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Abstract. Natural images are the composite consequence of multiple factors re-
lated to scene structure, illumination, and imaging. Multilinear algebra, the alge-
bra of higher-order tensors, offers a potent mathematical framework for analyz-
ing the multifactor structure of image ensembles and for addressing the difficult
problem of disentangling the constituent factors or modes. Our multilinear mod-
eling technique employs a tensor extension of the conventional matrix singular
value decomposition (SVD), known as the N -mode SVD. As a concrete exam-
ple, we consider the multilinear analysis of ensembles of facial images that com-
bine several modes, including different facial geometries (people), expressions,
head poses, and lighting conditions. Our resulting “TensorFaces” representation
has several advantages over conventional eigenfaces. More generally, multilinear
analysis shows promise as a unifying framework for a variety of computer vision
problems.

1 Introduction

Natural images are formed by the interaction of multiple factors related to scene struc-
ture, illumination, and imaging. Human perception remains robust despite significant
variation of these factors. For example, people possess a remarkable ability to recog-
nize faces when confronted by a broad variety of facial geometries, expressions, head
poses, and lighting conditions, and this ability is vital to human social interaction. De-
veloping a similarly robust computational model of face recognition remains a difficult
open problem whose solution would have substantial impact on biometrics for identifi-
cation, surveillance, human-computer interaction, and other applications.

Linear algebra, i.e., the algebra of matrices, has traditionally been of great value in
the context of image analysis and representation. The Fourier transform, the Karhonen-
Loeve transform, and other linear techniques have been veritable workhorses. In partic-
ular, principal component analysis (PCA) has been a popular technique in facial image
recognition, as has its refinement, independent component analysis (ICA) [2]. By their
very nature, however, these offspring of linear algebra address single-factor variations
in image formation. Thus, the conventional “eigenfaces” facial image recognition tech-
nique [13, 17] works best when person identity is the only factor that is permitted to
vary. If other factors, such as lighting, viewpoint, and expression, are also permitted to
modify facial images, eigenfaces face difficulty.

In this paper, we employ a more sophisticated mathematical approach in the analysis
and representation of images that can account explicitly for each of the multiple factors
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inherent to image formation. Our approach is that of multilinear algebra—the algebra
of higher-order tensors. The natural generalization of matrices (i.e., linear operators
defined over a vector space), tensors define multilinear operators over a set of vector
spaces. Subsuming conventional linear analysis as a special case, tensor analysis offers
a unifying mathematical framework suitable for addressing a variety of computer vision
problems. Tensor analysis makes the assumption that images formed as a result of some
multifactor confluence are amenable to linear analysis as each factor or mode is allowed
to vary in turn, while the remaining factors or modes are held constant. 1

We focus in this paper on the higher-order generalization of PCA and the singular
value decomposition (SVD) of matrices for computing principal components. Unlike
the matrix case for which the existence and uniqueness of the SVD is assured, the sit-
uation for higher-order tensors is not as simple. Unfortunately, there does not exist a
true “tensor SVD” that offers all the nice properties of the matrix SVD [6]. There are
multiple ways to decompose tensors orthogonally. However, one multilinear extension
of the matrix SVD to tensors is most natural. We demonstrate the application of this N -
mode SVD to the representation of collections of facial images, where multiple modes
are permitted to vary. The resulting representation separates the different modes under-
lying the formation of facial images, hence it is promising for use in a robust facial
recognition algorithm.

The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 covers the foundations of tensor algebra that are relevant to our approach. Sec-
tion 4 formulates the tensor decomposition algorithm which is central to our multilinear
analysis. Section 5 applies our multilinear analysis algorithm to the analysis of facial
images. Section 6 concludes the paper and proposes future research topics.

2 Related Work

Prior research has approached the problem of facial representation for recognition by
taking advantage of the functionality and simplicity of matrix algebra. The well-known
family of PCA-based algorithms, such as eigenfaces [13, 17] and Fisherfaces [1] com-
pute the PCA by performing an SVD on a XY �P data matrix of “vectorized” X�Y

pixel images of P people. These linear models are suitable in the case where the identity
of the subject is the only variable accounted for in image formation. Various researchers
have attempted to deal with the shortcomings of PCA-based facial image representation
in less constrained (multi-factor) situations, for example, by employing better classifiers
[11].

Bilinear models have attracted attention because of their richer representational
power. The 2-mode analysis technique for analyzing (statistical) data matrices of scalar
entries is described by Magnus and Neudecker [8]. 2-mode analysis was extended to
vector entries by Marimont and Wandel [9] in the context of characterizing color sur-
face and illuminant spectra. Freeman and Tenenbaum [4, 14] applied this extension in
three different perceptual domains, including face recognition.

