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ABSTRACT

We present a near-quadratic algorithm for computing the center re-
gion of a set ofn points in three dimensions. This is nearly tight
in the worst case since the center region can K€ ) complex-

ity. We then consider the problem of recognizing whether a given
point ¢ is a colored Tverberg point of a set nfcolored points in

the plane, and present the first polynomial-time algorithm for this
problem.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Geometrical problems and computations

General Terms: Algorithms,Theory
Keywords: Center Points, Colored Tverberg’s Theoreginkacets

1. INTRODUCTION

Given a sefS of n points inR? and a point: € R?, thedepthof
2 with respect ta5' is the minimum number of points &f contained
in a closed halfspace whose bounding hyperplane passes through
The set of all points of depth is called thedepth region of S.
The regionc(.S), of points of depths at leagtcan be written as
ﬁheHTHC+1 h, with H; = H,(S) the set of all closed halfspaces

(bounded by hyperplanes) that contain at lgapbints from.S!

Notec; (S) = conv(S).

If j > dn/(d + 1), then anyd + 1 halfspaces irf{; have a
point of S in common, and Helly’'s theorem (cf. [9, 14]) implies
ﬂheHj h # 0. Thatis, ifn —k+1 > dn/(d+ 1), or equivalently,
if & < [n/(d+ 1)], the regionc,(S) is nonempty (as it was first
observed by Rado [17]).

Points of depth at leagt/(d + 1)] are calledcenter pointsof
S, and the regioRy,, /(4+1)1 (S)—which we know is nonempty—is
called thecenter regiorof S, denoted by:(S).
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Figure 1. Sets of six points, with their center regions, the points of depth
at least2. Equivalently, these are the intersections of all halfplanes con-
taining at leasb points. (The meaning of the extra edges indicated will be
explained later.)

Relatively little progress has been made on the algorithmic is-
sues related to center points. Teng [20] showed thatif part
of the input, the problem of determining whether a given point
is a center point o5 is coNP-Complete. Jadhav and Mukhopad-
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IFor a proof, note that it & h € H,_s1, then the depth is at most

k — 1 since the complement &f contains a closed halfspace witton its
boundary and containing at mast— (n — k + 1) = k — 1 points from

S. On the other hand, if lies on the boundary of a closed halfspace with
at mostk — 1 points, then the complement contains a closed halfspace with

atleastn — k + 1 points and thus: & Ny, c9q,, ., -
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Sharir [16] gave ar(n? polylog(n)) algorithm for computing a
center point inR3; very recently, Chan [5] supplied a randomized
O(nlogn +n~1) algorithm for this problem ifR¢. For comput-
ing the center region iR there is a naive cubic algorithm, that
can be improved t@(n°/2*¢) by running ak-level construction
algorithm in the dual and computing the convex hull of the obtained
vertices. Clarksoretal. [7] proposed a simple algorithm for com-
puting an approximate center point of a set of points in arbitrary
dimensions.

A generalization of a center point is the so-called Tverberg point.
Let r be a positive integer. A partition & into r disjoint subsets
,Sr is called aTverberg partitionif (;_, conv(S;) # 0,
and a point lying in the intersection is called@erberg poin{or an
r-divisible poin). Tverberg [21] proved that S| > (d+1)(r—1),
then a Tverberg partition always exists. Subsequent to his original
proof, several simpler proofs have been proposed; see the book by
MatouSek [14] and the survey paper by Kalai [11] for a history



of the problem. Note that any halfspace containing-afivisible
point contains at leastpoints ofS, so by setting: = [n/(d + 1)],

we get that every-divisible point ofS is also a center point of.
Ford = 2 andn a multiple of3, the converse is also true, i.e., every
center point ofS is also a[n/(d + 1)]-divisible point of S, but it

is not true ford > 3 [2]. Teng [20] showed that ifl is part of the
input, then the problem of determining whether a given point is an
r-divisible point of S is NP-Complete. On the other handdifis
fixed, a polynomial-time algorithm (with running timn,p(dz)) can

be obtained by modifying Tverberg’s existence proof. &#oe 2
andn a multiple of3, a Tverberg point can be computed in linear
time using the algorithm for computing a center point [10], and we
can determine irO(nlogn) time whether a point is a Tverberg
point.

