
Algorithms for Center and Tverberg Points∗

Pankaj K. Agarwal
Dept. Computer Science

Duke University, Durham,
NC 27708-0129, USA

pankaj@cs.duke.edu

Micha Sharir
School of Computer Science

Tel Aviv University
Tel Aviv 69978, Israel, and
Courant Inst. of Math. Sci.

New York University

michas@post.tau.ac.il

Emo Welzl
Inst. Theoretische Informatik

ETH Zürich
CH-8092 Zürich, Switzerland

emo@inf.ethz.ch

ABSTRACT
We present a near-quadratic algorithm for computing the center re-
gion of a set ofn points in three dimensions. This is nearly tight
in the worst case since the center region can haveΩ(n2) complex-
ity. We then consider the problem of recognizing whether a given
point q is a colored Tverberg point of a set ofn colored points in
the plane, and present the first polynomial-time algorithm for this
problem.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Geometrical problems and computations

General Terms: Algorithms,Theory

Keywords: Center Points, Colored Tverberg’s Theorem,j-Facets

1. INTRODUCTION
Given a setS of n points inR

d and a pointx ∈ R
d, thedepthof

x with respect toS is the minimum number of points ofS contained
in a closed halfspace whose bounding hyperplane passes throughx.
The set of all points of depthk is called thedepth-k region of S.
The region,ck(S), of points of depths at leastk can be written as
T

h∈Hn−k+1
h, with Hj = Hj(S) the set of all closed halfspaces

(bounded by hyperplanes) that contain at leastj points fromS.1

∗Work by P.A. and M.S. was supported by a grant from the U.S.-Israeli Bi-
national Science Foundation. Work by P.A. was also supported by NSF un-
der grants CCR-00-86013 EIA-98-70724, EIA-99-72879, EIA-01-31905,
and CCR-02-04118. Work by M.S. was also supported by NSF Grants
CCR-97-32101 and CCR-00-98246, by a grant from the Israel Science Fund
(for a Center of Excellence in Geometric Computing), and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University.
1For a proof, note that ifx �∈ h ∈ Hn−k+1, then the depth is at most
k − 1 since the complement ofh contains a closed halfspace withx on its
boundary and containing at mostn − (n − k + 1) = k − 1 points from
S. On the other hand, ifx lies on the boundary of a closed halfspace with
at mostk− 1 points, then the complement contains a closed halfspace with
at leastn − k + 1 points and thusx �∈ T

h∈Hn−k+1
h.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04, June 9–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

Notec1(S) = conv(S).
If j > dn/(d + 1), then anyd + 1 halfspaces inHj have a

point of S in common, and Helly’s theorem (cf. [9, 14]) implies
T

h∈Hj
h �= ∅. That is, ifn−k+1 > dn/(d+1), or equivalently,

if k ≤ �n/(d + 1)�, the regionck(S) is nonempty (as it was first
observed by Rado [17]).

Points of depth at least�n/(d + 1)� are calledcenter pointsof
S, and the regionc�n/(d+1)�(S)—which we know is nonempty—is
called thecenter regionof S, denoted byc(S).

Figure 1. Sets of six points, with their center regions, the points of depth
at least2. Equivalently, these are the intersections of all halfplanes con-
taining at least5 points. (The meaning of the extra edges indicated will be
explained later.)

Relatively little progress has been made on the algorithmic is-
sues related to center points. Teng [20] showed that ifd is part
of the input, the problem of determining whether a given point
is a center point ofS is coNP-Complete. Jadhav and Mukhopad-
hyay [10] gave a linear-time algorithm for computing a center point
in R

2. Matoušek later developed anO(n log4 n)-time algorithm
for computing the center region of a set ofn points inR

2 (see pos-
sible improvement according to [5, Remark pg. 427]). Naor and
Sharir [16] gave anO(n2 polylog(n)) algorithm for computing a
center point inR3; very recently, Chan [5] supplied a randomized
O(n log n+ nd−1) algorithm for this problem inRd. For comput-
ing the center region inR3 there is a naı̈ve cubic algorithm, that
can be improved toO(n5/2+ε) by running ak-level construction
algorithm in the dual and computing the convex hull of the obtained
vertices. Clarksonet al. [7] proposed a simple algorithm for com-
puting an approximate center point of a set of points in arbitrary
dimensions.

A generalization of a center point is the so-called Tverberg point.
Let r be a positive integer. A partition ofS into r disjoint subsets
S1, . . . , Sr is called aTverberg partitionif

Tr
i=1 conv(Si) �= ∅,

and a point lying in the intersection is called aTverberg point(or an
r-divisible point). Tverberg [21] proved that if|S| > (d+1)(r−1),
then a Tverberg partition always exists. Subsequent to his original
proof, several simpler proofs have been proposed; see the book by
Matoušek [14] and the survey paper by Kalai [11] for a history

61

of the problem. Note that any halfspace containing anr-divisible
point contains at leastr points ofS, so by settingr = �n/(d + 1)�,
we get that everyr-divisible point ofS is also a center point ofS.
Ford = 2 andn a multiple of3, the converse is also true, i.e., every
center point ofS is also a�n/(d + 1)�-divisible point ofS, but it
is not true ford ≥ 3 [2]. Teng [20] showed that ifd is part of the
input, then the problem of determining whether a given point is an
r-divisible point ofS is NP-Complete. On the other hand ifd is
fixed, a polynomial-time algorithm (with running timenO(d2)) can
be obtained by modifying Tverberg’s existence proof. Ford = 2
andn a multiple of3, a Tverberg point can be computed in linear
time using the algorithm for computing a center point [10], and we
can determine inO(n log n) time whether a point is a Tverberg
point.