1 Also of interest is the fact that, from a probabilistic point of view, multilinear algebra is to
higher-order statistics what linear algebra is to second-order statistics [3].
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As was pointed out by Shashua and Levin [12], the natural representation of a col-
lection of images is a three-dimensional array, or 3rd-order tensor, rather than a simple
matrix of vectorized images. They develop compression algorithms for collections of
images, such as video images, that take advantage of spatial (horizontal/vertical) and
temporal redundancies, leading to higher compression rates compared to applying con-
ventional PCA on vectorized image data matrices.

In addressing the motion analysis/synthesis problem, Vasilescu [19, 18] structured
motion capture data in tensor form and developed an algorithm for extracting “hu-
man motion signatures” from the movements of multiple subjects each performing sev-
eral different actions. The algorithm she described performed 3-mode analysis (with a
dyadic decomposition) and she identified the more general motion analysis problem in-
volving more than two factors (people, actions, cadences, ...) as one ofN -mode analysis
on higher-order tensors. N -mode analysis of observational data was first proposed by
Tucker [16], who pioneered 3-mode analysis, and subsequently developed by Kapteyn
et al. [5, 8] and others, notably [3].

The N -mode SVD facial image representation technique that we develop in this
paper subsumes the previous methods reviewed above. In particular, when presented
with matrices of vectorized images that are amenable to simple, linear analysis, our
method reduces to SVD, hence PCA; i.e., the eigenfaces of Sirovich and Kirby or Turk
and Pentland. When the collection of images is more appropriately amenable to bilinear
analysis, our technique reduces to the “style/content” analysis of Freeman and Tenen-
baum. More importantly, however, our technique is capable of handling images that
are the consequence of any number of multilinear factors of the sort described in the
introduction.

3 Relevant Tensor Algebra

We now introduce the notation and basic definitions of multilinear algebra. Scalars are
denoted by lower case letters (a; b; : : :), vectors by bold lower case letters (a;b : : :),
matrices by bold upper-case letters (A;B : : :), and higher-order tensors by calligraphic
upper-case letters (A; B : : :).

A tensor, also known as n-way array or multidimensional matrix or n-mode matrix,
is a higher order generalization of a vector (first order tensor) and a matrix (second
order tensor). Tensors are multilinear mappings over a set of vector spaces. The order
of tensor A 2 IRI1�I2�:::�IN is N . An element of A is denoted as Ai1:::in:::iN or
ai1:::in:::iN or where 1 � in � In.

An N th�order tensor A 2 IRI1�I2�:::�IN has rank-1 when it is expressible as the
outer product of N vectors: A = u1 Æ u2 Æ : : : Æ uN . The tensor element is expressed
as aij:::m = u1iu2j : : : uNm, where u1i is the ith component of u1, etc. The rank of a
N th order tensor A, denoted R=rank(A), is the minimal number of rank-1 tensors that
yield A in a linear combination:

A =

RX
r=1

�ru
(r)
1 Æ u

(r)
2 Æ : : : Æ u

(r)
N : (1)
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A singular value decomposition (SVD) can be expressed as a rank decomposition
as is shown in the following simple example:
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Note that a singular value decomposition is a combinatorial orthogonal rank decompo-
sition (5), but that the reverse is not true; in general, rank decomposition is not neces-
sarily singular value decomposition. For further discussion on the differences between
matrix SVD, rank decomposition and orthogonal rank decomposition for higher order
tensors see [6].

Next, we generalize the definition of column and row rank of matrices. In ten-
sor terminology, column vectors are referred to as mode-1 vectors and row vectors
as mode-2 vectors. The mode-n vectors of an N th order tensor A 2 IRI1�I2�:::�IN

are the In-dimensional vectors obtained from A by varying index in while keeping
the other indices fixed. The mode-n vectors are the column vectors of matrix A (n) 2

IRIn�(I1I2:::In�1In+1:::IN ) that results from flattening the tensor A, as shown in Fig. 1.
The n-rank of A 2 IRI1�I2�:::�IN , denoted Rn, is defined as the dimension of the
vector space generated by the mode-n vectors:

Rn = rankn(A) = rank(A(n)): (6)

A generalization of the product of two matrices is the product of a tensor and a
matrix. The mode-n product of a tensor A 2 IRI1�I2�:::�In�:::�IN by a matrix M 2

IRJn�In , denoted by A �nM, is a tensor B 2 IRI1�:::�In�1�Jn�In+1�:::�IN whose
entries are computed by

(A�nM)i1:::in�1jnin+1:::iN =
X
in

ai1:::in�1inin+1:::iNmjnin : (7)