Barany, Riredi and Lowasz [4] suggested eolored version of
Tverberg’s theoremwhich was then established Byaljevic and
Vrec€ica [22] in arbitrary dimensions. The planar case allowed a
quantitative improvement, provided byaBny and Larman [3].
They showed that given a planar s&twhich is the disjoint union
of three setsR, B, G consisting respectively of red points,n
blue points, and» green points (in general position), there ex-
ists a partition ofS into n pairwise-disjoint triplesSi, ..., Sn,
where each triple consists of one point of eactRoB, G, so that
i, conv(S;) # 0. In fact, their argument is constructive and
yields anO(n®)-time algorithm for computing such a partition.
However no polynomial-time algorithm is known for determining
whether a given point is a colored Tverberg pointSof

Our results.  We present two main results in this paper. First,
given a sefS of n points inR*, we describe a®(n**<) algorithm
to compute the center regie(S) (cf. Section 2). In fact, we show
that for anyk, the depthk region of S hasO(n?) complexity, and
that it can be computed i@ (n?"<) time. By performing a binary
search, we can compute the region of maximum depth(inf <)
time.

Next, given aS of 3n points inR?, which is the disjoint union
of three setR, B, andG consisting ofn points each, we present
a polynomial-time algorithm to determine whether a pajris a
colored Tverberg point of (cf. Section 3). The running time of
the algorithm isO(n'!).

2. CENTER REGIONIN 3D

2) ﬂheHJ h is a convex polytope (not necessarily of full dimen-

sion) with at mos(," ) facets, each of which is contained
in some(j — d)-facet ofS.

Proof: (1) Consider first the sét(>; := U, ; Hi. SinceH>; C

'H,, the inclusion
Nre N

he™r; heﬂzj

readily follows. It can be shown that, for eabhe H;, there are

d halfspaces i{>; whose intersection is contained fin It then
follows that allh € H; \ H>; are redundant. Henc@heﬁ7 h =
Mnerr,, hi hence(,, ., h is a polyhedron whose facets are de-
termined by (i.e., lie in the affine hull of) some of the halfspaces

h € H>,. Onthe other hand, every halfspacéin fori > j, con-

tains an intersection of halfspaces irfH; in its interior, so none of
these halfspaces can determine a facet of the polyhedron and thus
can be omitted in its definition. Assertion (1) of the lemma follows.

(2) We have already shown tha&t:= ﬂheH7 his anintersection of

a finite number of halfspaces, and since it is containeditv(S),
itis bounded and thus a polytope. We further reduce the number of
constraints irf{; that are needed to determife

If P is empty, we are done since then it is the intersection of
d+1 < 2(,",) halfspaces ifH; (recalln > d + 1). Otherwise
consider some sét of d — 1 points inS. Either no(;j — d)-facet
containsk, or all but two halfspaces i(; with K on their bound-
ary are redundant. Since the number(df— 1)-element subsets
of S'is (dﬁl), the asserted upper bound on the number of facets
follows.

Now consider a halfspade € H;, and the(;j — d)-facet it con-
tains. We rotate the bounding hyperplanehcdbout anyd — 1 of
the points of thej — d)-facet, while keeping thé; — d)-facet in
its halfspace. It follows that no portion of the hyperplane bounding
h other than it§j — d)-facet can be partaP. O

2.2 Thestructure of the center region

Let.S be a set ofi points inR?. A standard duality transform [9]
maps a poinp in R? to a hyperplang* in R¢ and vice versa so that
the above/below relationships between the points and hyperplanes

We first make sure that the problem of computing the the center are preserved, i.e., i lies below (resp., above, on) a hyperplane

region, orﬂhEHj h in general, is a finite problem. Then we discuss

h, then the dual hyperplang” lies below (resp., above, on) the

the structure of the center region in the dual, before we proceed topoint 2. Using this dual transform we ma$ to a setS™ of n

the description of the algorithm.

2.1 j-Facetsand the center region

We assumeéS| > d + 1 and thatS is in general position, i.e., no
d + 1 points lie on a common hyperplane. jAacetis an oriented
simplex spanned by points inS that has exactly points fromS
on its positive side H; is the set of closed halfspaces that contain
j points and havel points on their boundary. Clearly, these are
exactly the halfspaces induced biy— d)-facets. Figure 1 displays
all 5-facets (orientations omitted) of the respective point sets.

LEMMA 2.1. For any setS of n > d + 1 points in general
position inR? and any positive integef < n we have:

(1) cn—j+1(8) = ﬂheHJ h= mheﬁ] g

2To be precise, exactlypoints fromS on the positive side of its affine hull.
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hyperplanes iiR?. Thelevelof a pointz € R with respect ta5*

is the number of hyperplanes #i lying below z. All points on
the same face afd(S™*) have the same level. For a given integer
0 < k < n, the k-level of A(S™), denoted as\;(S™), is the
closure of all facets ofA(S*) whose level isk. A (S™) is the
graph of a continuous, piecewise-linddr— 1)-variate function.