Bárány, Füredi and Lovász [4] suggested acolored version of
Tverberg’s theorem, which was then established byŽivaljević and
Vrećica [22] in arbitrary dimensions. The planar case allowed a
quantitative improvement, provided by B´arány and Larman [3].
They showed that given a planar setS, which is the disjoint union
of three setsR,B,G consisting respectively ofn red points,n
blue points, andn green points (in general position), there ex-
ists a partition ofS into n pairwise-disjoint triplesS1, . . . , Sn,
where each triple consists of one point of each ofR,B,G, so that
Tn

i=1 conv(Si) �= ∅. In fact, their argument is constructive and
yields anO(n6)-time algorithm for computing such a partition.
However no polynomial-time algorithm is known for determining
whether a given point is a colored Tverberg point ofS.

Our results. We present two main results in this paper. First,
given a setS of n points inR

3, we describe anO(n2+ε) algorithm
to compute the center regionc(S) (cf. Section 2). In fact, we show
that for anyk, the depth-k region ofS hasO(n2) complexity, and
that it can be computed inO(n2+ε) time. By performing a binary
search, we can compute the region of maximum depth inO(n2+ε)
time.

Next, given aS of 3n points inR
2, which is the disjoint union

of three setsR, B, andG consisting ofn points each, we present
a polynomial-time algorithm to determine whether a pointq is a
colored Tverberg point ofS (cf. Section 3). The running time of
the algorithm isO(n11).

2. CENTER REGION IN 3D
We first make sure that the problem of computing the the center

region, or
T

h∈Hj
h in general, is a finite problem. Then we discuss

the structure of the center region in the dual, before we proceed to
the description of the algorithm.

2.1 j-Facets and the center region
We assume|S| ≥ d+ 1 and thatS is in general position, i.e., no

d + 1 points lie on a common hyperplane. Aj-facetis an oriented
simplex spanned byd points inS that has exactlyj points fromS
on its positive side2. Hj is the set of closed halfspaces that contain
j points and haved points on their boundary. Clearly, these are
exactly the halfspaces induced by(j− d)-facets. Figure 1 displays
all 5-facets (orientations omitted) of the respective point sets.

LEMMA 2.1. For any setS of n ≥ d + 1 points in general
position inR

d and any positive integerj ≤ n we have:

(1) cn−j+1(S) =
T

h∈Hj
h =

T

h∈Hj
h.

2To be precise, exactlyj points fromS on the positive side of its affine hull.

(2)
T

h∈Hj
h is a convex polytope (not necessarily of full dimen-

sion) with at most2
`

n
d−1

´

facets, each of which is contained
in some(j − d)-facet ofS.

Proof: (1) Consider first the setH≥j :=
S

i≥j Hi. SinceH≥j ⊆
Hj , the inclusion

\

h∈Hj

h ⊆
\

h∈H≥j

h

readily follows. It can be shown that, for eachh ∈ Hj , there are
d halfspaces inH≥j whose intersection is contained inh. It then
follows that allh ∈ Hj \ H≥j are redundant. Hence,

T

h∈Hj
h =

T

h∈H≥j
h; hence

T

h∈Hj
h is a polyhedron whose facets are de-

termined by (i.e., lie in the affine hull of) some of the halfspaces
h ∈ H≥j . On the other hand, every halfspace inHi, for i > j, con-
tains an intersection ofd halfspaces inHj in its interior, so none of
these halfspaces can determine a facet of the polyhedron and thus
can be omitted in its definition. Assertion (1) of the lemma follows.

(2) We have already shown thatP :=
T

h∈Hj
h is an intersection of

a finite number of halfspaces, and since it is contained inconv(S),
it is bounded and thus a polytope. We further reduce the number of
constraints inHj that are needed to determineP .

If P is empty, we are done since then it is the intersection of
d + 1 ≤ 2

`

n
d−1

´

halfspaces inHj (recalln ≥ d + 1). Otherwise
consider some setK of d − 1 points inS. Either no(j − d)-facet
containsK, or all but two halfspaces inHj with K on their bound-
ary are redundant. Since the number of(d − 1)-element subsets
of S is

`

n
d−1

´

, the asserted upper bound on the number of facets
follows.

Now consider a halfspaceh ∈ Hj , and the(j − d)-facet it con-
tains. We rotate the bounding hyperplane ofh about anyd − 1 of
the points of the(j − d)-facet, while keeping the(j − d)-facet in
its halfspace. It follows that no portion of the hyperplane bounding
h other than its(j − d)-facet can be part ofP . ✷

2.2 The structure of the center region
LetS be a set ofn points inR

d. A standard duality transform [9]
maps a pointp in R

d to a hyperplanep∗ in R
d and vice versa so that

the above/below relationships between the points and hyperplanes
are preserved, i.e., ifp lies below (resp., above, on) a hyperplane
h, then the dual hyperplanep∗ lies below (resp., above, on) the
point h∗. Using this dual transform we mapS to a setS∗ of n
hyperplanes inRd. The levelof a pointx ∈ R

d with respect toS∗

is the number of hyperplanes inS∗ lying belowx. All points on
the same face ofA(S∗) have the same level. For a given integer
0 ≤ k < n, the k-level of A(S∗), denoted asΛk(S∗), is the
closure of all facets ofA(S∗) whose level isk. Λk(S∗) is the
graph of a continuous, piecewise-linear(d− 1)-variate function.