The mode-n product can be expressed in tensor notation as follows:

B = A�nM; (8)

or, in terms of flattened matrices,

B(n) =MA(n): (9)

The mode-n product of a tensor and a matrix is a special case of the inner product
in multilinear algebra and tensor analysis. In the literature, it is often denoted using
Einstein summation notation. For our purposes, however, the mode-n product symbol
is more suggestive of multiplication and expresses better the analogy between matrix
and tensor SVD [16] (see Section 4). The mode-n product has the following properties:
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Fig. 1. Flattening a (3rd-order) tensor. The tensor can be flattened in 3 ways to obtain matrices
comprising its mode-1, mode-2, and mode-3 vectors.

1. Given a tensor A 2 IRI1�:::In�:::Im::: and two matrices, U 2 IRJm�Im and V 2

IRJn�In the following property holds true:

A�m U�n V = (A�m U)�n V (10)

= (A�n V)�m U (11)

= A�n V �m U (12)

2. Given a tensor A 2 IRI1�:::�In�:::�IN and two matrices, U 2 IRJn�In and V 2

IRKn�Jn the following property holds true:

(A�n U)�n V = A�n (VU) (13)

4 Tensor Decomposition

A matrix D 2 IRI1�I2 is a two-mode mathematical object that has two associated
vector spaces, a row space and a column space. SVD orthogonalizes these two spaces
and decomposes the matrix as D = U1�U

T
2 , the product of an orthogonal column-

space represented by the left matrix U1 2 IRI1�J1 , a diagonal singular value matrix
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=

U

1

3
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Fig. 2. An N -mode SVD orthogonalizes the N vector spaces associated with an order-N tensor
(the case N = 3 is illustrated).

� 2 IRJ1�J2 , and an orthogonal row space represented by the right matrix U 2 2

IRI2�J2 . In terms of the mode-n products defined in the previous section, this matrix
product can be rewritten asD = ��1 U1 �2 U2.

By extension, an order N > 2 tensor or n-way arrayD is an N -dimensional matrix
comprising N spaces. “N -mode SVD” is a an extension of SVD that orthogonalizes
these N spaces and expresses the tensor as the mode-n product (7) of N -orthogonal
spaces

D = Z �1 U1 �2 U2 : : :�n Un : : :�N UN ; (14)

as illustrated in Fig. 2 for the case N = 3. Tensor Z , known as the core tensor, is anal-
ogous to the diagonal singular value matrix in conventional matrix SVD. It is important
to realize, however, that the core tensor does not have a diagonal structure; rather, Z is
in general a full tensor [6]. The core tensor governs the interaction between the mode
matrices Un, for n = 1; : : : ; N . Mode matrix Un contains the orthonormal vectors
spanning the column space of the matrix D (n) that results from the mode-n flattening
of D, as was illustrated in Fig. 1. 2

2 Note that the N -mode SVD can be expressed as an expansion of mutually orthogonal rank-1
tensors (analogous to equation (5)), as follows:

D =

R1X
i1=1

: : :

RnX
in=1

: : :

RNX
iN=1

zi1:::iNU
(i1)
1 Æ : : : ÆU

(in)
n Æ : : :U

(iN )
N

;

where U(in)
n is the in column vector of the matrix Un. In future work, we shall address the

problem of finding the best rank-(R1; R2; : : : ; RN ) tensor. This is not to be confused with the
classical “rank-R problem” [7].
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4.1 TheN -Mode SVD Algorithm

In accordance with the above theory, our N -mode SVD algorithm for decomposing D
is as follows:

1. For n = 1; : : : ; N , compute matrix Un in (14) by computing the SVD of the
flattened matrixD(n) and settingUn to be the left matrix of the SVD.3

2. Solve for the core tensor as follows

Z = D �1 U
T
1 �2 U

T
2 : : :�n U

T
n : : :�N U

T
N : (15)

5 TensorFaces: Multilinear Analysis of Facial Images

As we stated earlier, image formation depends on scene geometry, viewpoint, and il-
lumination conditions. Multilinear algebra offers a natural approach to the analysis of
the multifactor structure of image ensembles and to addressing the difficult problem of
disentangling the constituent factors or modes.

In a concrete application of our multilinear image analysis technique, we employ the
Weizmann face database of 28 male subjects photographed in 15 different poses under
4 illuminations performing 3 different expressions. We used a portion of this database,
employing images in 5 poses, 3 illuminations, and 3 expressions. 4 Using a global rigid
optical flow algorithm, we roughly aligned the original 512� 352 pixel images relative
to one reference image. The images were then decimated by a factor of 3 and cropped as
shown in Fig. 3, yielding a total of 7943 pixels per image within the elliptical cropping
window. Our facial image data tensorD is a 28� 5� 3� 3� 7943 tensor. The number
of modes is N = 5.