By construction, the dual of a point whose depth i (k <
n/2) with respect taS is a hyperplane that lies betwedn (S*)
andA,,_(S™). More precisely if we let.;, (resp.,U) denote the
lower (resp., upper) convex hull df, (S*), thenz™ separated/y,
andL,_. Hence, the dual of the center regic(f) is the region
lying betweenU[ﬁw andLL%J. In order to compute(S), it
suffices to describe the algorithm for computing the convex hull of
alevel in A(S™).

The following lemma follows from the observation that the inter-
section line of anyl—1 hyperplanes of™* intersectsonv (A (S*))
in at most two points (the dual analogy of Lemma 2.1).



LEMMA 2.2. LetS* be a set ofr hyperplanes irR?. For any by intersecting it with a sufficiently large bal that encloses all
0 < k < n, the convex hull oA, (S*) hasO(n? ™) vertices. vertices of A(H). Consider a pointv that lies on the intersection
of 9B with an unbounded edgeof the level, incident upon two
LEMMA 2.3. Let S be a set of points inR®. The combina-  planesh, &’ € H. Thenw belongs ta\ Nk, say. Letting the radius
torial complexity ofc(S) is O(n?), and this bound is tight in the  of B tend to infinity completes the proaif)
worst case.
LEMMA 2.5. Foranyh € H, conv(ANh) has linear complex-
Proof: For the upper bound, we first note that the complexity ity.
of each ofU“LW and Ly gn | is O(n?), which follows from

Lemma 2.2 and the fact that the total complexity of a convex poly- Proof: Any vertex of A N i, and thus also ofonv(A N h), lies
hedron inR? is proportional to the number of its vertices. A vertex ©On two of thelinesin{g N h | g € H \ {A}}, and any such line
x of ¢(S) is mapped to a plane that either supports a facet of one of 9 1 €an contain at most two vertices @nv(A N h). A similar
these two hulls, or is a common inner tangent to the two hulls, and "€asoning is applied to the unbounded edges of.. 0

then it supports an edge of one of them. Since there are at most two Our algorithm processes the planegbbne at a time. For each

such planes per edge, the upper bound follows. pl_aneh it computes a convex (generally unbounded) polydgon
For the lower bound, let us first assume thas an integer multi- ~ With O(n) edges and with the property that

ple of 12. We are interested ia(S) = ¢n/a(5) = yem,, .., 1o conv(A N h) C Kj, C conv(A). (1)

the intersection of halfspaces induced (3y./4 — 2)-facets (see )

Lemma 2.1). By Lemma 2.4conv(|J,, . ;; Kn) = conv(A), so we simply com-
Take a triangle\uvw in thezy-plane, pass a vertical line through ~ PUte and output the convex hull @h_eH K- o

each of its three vertices v, w, and place:/3 points on each line Although A is the graph of a continuous piecewise-linear totally

at heightsv/1,v/2, . .., \/n/3. This yields a sef of n points in defined function ofr, y, the setA N h within a single plané: €

R3. We fix j = 3n/4 — 2, and we consider thg-facets ofS that H is much less structured. It need not even be connected, and

have one point on each of the vertical lines. There@(¢®) = can in fact have quadratic complexity (in contrast with its convex

©(n?) choices of triplega, b, ¢) such thata + b + ¢ = j + 3, hull, which has_only linear complixity). S_pef:ifically, for ezfal_zz

and any such triple definesjafacet whose vertices are, v/a), H \ {h}, consider the halfplang™ N h within h, whereg™ is

(v \/5) (w, /<) the (closed) halfspace bounded from belowdyThe level of a

pointw € h is the number of halfplaneg™ N A that containw.
These halfplanes can have a rather “erratic” structure, such as the
one shown in Figure 2, which may cause h to consist of up to
©(n?) connected components, as the figure illustrates.

Passing to the dual space, a plane containing any gdabet
becomes the intersection point of the three dual planes (where
denotes the vectdr, y) in the zy-plane)

z=u-x++va, z=v-x+vb, and z=w- x+
Clearly, any such dual point lies on the ellipsoid
z—u-xP+GE—v-x+Gz-w-x)’=a+b+c=j+3.