By construction, the dual of a pointx whose depth isk (k ≤
n/2) with respect toS is a hyperplane that lies betweenΛk(S∗)
andΛn−k(S∗). More precisely if we letLk (resp.,Uk) denote the
lower (resp., upper) convex hull ofΛk(S∗), thenx∗ separatesUk

andLn−k. Hence, the dual of the center regionc(S) is the region
lying betweenU� n

d+1� andL� dn
d+1�. In order to computec(S), it

suffices to describe the algorithm for computing the convex hull of
a level inA(S∗).

The following lemma follows from the observation that the inter-
section line of anyd−1 hyperplanes ofS∗ intersectsconv(Λk(S∗))
in at most two points (the dual analogy of Lemma 2.1).

62

LEMMA 2.2. LetS∗ be a set ofn hyperplanes inRd. For any
0 ≤ k < n, the convex hull ofΛk(S∗) hasO(nd−1) vertices.

LEMMA 2.3. Let S be a set ofn points inR
3. The combina-

torial complexity ofc(S) is O(n2), and this bound is tight in the
worst case.

Proof: For the upper bound, we first note that the complexity
of each ofU� n

d+1� and L� dn
d+1� is O(n2), which follows from

Lemma 2.2 and the fact that the total complexity of a convex poly-
hedron inR

3 is proportional to the number of its vertices. A vertex
x of c(S) is mapped to a plane that either supports a facet of one of
these two hulls, or is a common inner tangent to the two hulls, and
then it supports an edge of one of them. Since there are at most two
such planes per edge, the upper bound follows.

For the lower bound, let us first assume thatn is an integer multi-
ple of12. We are interested inc(S) = cn/4(S) =

T

h∈H3n/4+1
h,

the intersection of halfspaces induced by(3n/4 − 2)-facets (see
Lemma 2.1).

Take a triangle∆uvw in thexy-plane, pass a vertical line through
each of its three verticesu, v, w, and placen/3 points on each line
at heights

√
1,
√

2, . . . ,
p

n/3. This yields a setS of n points in
R

3. We fix j = 3n/4 − 2, and we consider thej-facets ofS that
have one point on each of the vertical lines. There areΘ(j2) =
Θ(n2) choices of triples(a, b, c) such thata + b + c = j + 3,
and any such triple defines aj-facet whose vertices are(u,

√
a),

(v,
√
b), (w,

√
c).

Passing to the dual space, a plane containing any suchj-facet
becomes the intersection point of the three dual planes (wherex
denotes the vector(x, y) in thexy-plane)

z = u · x +
√
a, z = v · x +

√
b, and z = w · x +

√
c.

Clearly, any such dual point lies on the ellipsoid

(z − u · x)2 + (z − v · x)2 + (z −w · x)2 = a + b + c = j + 3.

Since this is a convex surface, standard properties of the duality
transform imply that each of the planes containing thej-facets in
the primal space is tangent to a dual convex surface. Since each of
these tangency points necessarily lies on the boundary of the inter-
section polytope, it follows that each of thesej-facets contributes a
facet toc(S). The lower bound follows.✷
Remark. We are currently unable to prove a similar bound on the
complexity ofc(S) in higher dimensions. The upper bound theo-
rem implies that the complexity ofc(S) is O(n(d−1)�d/2). How-
ever, we conjecture that the actual bound is much smaller, maybe
evenO(nd−1).

2.3 Computing the convex hull of a level
Let H be a set ofn planes inR

3 in general position, and let
k < n be an integer. We describe an algorithm for computing the
convex hull ofΛ = Λk(H). We denote the convex hull of a setX
by conv(X).

LEMMA 2.4. conv(Λ) = conv

„

[

h∈H

conv(Λ ∩ h)

«

.

Proof: Clearly,conv(Λ) contains the set on the right-hand side. To
establish the converse containment, we first argue that each vertex
of Λ belongs to the right-hand side. Indeed, letv be such a vertex,
incident upon three planesh, h′, h′′ ∈ H . Thenv is a vertex of
Λ ∩ h, say, and the claim follows. Next, we approximateconv(Λ)

by intersecting it with a sufficiently large ballB that encloses all
vertices ofA(H). Consider a pointw that lies on the intersection
of ∂B with an unbounded edgee of the level, incident upon two
planesh, h′ ∈ H . Thenw belongs toΛ∩h, say. Letting the radius
of B tend to infinity completes the proof.✷

LEMMA 2.5. For anyh ∈ H , conv(Λ∩h) has linear complex-
ity.

Proof: Any vertex ofΛ ∩ h, and thus also ofconv(Λ ∩ h), lies
on two of the lines in{g ∩ h | g ∈ H \ {h}}, and any such line
g ∩ h can contain at most two vertices ofconv(Λ ∩ h). A similar
reasoning is applied to the unbounded edges ofΛ ∩ h. ✷

Our algorithm processes the planes ofH one at a time. For each
planeh it computes a convex (generally unbounded) polygonKh

with O(n) edges and with the property that

conv(Λ ∩ h) ⊆ Kh ⊆ conv(Λ). (1)

By Lemma 2.4,conv(
S

h∈H Kh) = conv(Λ), so we simply com-
pute and output the convex hull of

S

h∈H Kh.

