (an ellipse).

We can compute the convex hull of the set of lifted points.
Let us focus on the downward-facing faces of this convex
hull.

Let (l(p1), l(p2), l(p3)) be such a face. The points p1, p2, p3

belong to the set P .
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The circle C circumscribed about p1, p2, p3 lifts to an
ellipse passing through (l(p1), l(p2), l(p3)).

We claim that no other point from P is inside the circle
C.

Therefore, we have shown that the projection of the part
of the convex hull of the lifted set l(P ) consisting of the
downward-facing faces is the Delaunay triangulation
of P .

Figure 9.7 shows the lifting of the Delaunay triangulation
shown earlier.

Another example of the lifting of a Delaunay triangulation
is shown in Figure 9.8.

The fact that a Delaunay triangulation can be obtained
by projecting a lower convex hull can be used to find effi-
cient algorithms for computing a Delaunay triangulation.
It also holds for higher dimensions.
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Figure 9.7: A Delaunay triangulation and its lifting to a paraboloid



9.4. DELAUNAY TRIANGULATIONS AND CONVEX HULLS 423

0
2.5

5
7.5

10
x

0

2.5

5

7.5
10

y

0

5

10

z

0
2.5

5
7.5

10
x

0

2.5

5

7.5
10

y

0

5

10

z

Figure 9.8: Another Delaunay triangulation and its lifting to a paraboloid
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The Voronoi diagram itself can also be obtained from the
lifted set l(P ).

However, this time, we need to consider tangent planes
to the paraboloid at the lifted points.

It is fairly obvious that the tangent plane at the lifted
point (a, b, a2 + b2) is

z = 2ax + 2by − (a2 + b2).

Given two distinct lifted points (a1, b1, a
2
1 + b2

1) and
(a2, b2, a

2
2 + b2

2), the intersection of the tangent planes at
these points is a line belonging to the plane of equation

(b1 − a1)x + (b2 − a2)y = (b2
1 + b2

2)/2 − (a2
1 + a2

2)/2.

Now, if we project this plane onto the xy-plane, we see
that this is precisely the equation of the bisector line of
the two points (a1, b1) and (a2, b2).
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Therefore, if we look at the paraboloid from z = +∞
(with the paraboloid transparent), the projection of the
tangent planes at the lifted points is the Voronoi dia-
gram !

It should be noted that the “duality” between the Delau-
nay triangulation, which is the projection of the convex
hull of the lifted set l(P ) viewed from z = −∞, and
the Voronoi diagram, which is the projection of the tan-
gent planes at the lifted set l(P ) viewed from z = +∞, is
reminiscent of the polar duality with respect to a quadric.

The reader interested in algorithms for finding Voronoi di-
agrams and Delaunay triangulations is referred to O’Rourke
[?], Preparata and Shamos [?], Boissonnat and Yvinec
[?], de Berg, Van Kreveld, Overmars, and Schwarzkopf
[?], and Risler [?].

We conclude our brief presentation of Voronoi diagrams
and Delaunay triangulations with a short section on ap-
plications.
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9.5 Applications of Voronoi Diagrams and Delaunay

Triangulations

The examples below are taken from O’Rourke [?]. Other
examples can be found in Preparata and Shamos [?], Bois-
sonnat and Yvinec [?], and de Berg, Van Kreveld, Over-
mars, and Schwarzkopf [?].

The first example is the nearest neighbors problem. There
are actually two subproblems: Nearest neighbor queries
and all nearest neighbors .

The nearest neighbor queries problem is as follows: Given
a set P of points and a query point q, find the nearest
neighbor(s) of q in P .

This problem can be solved by computing the Voronoi
diagram of P and determining in which Voronoi region q
falls.
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This last problem, called point location , has been heavily
studied (see O’Rourke [?]).

The all neighbors problem is as follows: Given a set P of
points, find the nearest neighbor(s) to all points in P .

This problem can be solved by building a graph, the near-
est neighbor graph , for short nng . The nodes of this
undirected graph are the points in P , and there is an arc
from p to q iff p is a nearest neighbor of q or vice versa.
Then it can be shown that this graph is contained in the
Delaunay triangulation of P .

The second example is the largest empty circle .

Some practical applications of this problem are to locate
a new store (to avoid competition), or to locate a nuclear
plant as far as possible from a set of towns.
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More precisely, the problem is as follows. Given a set P
of points, find a largest empty circle whose center is in
the (closed) convex hull of P , empty in that it contains
no points from P inside it, and largest in the sense that
there is no other circle with strictly larger radius.

The Voronoi diagram of P can be used to solve this prob-
lem. It can be shown that if the center p of a largest
empty circle is strictly inside the convex hull of P , then
p coincides with a Voronoi vertex.

However, not every Voronoi vertex is a good candidate. It
can also be shown that if the center p of a largest empty
circle lies on the boundary of the convex hull of P , then
p lies on a Voronoi edge.
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The third example is the minimum spanning tree .

Given a graph G, a minimum spanning tree of G is a
subgraph of G that is a tree, contains every vertex of the
graph G, and minimizes the sum of the lengths of the tree
edges.

It can be shown that a minimum spanning tree is a sub-
graph of the Delaunay triangulation of the vertices of the
graph. This can be used to improve algorithms for find-
ing minimum spanning trees, for example Kruskal’s algo-
rithm (see O’Rourke [?]).

We conclude by mentioning that Voronoi diagrams have
applications to motion planning .

For example, consider the problem of moving a disk on a
plane while avoiding a set of polygonal obstacles. If we
“extend” the obstacles by the diameter of the disk, the
problem reduces to finding a collision–free path between
two points in the extended obstacle space.
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One needs to generalize the notion of a Voronoi diagram.
Indeed, we need to define the distance to an object, and
medial curves (consisting of points equidistant to two ob-
jects) may no longer be straight lines.

A collision–free path with maximal clearance from the
obstacles can be found by moving along the edges of the
generalized Voronoi diagram.

This is an active area of research in robotics. For more
on this topic, see O’Rourke [?].