Since this is a convex surface, standard properties of the duality
transform imply that each of the planes containing fkacets in

the primal space is tangent to a dual convex surface. Since each of
these tangency points necessarily lies on the boundary of the inter- & —2
section polytope, it follows that each of theséacets contributes a
facet toc(S). The lower bound followsO .
Remark. We are currently unable to prove a similar bound on the k—2
complexity ofc(.S) in higher dimensions. The upper bound theo-
rem implies that the complexity @f(S) is O(n(¢~D14/2]) How-

ever, we conjecture that the actual bound is much smaller, maybe
evenO(nd=1).

2.3 Computing the convex hull of alevel

Let H be a set ofn planes inR? in general position, and let k-2
k < n be an integer. We describe an algorithm for computing the
convex hull ofA = Ax(H). We denote the convex hull of a s&t Figure 2. A N h may have quadratic complexity.
by conv(X).
LEMMA 2.4. conv(A) = Conv( U conv(A N h)). Fix a coordinate frame within h whose axes project vertically
to the  and y-axes of the 3-dimensional frame. (Thisis not an

heH
© orthogonal frame, but can be made so with an appropriate affine

Proof: Clearly,conv(A) contains the set on the right-hand side. To transformation within h.) Let g € H \ {h}. Write the equations of
establish the converse containment, we first argue that each vertexh and of g asz = arx+bry+cp and z = agr+byy+cy. Observe
of A belongs to the right-hand side. Indeed,ddie such a vertex,  that the halfplane g™ N h isalower (resp., upper) halfplane within
incident upon three plands b/, h’’ € H. Thenv is a vertex of h in this coordinate frame if and only if by, > by, (resp., by < by).
A N h, say, and the claim follows. Next, we approximatev(A) The general-position assumption, and an appropriate choice of the
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coordinate frame, allow usto assume that all the coefficients by, , for
h € H, aredistinct.

Sort the planes . € H in decreasing order of the y-coefficients
by, of their equations. Let the sorted order be A4, . . ., h,,. We pro-
cess the planes in this order. Consider the processing of h;. All
halfplanes g™ N h; are upper halfplanes, implying that A N h; is
alevel of the arrangement of thelines g N hy, for g € H \ {h1}.
We set K1 = Kj, to be conv(A N hy). Using the algorithm of
Matousek [12], K can be computed in O(n log* n) time.

Supposethat i1, ..., h;j—1 havealready been processed, and that
for each i < 7 we have computed a (generally unbounded) convex
polygonal region K; = K}, with the property (1). The processing
of h; then proceeds as follows.

We first compute the segments (or rays, or lines) v; = K; N h;.
This can be done in O(log n) time for each + < j, by forming
the line h; N h; and by intersecting it, within h;, with K;. Put
I' ={v | 1 <1 < j}, andrefer to these segments as red segments.
Let R; C h denote the convex hull of I, which can be computed
in O(nlogn) time. For each ¢ > j put ¢; = h; N h;, refer to these
linesasgreenandput G; = {¢; | j <i < n}.

LEMMA 2.6. The portion ofANh; that lies on green lines con-

sists of pairwise disjoint-monotone polygonal chains, each start-

ing and ending either at infinity or on some red segmeiit.in

Proof: Let w be apoint in A N h; that lies on a green line, and
trace A N h; from w to the right (i.e, in (+x)-direction). When
encountering a new green line, the level switches to the new line
and continues to the right; this follows from the fact that al the
green hafplanes b N h; are upper hafplanesin h;. Continuing
the tracing, we either reach +oo or an intersection point » with
somered line h; N hj, withi < j. Thenuw € ANh;, sou € K,
and thusu € ~;. Tracing the level from w to the left, and repeating
thisanalysis to each connected component of A N h; completes the
proof of the lemma. O

LEMMA 2.7. Letu, v be twoy-covertical green points irh N
h;. Then the segmemty must cross at least one red segment of

Proof: Suppose that u lies above v (in the y-direction). As we
move from v in the positive y-direction, the level increases by 1 to
k + 1. Just before reaching u, the level is restored to its original
value k. Thusthere had to be a point w on wv so that after crossing
w the level decreasedy 1 and becomes k. Clearly, w hasto lie on
somered line h; and in A N ;. Hence, arguing as above, w € ;.
|

Consider the set R; U (A N h;). The preceding lemmas imply
that either this is a connected set, or it is the union of up to two
connected components, one of which contains R; and the other is
an z-monotone unbounded green portion of A N h;, passing ei-
ther above or below R;. Indeed, Lemma 2.7 and the convexity of
R; imply that if there are two green components enclosing R; be-
tween them, then R; is unbounded and the unbounded rays of its
boundary are parallel to those of the green components. The latter
isruled out by the general-position assumption, so we can assume
that there is at most one connected (unbounded) green component
disoint from R;.