AlthoughΛ is the graph of a continuous piecewise-linear totally
defined function ofx, y, the setΛ ∩ h within a single planeh ∈
H is much less structured. It need not even be connected, and
can in fact have quadratic complexity (in contrast with its convex
hull, which has only linear complexity). Specifically, for eachg ∈
H \ {h}, consider the halfplaneg+ ∩ h within h, whereg+ is
the (closed) halfspace bounded from below byg. The level of a
point w ∈ h is the number of halfplanesg+ ∩ h that containw.
These halfplanes can have a rather “erratic” structure, such as the
one shown in Figure 2, which may causeΛ ∩ h to consist of up to
Θ(n2) connected components, as the figure illustrates.

k

k

k

k

k − 1

k − 1

k − 1

k − 1

k − 1
k − 1

k − 1

k − 1

k − 1

k − 1

k − 1
k − 1

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

k − 2

Figure 2. Λ ∩ h may have quadratic complexity.

Fix a coordinate frame within h whose axes project vertically
to the x and y-axes of the 3-dimensional frame. (This is not an
orthogonal frame, but can be made so with an appropriate affine
transformation within h.) Let g ∈ H \ {h}. Write the equations of
h and of g as z = ahx+bhy+ch and z = agx+bgy+cg. Observe
that the halfplane g+ ∩ h is a lower (resp., upper) halfplane within
h in this coordinate frame if and only if bg > bh (resp., bg < bh).
The general-position assumption, and an appropriate choice of the

63

coordinate frame, allow us to assume that all the coefficients bh, for
h ∈ H , are distinct.

Sort the planes h ∈ H in decreasing order of the y-coefficients
bh of their equations. Let the sorted order be h1, . . . , hn. We pro-
cess the planes in this order. Consider the processing of h1. All
halfplanes g+ ∩ h1 are upper halfplanes, implying that Λ ∩ h1 is
a level of the arrangement of the lines g ∩ h1, for g ∈ H \ {h1}.
We set K1 = Kh1 to be conv(Λ ∩ h1). Using the algorithm of
Matoušek [12], K1 can be computed in O(n log4 n) time.

Suppose that h1, . . . , hj−1 have already been processed, and that
for each i < j we have computed a (generally unbounded) convex
polygonal region Ki = Khi with the property (1). The processing
of hj then proceeds as follows.

We first compute the segments (or rays, or lines) γi = Ki ∩ hj .
This can be done in O(log n) time for each i < j, by forming
the line hi ∩ hj and by intersecting it, within hi, with Ki. Put
Γ = {γi | 1 ≤ i < j}, and refer to these segments as redsegments.
Let Rj ⊆ h denote the convex hull of Γ, which can be computed
in O(n log n) time. For each i > j put 'i = hi ∩ hj , refer to these
lines as green, and put Gj = {'i | j < i ≤ n}.

LEMMA 2.6. The portion ofΛ∩hj that lies on green lines con-
sists of pairwise disjointx-monotone polygonal chains, each start-
ing and ending either at infinity or on some red segment inΓ.

Proof: Let w be a point in Λ ∩ hj that lies on a green line, and
trace Λ ∩ hj from w to the right (i.e., in (+x)-direction). When
encountering a new green line, the level switches to the new line
and continues to the right; this follows from the fact that all the
green halfplanes h+

i ∩ hj are upper halfplanes in hj . Continuing
the tracing, we either reach +∞ or an intersection point u with
some red line hi ∩ hj , with i < j. Then u ∈ Λ ∩ hi, so u ∈ Ki,
and thus u ∈ γi. Tracing the level from w to the left, and repeating
this analysis to each connected component of Λ∩hj completes the
proof of the lemma. ✷

LEMMA 2.7. Let u, v be twoy-covertical green points inΛ ∩
hj . Then the segmentuv must cross at least one red segment ofΓ.

Proof: Suppose that u lies above v (in the y-direction). As we
move from v in the positive y-direction, the level increases by 1 to
k + 1. Just before reaching u, the level is restored to its original
value k. Thus there had to be a point w on uv so that after crossing
w the level decreasesby 1 and becomes k. Clearly, w has to lie on
some red line hi and in Λ ∩ hj . Hence, arguing as above, w ∈ γi.
✷

Consider the set Rj ∪ (Λ ∩ hj). The preceding lemmas imply
that either this is a connected set, or it is the union of up to two
connected components, one of which contains Rj and the other is
an x-monotone unbounded green portion of Λ ∩ hj , passing ei-
ther above or below Rj . Indeed, Lemma 2.7 and the convexity of
Rj imply that if there are two green components enclosing Rj be-
tween them, then Rj is unbounded and the unbounded rays of its
boundary are parallel to those of the green components. The latter
is ruled out by the general-position assumption, so we can assume
that there is at most one connected (unbounded) green component
disjoint from Rj .

We define

Kj = conv(Rj ∪ (Λ ∩ hj)),

and denote its boundary by ζj . To construct ζj , we adapt the tech-
nique of Matoušek [12] for computing the convex hull of a level in

the plane, and slightly relax it to simplify its analysis in our new
context. The overall algorithm proceeds as follows. Let

Lj = {hi ∩ hj | 1 ≤ i �= j ≤ n},
and consider the following range space

Xj = (Lj , {{' ∈ Lj | ' ∩ τ �= ∅} | τ is a triangle}),
which, as is well known, has finite VC-dimension[6]. We choose
a sufficiently large constant r, and compute, in O(n) time, a (1/r)-
net Nj ⊆ Lj for Xj of size O(r log r), and a triangulation A∇(Nj)
of the arrangement A(Nj) [6]. We compute the edges of A∇(Nj)
that intersect ζj . More precisely, for each edge e of A∇(Nj), we
compute the one or two edges of ζj that cross e, or determine that
e does not cross ∂ζj . The details of this main subroutine of the
algorithm are presented in Section 2.4. We thus obtain a collection
Ej of some edges of ζj . The edges of Ej lie in the zone of ζj

in A(Nj), which implies that |Ej | is proportional to the number
of vertices in the zone. Since ζj is convex, the complexity of its
zone in A(Nj) is O(|Nj |α(|Nj |)) = O(rα(r) log r). Since the
segments of Ej are in convex position, they can be sorted along
ζj in O(rα(r) log2 r) time. Let η, η′ be two consecutive edges in
Ej . By construction, there exists a triangle τ of A∇(Nj) such that
each of η, η′ has an endpoint inside τ , and the portion of ζj be-
tween η and η′ is fully contained in τ and is delimited by these two
endpoints. (The case where the endpoints coincide is trivial, since
there is no need to fill in ζj between η and η′.) See Figure 3.

τ
η

η′

ζj

Figure 3. ζj (dashed polygon), Ej (whose edges are drawn with thick
lines), and the triangles of A∇(Nj). The portion of ζj between η and η′ is
fully contained in the single cell τ (shaded region).

We thus need to compute ζj∩τ for O(rα(r) log r) triangles τ of
A∇(Nj). Since Nj is a (1/r)-net, each subproblem involves only
at most n/r lines of Lj . We solve each subproblem recursively,
using the same approach. This leads to a recurrence of the form

T (n) ≤ Arα(r) log r · T
“n

r

”

+ C(Q(n) + n),

where A is a constant independent of r, C a constant that does
depend on r, and Q(n) is the time needed to compute the zero,
one, or two edges of ζj that cross a given line. Lemma 2.9 in the
next subsection shows that Q(n) = O(npolylog(n)). The above
recurrence thus solves to T (n) = O(n1+ε), for any ε > 0. We
repeat this step for each of the planes hj , and then compute the
convex hull of the union of the resulting sets Kj , for j = 1, . . . , n,
to obtain the main result of this part of the paper:

THEOREM 2.8. The center region of a set ofn points inR
3 can

be computed inO(n2+ε) time, for anyε > 0.

64

2.4 Computing edges of Kj

We now describe the main procedure needed for the preceding
algorithm: given a line ', an integer j ≥ 1, and the convex polygon
Rj , return the edges of ζj that intersect '. We recall that only the
case j > 1 is relevant since, as noted, K1 can be directly computed
in O(n log4 n) time [12]. Since we are given Rj , we assume that
we have a point o ∈ Kj at our disposal.

Let Qj be the union of Rj , the monotone green portions of Λ∩hj

that terminate within Rj , and the unique monotone green portion
of Λ ∩ hj that lies above or below Rj , if it exists. In case the
latter green component exists, we connect it to Rj by some vertical
segment e that lies on the vertical line 'o that passes through the
point o in Rj . By computing the intersection points of 'o with the
planes in H , we can compute e in linear time. By construction,
Kj = conv(Qj).

We describe the overall algorithm in three stages. The first stage
detects whether a query line g intersects Kj . If the answer is
yes, it also returns an interval (possibly a single point) lying in
g ∩ Kj . Note that ' ∩ Kj �= ∅ if and only if ' ∩ Qj �= ∅.
The second stage determines whether a query point q lies in Kj ,
and computes the lines tangent to Kj from q if q �∈ Kj . This
stage computes the tangent lines using the previous procedure and
the parametric-searching technique [15]. The third stage plugs the
tangent-computation procedure into the parametric searching tech-
nique, to compute the edges of Kj that intersect a query line. We
now describe each stage in detail.

Intersection detection between Qj and a line. Let ' be a given
line. To detect whether ' intersects Qj , we proceed as in [12]. We
intersect ' with each of the lines hi ∩ hj of Lj . We sort the in-
tersection points along ' and scan ' in some direction, maintaining
a count of the level we are in, and updating the count by ±1 after
crossing each intersection point. If we reach a point in Λ ∩ hj , we
stop and report it. Otherwise, we test for intersections between '
and Rj , and report such an intersection point if found. Otherwise,
it is still possible that ' intersects Qj as it may pass between Rj

and the unbounded x-monotone green chain that avoids Rj . To
test whether this is the case, we compute, in a preprocessing step,
the y-maximal and y-minimal intersections of the vertical line 'o
through o with Qj , and then complete the query for ' by testing
whether '∩'o lies between these two intersections. If so, we report
' ∩ 'o. Otherwise, we determine that ' does not intersect Qj . If
' ∩ Kj �= ∅, we return the interval on ' bounded by the first and
the last intersection points of ' ∩ Qj . The total time spent by the
procedure is O(n log n).