We define

K; = conv(R; U (AN hy)),

and denote its boundary by ¢;. To construct ¢;, we adapt the tech-
nique of Matousek [12] for computing the convex hull of alevel in

the plane, and dlightly relax it to simplify its analysis in our new
context. The overall algorithm proceeds as follows. Let

Lj={hinh; |1<i#j<n},
and consider the following range space
X, =(Lj,{{teL;|¢nT#£0} | Tisatriangle}),

which, asis well known, has finite VC-dimensioij6]. We choose
asufficiently large constant -, and compute, in O(n) time, a(1/r)-
net N; C L, forX; of sizeO(r log r), and atriangulation .AY (N;)
of the arrangement .A(N;) [6]. We compute the edges of .AY (N;)
that intersect ¢;. More precisely, for each edge e of AV (NV;), we
compute the one or two edges of ¢; that cross e, or determine that
e does not cross 9¢;. The details of this main subroutine of the
algorithm are presented in Section 2.4. We thus obtain a collection
E; of some edges of ;. The edges of E; lie in the zone of (;
in A(N;), which implies that |E;| is proportional to the number
of vertices in the zone. Since (; is convex, the complexity of its
zone in A(N;) is O(|N;j|a(|N;|)) = O(ra(r)logr). Sincethe
segments of E; are in convex position, they can be sorted along
¢ in O(ra(r) log® r) time. Let 7,7’ be two consecutive edges in
E;. By construction, there exists atriangle 7 of .AY (V) such that
each of n,n’ has an endpoint inside 7, and the portion of ¢; be-
tween n and n" isfully contained in 7 and is delimited by these two
endpoints. (The case where the endpoints coincide is trivial, since
thereisno need tofill in ¢; between n and n".) See Figure 3.

&,

,"’

Figure 3. (; (dashed polygon), E; (whose edges are drawn with thick
lines), and the triangles of LAY (IV;). The portion of ¢; between n and 17’ is
fully contained in the single cell 7 (shaded region).

We thus need to compute ¢; N7 for O(ra(r) log r) triangles T of
AY(N;). Since N; isa (1/r)-net, each subproblem involves only
at most n/r lines of L;. We solve each subproblem recursively,
using the same approach. Thisleads to arecurrence of the form

T(n) < Ara(r)logr-T (;) + C(Q(n) +n),

where A is a constant independent of r, C' a constant that does
depend on r, and Q(n) is the time needed to compute the zero,
one, or two edges of (; that cross a given line. Lemma 2.9 in the
next subsection shows that Q(n) = O(npolylog(n)). The above
recurrence thus solves to T'(n) = O(n'™¢), for any ¢ > 0. We
repeat this step for each of the planes h;, and then compute the
convex hull of the union of theresulting sets K, for j = 1,...,n,
to obtain the main result of this part of the paper:

THEOREM 2.8. The center region of a set efpoints inR® can
be computed i) (n*"=) time, for anye > 0.



2.4 Computing edges of K

We now describe the main procedure needed for the preceding
algorithm: given aline ¢, aninteger j > 1, and the convex polygon
R;, return the edges of (; that intersect £. We recall that only the
casej > lisrelevant since, as noted, K; can bedirectly computed
in O(nlog*n) time [12]. Since we are given R;, we assume that
we have apoint o € K; at our disposal.

Let @, betheunion of R;, themonotone green portions of ANh;
that terminate within R;, and the unique monotone green portion
of A N h; that lies above or below R;, if it exists. In case the
latter green component exists, we connect it to R; by some vertical
segment e that lies on the vertical line ¢, that passes through the
point o in R;. By computing the intersection points of £, with the
planes in H, we can compute e in linear time. By construction,
K; = conv(Q;).

We describe the overall algorithm in three stages. Thefirst stage
detects whether a query line g intersects K;. If the answer is
yes, it aso returns an interval (possibly a single point) lying in
gNK;. Notethat /N K; # 0 if andonly if £ N Q; # 0.
The second stage determines whether a query point ¢ liesin Kj,
and computes the lines tangent to K; from ¢ if ¢ ¢ K. This
stage computes the tangent lines using the previous procedure and
the parametric-searching technique [15]. The third stage plugs the
tangent-computation procedure into the parametric searching tech-
nique, to compute the edges of K that intersect a query line. We
now describe each stage in detail.

I nter section detection between @@; and aline. Let ¢ be agiven
line. To detect whether ¢ intersects @) ;, we proceed asin [12]. We
intersect ¢ with each of the lines h; N h; of L;. We sort the in-
tersection points along ¢ and scan ¢ in some direction, maintaining
acount of the level we are in, and updating the count by +1 after
crossing each intersection point. If wereach apointin A N h;, we
stop and report it. Otherwise, we test for intersections between /¢
and R;, and report such an intersection point if found. Otherwise,
it is till possible that ¢ intersects Q; as it may pass between R;
and the unbounded z-monotone green chain that avoids R;. To
test whether this is the case, we compute, in a preprocessing step,
the y-maximal and y-minimal intersections of the vertical line 4,
through o with @;, and then complete the query for ¢ by testing
whether £ N/, lies between these two intersections. If so, we report
N ¢,. Otherwise, we determine that ¢ does not intersect @Q;. If
2N K; # 0, wereturn the interval on ¢ bounded by the first and
the last intersection points of £ N @Q;. The total time spent by the
procedure is O(n logn).

Computing a tangent to K; from a point. Let g be a point
in h;. We wish to determine whether ¢ € K, and if the answer
is no, we also want to compute the two tangents from ¢ to Kj.
Let o denote the line passing through ¢ and o and oriented from ¢
too. If ¢ ¢ Kj, then the two tangent rays from ¢ to K lie on
the opposite sides of o, and we compute each of them separately.
Without loss of generality, we assume that o isthe z-axis, ¢ isthe
origin, and we wish to compute the tangent ray 7* from ¢ to K
that lies in the halfplane « > 0, which has positive slope, say,
o*. Using the parametric-searching technique [15], we simulate
the above intersection-detection procedure generically at 7. During
the simulation, we maintain an interval I = [a,b] C [0,00]. If I
becomes empty, we conclude that ¢ € Kj, and if I becomes a
singleton [a, a], then ¢* = a. At each step of the simulation, we
have areal vaue o € [a, b] and we wish to determine whether the
ray 7 of slope o passing through ¢ intersects K. If the answer
isyes, then 0 > o and we set I = [0, b]; otherwise o™ < o,
and we set I = [a, o]. Use the preceding algorithm, we can detect
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this intersection in O(nlogn) time. If the procedure aso returns
an interval that contains ¢, we conclude that ¢ € K; and stop. The
standard parametric-searching argument impliesthat the ssmulation
always terminates with an empty interval or with a singleton.

Theintersection of ~ with K; isasingle point, an edge of K, or
empty. Thethird situation ariseswhen 7 isparallel to an unbounded
edge of K;. We can easily compute thisintersection, by noting that
the endpoints of 7N K; must belong to R; U(ANh; ), and we know
how to compute such an intersection, in the same manner asin the
intersection-detection procedure described above.

If ¢ ¢ K; then we repeat the same procedure to find the other
tangent of K; from ¢. Thetotal time spent is O(n log® n).

Computing the edges of K; crossed by aline.  Armed with the
tangent computation procedure, we next derive the main procedure
by applying the parametric searching once more: Given a query
line £, compute the one or two edges of K that are crossed by ¢,
or determine that £ N K; = (). Thelatter task can be accomplished
using the basic intersection testing procedure, so we may assume
that £ N K; # (0, and that we have computed apoint ¢ € ¢ N K.
Using parametric searching once again, we slide a point ¢ from ¢
along each of the halflines of ¢ delimited by ¢o, and test whether
q liesin K, using the tangent computation procedure described
above. This guides our search: If ¢ liesin K, we proceed by
moving further away from ¢o, and otherwise we proceed by moving
towards go. When we home in on the actual point ¢ of intersection
between ¢ and 0K, the tangent computation procedure yields the
desired edge of K that ¢ crosses at g. We omit the details from
this abstract, and conclude with the following result, which is the
promised missing ingredient for the proof of Theorem 2.8.

LEMMA 29. Given a line?, we can find inO(n polylog(n))
time the edges dk; that intersect.

3. RECOGNIZING COLORED TVERBERG
POINTSIN THE PLANE

Let S be a 3-colored set, which is the disjoint union of aset R
of n red points, aset B of n blue points, and a set G of n green
points. We assume that the points of S are in general position.