Computing a tangent to Kj from a point. Let q be a point
in hj . We wish to determine whether q ∈ Kj , and if the answer
is no, we also want to compute the two tangents from q to Kj .
Let 4 denote the line passing through q and o and oriented from q
to o. If q �∈ Kj , then the two tangent rays from q to Kj lie on
the opposite sides of 4, and we compute each of them separately.
Without loss of generality, we assume that 4 is the x-axis, q is the
origin, and we wish to compute the tangent ray τ∗ from q to Kj

that lies in the halfplane x ≥ 0, which has positive slope, say,
σ∗. Using the parametric-searching technique [15], we simulate
the above intersection-detection procedure generically at τ . During
the simulation, we maintain an interval I = [a, b] ⊆ [0,∞]. If I
becomes empty, we conclude that q ∈ Kj , and if I becomes a
singleton [a, a], then σ∗ = a. At each step of the simulation, we
have a real value σ ∈ [a, b] and we wish to determine whether the
ray τ of slope σ passing through q intersects Kj . If the answer
is yes, then σ∗ ≥ σ and we set I = [σ, b]; otherwise σ∗ ≤ σ,
and we set I = [a, σ]. Use the preceding algorithm, we can detect

this intersection in O(n log n) time. If the procedure also returns
an interval that contains q, we conclude that q ∈ Kj and stop. The
standard parametric-searching argument implies that the simulation
always terminates with an empty interval or with a singleton.

The intersection of τ with Kj is a single point, an edge of Kj , or
empty. The third situation arises when τ is parallel to an unbounded
edge of Kj . We can easily compute this intersection, by noting that
the endpoints of τ∩Kj must belong to Rj∪(Λ∩hj), and we know
how to compute such an intersection, in the same manner as in the
intersection-detection procedure described above.

If q �∈ Kj then we repeat the same procedure to find the other
tangent of Kj from q. The total time spent is O(n log3 n).

Computing the edges of Kj crossed by a line. Armed with the
tangent computation procedure, we next derive the main procedure
by applying the parametric searching once more: Given a query
line ', compute the one or two edges of Kj that are crossed by ',
or determine that ' ∩Kj = ∅. The latter task can be accomplished
using the basic intersection testing procedure, so we may assume
that ' ∩Kj �= ∅, and that we have computed a point q0 ∈ ' ∩Kj .
Using parametric searching once again, we slide a point q from q0
along each of the halflines of ' delimited by q0, and test whether
q lies in Kj , using the tangent computation procedure described
above. This guides our search: If q lies in Kj , we proceed by
moving further away from q0, and otherwise we proceed by moving
towards q0. When we home in on the actual point q of intersection
between ' and ∂Kj , the tangent computation procedure yields the
desired edge of Kj that ' crosses at q. We omit the details from
this abstract, and conclude with the following result, which is the
promised missing ingredient for the proof of Theorem 2.8.

LEMMA 2.9. Given a line', we can find inO(npolylog(n))
time the edges ofKj that intersect'.

3. RECOGNIZING COLORED TVERBERG
POINTS IN THE PLANE

Let S be a 3-colored set, which is the disjoint union of a set R
of n red points, a set B of n blue points, and a set G of n green
points. We assume that the points of S are in general position.

Let q be a given point that we want to test for being a colored
Tverberg point of S. Let C be the unit circle centered at q. We may
assume, without loss of generality, that all the points of S lie on C;
otherwise we project these points on C, centrally from q, and note
that q is a colored Tverberg point of the original set if and only if
it is a colored Tverberg point of the projected set. If q is generic,
all projected points are distinct. Otherwise, since S is in general
position, at most two pairs of points of S may project to coinciding
points on C. This will require easy and straightforward modifica-
tions of the following procedure, which we omit, and assume that
all projected points are distinct. Similarly, we will also assume that
no two projected points are diametrically opposite on C.

Let C0 be a fixed semicircle of C, whose endpoints are disjoint
from S. For each point u in the (open) complementary semicircle
C1, let ū denote the antipodal point of u in C0. Put R+ = R ∩C0

and R− = {ū | u ∈ R ∩ C1}, and define similarly the sets
B+, B−, G+ and G−. Sort the points of R+ ∪R− ∪B+ ∪B− ∪
G+ ∪G− in counterclockwise order along C0, and denote the re-
sulting (linear) sequence by E. (By our assumptions, all elements
of E are distinct.) Note that a rainbow triangle uvw, with u ∈ R,
v ∈ B, w ∈ G, contains q if and only if E contains one of the

65

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��

��
��
��

��
��
��

��
��
��

Figure 4. A non-convex region of colored Tverberg points in the plane;
example due to [8].

ordered triples

(u, v̄, w), (w, v̄, u), (v, w̄, u),

(u, w̄, v), (w, ū, v), (v, ū, w),

(ū, v, w̄), (w̄, v, ū), (v̄, w, ū),

(ū, w, v̄), (w̄, u, v̄), (v̄, u, w̄),

as a (not necessarily contiguous) subsequence; the specific triple
is determined by the locations of u, v, w along C. See Figure 5.
Our goal is thus to determine whether E can be decomposed into n
pairwise disjoint triples of these 12 kinds.

C1

C0

v̄
w̄

q

w
v

u

Figure 5. A triangle uvw that contains q, and the corresponding triple
(v̄, u, w̄).