Let ¢ be a given point that we want to test for being a colored
Tverberg point of S. Let C' bethe unit circle centered at ¢. We may
assume, without loss of generality, that all the pointsof S lieon C;
otherwise we project these points on C, centrally from ¢, and note
that ¢ is a colored Tverberg point of the original set if and only if
it isa colored Tverberg point of the projected set. If ¢ is generic,
all projected points are distinct. Otherwise, since S isin genera
position, at most two pairs of points of .S may project to coinciding
pointson C. Thiswill require easy and straightforward modifica-
tions of the following procedure, which we omit, and assume that
all projected points are distinct. Similarly, we will also assume that
no two projected points are diametrically opposite on C.

Let Cy be afixed semicircle of C, whose endpoints are disjoint
from S. For each point « in the (open) complementary semicircle
C1, let u denote the antipodal point of u in Cp. Put R* = RN Cy
and R~ = {u | v € RN C1}, and define similarly the sets
BY,B~,G" and G~. Sortthe pointsof RT UR-UBT UB~ U
G UG~ in counterclockwise order along Co, and denote the re-
sulting (linear) sequence by E. (By our assumptions, all elements
of E aredistinct.) Note that a rainbowtriangle uvw, withu € R,
v € B, w € G, contains ¢ if and only if E contains one of the



Figure 4. A non-convex region of colored Tverberg points in the plane;
example dueto [8].

ordered triples

as a (not necessarily contiguous) subsequence; the specific triple
is determined by the locations of u, v, w aong C. See Figure 5.
Our goal isthus to determine whether E' can be decomposed into n
pairwise digjoint triples of these 12 kinds.

Figure 5. A triangle wvw that contains ¢, and the corresponding triple
(0, u, w).

We first describe aless efficient algorithm for solving this prob-
lem, which is conceptually simpler, and then optimize it to improve
its running time. Write E as (e1, e2, . . ., e3n), and denote by E;
its prefix (e1,...,e;), forj = 0,1,...,3n. The agorithm uses
dynamic programming and processes the elements of E inincreas-
ing order. At the beginning of the processing of e;, it maintains
aset X, of configurationseach of which is an 18-tuple of inte-
gers, which represent possible partitionsof £;—1 = (e1,...,€i—1)
into triples and prefixes of triples of the above 12 kinds. More
specifically, the first six components of a configuration &, which
we denote by Ne(R™), Ne(R™), Ne(B1), Ne(B™), Ne(GH),
Ne(G™), record the number of singleton prefixes of triplesthat lie
in E;_1, where Ne¢(R™) isthe number of such singleton prefixes
in R™, and similarly for the other five quantities. (Counting an
element of F;_, as a singleton prefix means that we expect it, in
the configuration under consideration, to form a valid triple with
two other elements that lie further ahead of F;_,.) The next 12
components are each indexed by a pair of a positive color set and
a negative color set, where the two colors are distinct, and record
potential doubleton prefixes of triplesin £;_, (where the third el-
ement of such atriple is expected to come from the remainder of
E). For example, N¢(RTG™) is the number of doubleton pre-
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fixes (u, v) in the configuration, whereu € RT,v € G~, and u
precedes v in ;1. (To complete this pair into a valid triple, an
element of B will have to be chosen from the remainder of E.)
The other 11 components are defined in complete anal ogy.

Initialy, X, consists of only the all-zero tuple 0. When process-
ing e;, we produce the set X; of configurations for F; from X;_
asfollows. Supposethat e; € R, and let ¢ be a configuration in
Xi;—1. We generate from ¢ five configurations in X;, according to
the following choices of therole of e;:

(i) e; isthefirst component of anew triple: We generate a new
configuration by increasing Ne (R™) by 1.

(ii) e, isthe second component of atriple whose first component
isin B~: We generate a new configuration by increasing
N¢(B~R*") by 1, and by decreasing N (B™) by 1.

(iii) e; isthe second component of atriple whose first component

isin G™: We generate a new configuration by increasing

Ne¢(G~ R') by 1, and by decreasing Ne (G ™) by 1.

(iv) e; isthethird component of atriple whose first component is

in BT and whose second component isin G : We generate

anew configuration by decreasing N: (B*G ™) by 1.

(V) e; isthethird component of atriple whose first component is
in G* and whose second component isin B~ : We generate

anew configuration by decreasing N: (G™ B~ ) by 1.

The handling of the cases where e; belongs to each of the other
five signed color classes is handled in complete symmetry. We dis-
card any generated configuration that has any negative component.
The set X; stores configurations without repetition. Whenever a
new configuration ¢ isinserted into X; (for the first time), we store
with it a pointer to the configuration ¢’ € X,;_, from which ¢ has
been generated. More precisely, we simply store with £ the type
of incremental change that has produced it from &', using which ¢’
can easily be reconstructed. (In general, there may be several con-
figurations ¢’ that can induce &, and we store a pointer to only the
first one that has generated &.)

The number of configurations in any X; is O(n'®), so the pro-
cessing of each e; takes O(n'®) time, using an appropriate hash-
table structure to store X;. Thetotal running time is thus O(n'?).
After processing es,,, we test whether X5, containsthe all-zero tu-
ple 0. If it does not, ¢ isnot a Tverberg point. If 0 isin X3, then,
using the additional data stored with each configuration, we trace
back asequence of configurations0 = &, &1, &2, - -, &3n—1,&3n =
0, so that each &; belongs to X; and can be generated from &;
when processing e;. The corresponding decomposition of E into
rainbow triples can then be easily performed by processing this se-
quence of configurations. We maintain a collection of prefixes of
triples, and update it as dictated by the changes that transform each
configuration to the next onein the sequence. For example, suppose
that e; € R™ and the change at e, is of type (ii). We look for any
element e; in E;_; that belongsto B~ and forms a singleton pre-
fix in our maintained collection, remove it from the collection and
replace it by the doubleton (e;, e;). Similar updates are donein al
other cases. The correctness of this step follows from the invari-
ant, easily established using induction on 7, that if a configuration
& belongs to X; then E; admits a decomposition into pairwise dis-
joint prefixes of triples (and complete triples), so that the number
of prefixes of each typeisequal to the corresponding component of
€.

In summary, we have shown that determining whether a given
point ¢ is a colored Tverberg point of S can be done in O(n'?)
time.



We next proceed to optimize the algorithm. In the revised ver-
sion we apply the same general approach, but maintain configura-
tions with fewer components. First we note that there is no need
to maintain the two separate quantities Ne (Rt B™), Ne(BTR™),
and it suffices just to maintain their sum. Indeed, both quantities
are accessed only when a further element of E that belongs to G+
“decides’ to become the last element of atriple, in which case it
has to be matched with a doubleton that is counted in one of these
two quantities, but it does not matter which of the two kinds of dou-
bletonsisbeing used. A configuration thus needs to record only 12
counts, six singleton counts, as above, and the six doubleton counts

Ne(RTB™) + Ne(BTR)
Ne(R™BT) + Ne(B™RY),
Ne(RTG™) + Ne(GTRY),
Ne(R™GT) + Ne(G™RY),
Ne(BYG™) + Ne(GTBY),
Ne(B~GT) + NG BY)

This already yields an algorithm that runsin O(n*?®) time (there are
O(n'?) different configurations, and there are . iteration steps).

We can further reduce the number of components in a configu-
ration to 10, as follows. Suppose that £ € X;. Denote by M, (R)
the sum of all components of ¢ that record prefixes of tuples that
involve an element of R (i.e., of RT U R™), and define similarly
M¢(B), M:(G). Let K;(R), K;(B), K;(G) denote the number
of elements of E; that are red, blue, and green, respectively. Let
t denote the number of complete triples (contained in Ej;) that
have been generated by the incremental construction recorded in
& (or, more precisely, in the unique sequence of configurations in
X1, X5,...,X; that terminates at £ and whose reverse is obtained
by following the stored back pointers, starting from &). Then we
have

Kj(R) = t+ M(R)
K;(B) = t+ M(B)
Kij(G) = t+M(G).

Thatis,

M¢(B) — M¢(R)
M (G) — M¢(R)

K;(B) — K;(R)

K;(G) — K;(R) .

This gives us two independent linear relations among the 12 com-
ponents of a configuration, showing that it suffices to store and

maintain only 10 of them. The number of tuples generated by the
algorithm isthus O(n'°), and the total running timeis O(n'').

THEOREM 3.1. LetS be a set oBn points in the planen of
which are redy blue, andn green. For a given poing, we can de-
termine whethey is a colored Tverberg point & in timeO(n'').

4. OPEN PROBLEMS

The paper raises anumber of open problems for further research.
We mention only afew:

(i) Obtain atight bound for the maximum possible complexity
of the center region ¢(S) of aset S of n pointsin R?.

(ii) Can the center region in three dimensions be constructed in
O(n*polylog(n)) time?

(iii) Can colored Tverberg points in the plane be recognized in a
more efficient manner? What about colored Tverberg points
in higher dimensions?
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