We first describe a less efficient algorithm for solving this prob-
lem, which is conceptually simpler, and then optimize it to improve
its running time. Write E as (e1, e2, . . . , e3n), and denote by Ej

its prefix (e1, . . . , ej), for j = 0, 1, . . . , 3n. The algorithm uses
dynamic programming and processes the elements of E in increas-
ing order. At the beginning of the processing of ei, it maintains
a set Xi−1 of configurations, each of which is an 18-tuple of inte-
gers, which represent possible partitions of Ei−1 = (e1, . . . , ei−1)
into triples and prefixes of triples of the above 12 kinds. More
specifically, the first six components of a configuration ξ, which
we denote by Nξ(R

+), Nξ(R
−), Nξ(B

+), Nξ(B
−), Nξ(G

+),
Nξ(G

−), record the number of singleton prefixes of triples that lie
in Ei−1, where Nξ(R

+) is the number of such singleton prefixes
in R+, and similarly for the other five quantities. (Counting an
element of Ei−1 as a singleton prefix means that we expect it, in
the configuration under consideration, to form a valid triple with
two other elements that lie further ahead of Ei−1.) The next 12
components are each indexed by a pair of a positive color set and
a negative color set, where the two colors are distinct, and record
potential doubleton prefixes of triples in Ei−1 (where the third el-
ement of such a triple is expected to come from the remainder of
E). For example, Nξ(R

+G−) is the number of doubleton pre-

fixes (u, v) in the configuration, where u ∈ R+, v ∈ G−, and u
precedes v in Ei−1. (To complete this pair into a valid triple, an
element of B+ will have to be chosen from the remainder of E.)
The other 11 components are defined in complete analogy.

Initially, X0 consists of only the all-zero tuple 0. When process-
ing ei, we produce the set Xi of configurations for Ei from Xi−1

as follows. Suppose that ei ∈ R+, and let ξ be a configuration in
Xi−1. We generate from ξ five configurations in Xi, according to
the following choices of the role of ei:

(i) ei is the first component of a new triple: We generate a new
configuration by increasing Nξ(R

+) by 1.

(ii) ei is the second component of a triple whose first component
is in B−: We generate a new configuration by increasing
Nξ(B

−R+) by 1, and by decreasing Nξ(B
−) by 1.

(iii) ei is the second component of a triple whose first component
is in G−: We generate a new configuration by increasing
Nξ(G

−R+) by 1, and by decreasing Nξ(G
−) by 1.

(iv) ei is the third component of a triple whose first component is
in B+ and whose second component is in G−: We generate
a new configuration by decreasing Nξ(B

+G−) by 1.

(v) ei is the third component of a triple whose first component is
in G+ and whose second component is in B−: We generate
a new configuration by decreasing Nξ(G

+B−) by 1.

The handling of the cases where ei belongs to each of the other
five signed color classes is handled in complete symmetry. We dis-
card any generated configuration that has any negative component.
The set Xi stores configurations without repetition. Whenever a
new configuration ξ is inserted into Xi (for the first time), we store
with it a pointer to the configuration ξ′ ∈ Xi−1 from which ξ has
been generated. More precisely, we simply store with ξ the type
of incremental change that has produced it from ξ′, using which ξ′

can easily be reconstructed. (In general, there may be several con-
figurations ξ′ that can induce ξ, and we store a pointer to only the
first one that has generated ξ.)

The number of configurations in any Xi is O(n18), so the pro-
cessing of each ei takes O(n18) time, using an appropriate hash-
table structure to store Xi. The total running time is thus O(n19).
After processing e3n, we test whether X3n contains the all-zero tu-
ple 0. If it does not, q is not a Tverberg point. If 0 is in X3n then,
using the additional data stored with each configuration, we trace
back a sequence of configurations 0 = ξ0, ξ1, ξ2, . . . , ξ3n−1, ξ3n =
0, so that each ξj belongs to Xj and can be generated from ξj−1

when processing ej . The corresponding decomposition of E into
rainbow triples can then be easily performed by processing this se-
quence of configurations: We maintain a collection of prefixes of
triples, and update it as dictated by the changes that transform each
configuration to the next one in the sequence. For example, suppose
that ej ∈ R+ and the change at ej is of type (ii). We look for any
element ei in Ej−1 that belongs to B− and forms a singleton pre-
fix in our maintained collection, remove it from the collection and
replace it by the doubleton (ei, ej). Similar updates are done in all
other cases. The correctness of this step follows from the invari-
ant, easily established using induction on j, that if a configuration
ξ belongs to Xj then Ej admits a decomposition into pairwise dis-
joint prefixes of triples (and complete triples), so that the number
of prefixes of each type is equal to the corresponding component of
ξ.

In summary, we have shown that determining whether a given
point q is a colored Tverberg point of S can be done in O(n19)
time.

66

We next proceed to optimize the algorithm. In the revised ver-
sion we apply the same general approach, but maintain configura-
tions with fewer components. First we note that there is no need
to maintain the two separate quantities Nξ(R

+B−), Nξ(B
+R−),

and it suffices just to maintain their sum. Indeed, both quantities
are accessed only when a further element of E that belongs to G+

“decides” to become the last element of a triple, in which case it
has to be matched with a doubleton that is counted in one of these
two quantities, but it does not matter which of the two kinds of dou-
bletons is being used. A configuration thus needs to record only 12
counts, six singleton counts, as above, and the six doubleton counts

Nξ(R
+B−) + Nξ(B

+R−),

Nξ(R
−B+) + Nξ(B

−R+),

Nξ(R
+G−) + Nξ(G

+R−),

Nξ(R
−G+) + Nξ(G

−R+),

Nξ(B
+G−) + Nξ(G

+B−),

Nξ(B
−G+) + Nξ(G

−B+) .

This already yields an algorithm that runs in O(n13) time (there are
O(n12) different configurations, and there are n iteration steps).

We can further reduce the number of components in a configu-
ration to 10, as follows. Suppose that ξ ∈ Xj . Denote by Mξ(R)
the sum of all components of ξ that record prefixes of tuples that
involve an element of R (i.e., of R+ ∪ R−), and define similarly
Mξ(B),Mξ(G). Let Kj(R),Kj(B),Kj(G) denote the number
of elements of Ej that are red, blue, and green, respectively. Let
t denote the number of complete triples (contained in Ej) that
have been generated by the incremental construction recorded in
ξ (or, more precisely, in the unique sequence of configurations in
X1,X2, . . . ,Xj that terminates at ξ and whose reverse is obtained
by following the stored back pointers, starting from ξ). Then we
have

Kj(R) = t + Mξ(R)

Kj(B) = t + Mξ(B)

Kj(G) = t + Mξ(G) .

That is,

Mξ(B) −Mξ(R) = Kj(B) −Kj(R)

Mξ(G) −Mξ(R) = Kj(G) −Kj(R) .

This gives us two independent linear relations among the 12 com-
ponents of a configuration, showing that it suffices to store and
maintain only 10 of them. The number of tuples generated by the
algorithm is thus O(n10), and the total running time is O(n11).

THEOREM 3.1. Let S be a set of3n points in the plane,n of
which are red,n blue, andn green. For a given pointq, we can de-
termine whetherq is a colored Tverberg point ofS in timeO(n11).

4. OPEN PROBLEMS
The paper raises a number of open problems for further research.

We mention only a few:

(i) Obtain a tight bound for the maximum possible complexity
of the center region c(S) of a set S of n points in R

d.

(ii) Can the center region in three dimensions be constructed in
O(n2polylog(n)) time?

(iii) Can colored Tverberg points in the plane be recognized in a
more efficient manner? What about colored Tverberg points
in higher dimensions?

Acknowledgments. The authors thank Jirka Matoušek and Boris
Aronov for useful discussions concerning this problem. The au-
thors also thank the GWOP working group[8] for providing the
construction in Figure 4.

References
[1] P. K. Agarwal, J. Matoušek, and O. Schwarzkopf, Comput-

ing many faces in arrangements of lines and segments, SIAM
J. Comput.27 (1998), 491–505.

[2] D. Avis, The m-core property contains the m-divisible points
in space, Pattern Recog. Letts.14 (1993), 703–705.

[3] I. Bárány and D. Larman, A colored version of Tverberg’s the-
orem, J. London Math. Soc., Ser. II, 45 (1992), 314–320.

[4] I. Bárány, Z. Füredi and L. Lovász, On the number of halving
planes, Combinatorica10 (1990), 175–183.

[5] T. Chan, An optimal randomized algorithm for maximum
Tukey depth, Proc. 15th Ann. ACM-SIAM Symp. on Discrete Al-
gorithms, 2004, 423–429.

[6] B. Chazelle, The Discrepancy Method, Cambridge University
Press, 2000.

[7] K. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H.
Teng, Approximating center points with iterative Radon points,
Intl. J. Comput. Geom. Appls.6 (1996), 357–377.

[8] P. Csorba, K. Fischer, M. John, Cs.D. Tóth, Y. Okamoto, J.
Solymosi, M. Stojanković, U. Wagner, A nonconvex Colored-
Tverberg region, Working Group at 1st GWOP‘03, 2003.

[9] H. Edelsbrunner, Algorithms in Combinatorial Geometry,
Springer Verlag, Heidelberg, 1987.

[10] S. Jadhav and A. Mukhopadhyay, Computing a centerpoint
of a finite planar set of points in linear time, Discrete Comput.
Geom.12 (1994), 291–312.

[11] G. Kalai, Combinatorics with a geometric flavor: Some ex-
amples, in Visions in Mathematics Toward 2000 (Geometric and
Functional Analysis, Special Volume), 742–792.

[12] J. Matoušek, Computing the center of a planar point set, in
Discrete and Computational Geometry(J. Goodman, J. Pollack,
and W. Steiger, eds.), American Mathematical Society, 1991,
221–230.

[13] J. Matoušek, Efficient partition trees, Discrete Comput.
Geom., 8 (1992), 315–334.

[14] J. Matoušek, Lectures in Discrete Geometry, Springer Verlag,
Heidelberg, 2002.

[15] N. Megiddo, Applying parallel computation algorithms in the
design of serial algorithms, J. ACM, 30 (1983), 852–865.

[16] N. Naor and M. Sharir, Computing a point in the center of a
point set in three dimensions, Proc. 2nd Canadian Conf. Com-
put. Geom., 1990, 10–13.

[17] R. Rado, A theorem on general measure, J. London Math.
Soc.21 (1947), 291–300.

[18] M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences
and Their Geometric Applications, Cambridge University Press,
New York, 1995.

[19] M. Sharir, S. Smorodinsky and G. Tardos, An improved
bound for k-sets in three dimensions, Discrete Comput. Geom.
26 (2001), 195–204.

[20] S.-H. Teng, Points, Spheres, and Separators: A Unified Geo-
metric Approach to Graph Partitioning,Ph.D. thesis, School of
Computer Science, Carnegie Mellon University, PA, 1992.

[21] H. Tverberg, A generalization of Radon’s theorem, J. London
Math. Soc.41 (1966), 123–128.

[22] R.T. Živaljević and S.T. Vrećica, The colored Tverberg’s
problem and complexes of injective functions, J. Combin. The-
ory Ser. A6 (1992), 309–318.

67