We apply multilinear analysis to the facial image data using the N -mode decompo-
sition algorithm described in Section 4. The 5-mode decomposition of D is

D = Z �1 Upeople �2 Uviews �3 Uillums �4 Uexpres �5 Upixels; (16)

where the 28 � 5 � 3 � 3 � 7943 core tensor Z governs the interaction between the
factors represented in the 5 mode matrices: The 28� 28 mode matrix U people spans the
space of people parameters, the 5� 5 mode matrixU views spans the space of viewpoint
parameters, the 3�3mode matrixU illums spans the space of illumination parameters and
the 3�3 mode matrixUexpres spans the space of expression parameters. The 7943�7943
mode matrixUpixels orthonormally spans the space of images.

3 When D(n) is a non-square matrix, the computation of Un in the singular value decom-
position D(n) = Un�V

T

n can be performed efficiently, depending on which dimension
of D(n) is smaller, by decomposing either D(n)D

T

(n) = Un�
2
U
T

n and then computing

V
T

n = �
+
U
T

nD(n) or by decomposing DT

(n)D(n) = Vn�
2
V
T

n and then computing
Un = D(n)Vn�

+.
4 A computer-controlled robot arm positioned the camera to �34Æ, �17Æ, and 0

Æ, the frontal
view in the horizontal plane. The face was illuminated by turning on and off three light sources
fixed at the same height as the face and positioned to the left, center, and right of the face. For
additional details, see [10].
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(a)

(b)

Fig. 3. The facial image database (28 subjects � 45 images per subject). (a) The 28 subjects
shown in expression 2 (smile), viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full
image set for subject 1. Left to right, the three panels show images captured in illuminations 1, 2,
and 3. Within each panel, images of expressions 1, 2, and 3 are shown horizontally while images
from viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of subject 1 in (a) is the image
situated at the center of (b).
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Our multilinear analysis, which we call TensorFaces, subsumes linear, PCA analysis
or conventional eigenfaces. Each column of U pixels is an “eigenimage”. These eigenim-
ages are identical to conventional eigenfaces [13, 17], since the former were computed
by performing an SVD on the mode-5 flattened data tensor D which yields the matrix
D(pixels) whose columns are the vectorized images. To further show mathematically that
PCA is a special case of our multilinear analysis, we write the latter in terms of matrix
notation. A matrix representation of the N -mode SVD can be obtained by unfoldingD
and Z as follows:

D(n) = UnZ(n)(Un�1 
 : : :
U1 
UN 
 : : :
Un+1)
T ; (17)

where 
 denotes the matrix Kronecker product. Using (17) we can express the decom-
position of D as

D(pixels)| {z }
image data

= Upixels| {z }
basis vectors

Z(pixels)(Uexpress 
Uillums 
Uviews 
Upeople)
T| {z }

coefficients

: (18)

The above matrix product can be interpreted as a standard linear decomposition of
the image ensemble, where the mode matrix U pixels is the PCA matrix of basis vectors
and the associated matrix of coefficients is obtained as the product of the flattened
core tensor times the Kronecker product of the people, viewpoints, illuminations, and
expressions mode matrices. Thus, as we stated above, our multilinear analysis subsumes
linear, PCA analysis.

The advantage of multilinear analysis is that the core tensor Z can transform the
eigenimages present in the matrixUpixels into eigenmodes, which represent the principal
axes of variation across the various modes (people, viewpoints, illuminations, expres-
sions) and represents how the various factors interact with each other to create an image.
This is accomplished by simply forming the productZ �5Upixels. By contrast, PCA ba-
sis vectors or eigenimages represent only the principal axes of variation across images.
To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the
facial image tensorD. Fig. 4(a) shows the first 10 PCA eigenimages contained inU pixels.
Fig. 4(b) illustrates some of the eigenmodes in the product Z � 5 Upixels. A few of the
lower-order eigenmodes are shown in the three arrays. The labels at the top of each ar-
ray indicate the names of the horizontal and vertical modes depicted by the array. Note
that the basis vector at the top left of each panel is the average over all people, view-
points, illuminations, and expressions, and that the first column of eigenmodes (people
mode) is shared by the three arrays.

PCA is well suited to parsimonious representation, since it orders the basis vectors
according to their significance. The standard PCA compression scheme is to truncate the
higher order eigenvectors associated with this representation. Our multilinear analysis
enables an analogous compression scheme, but it offers much greater control. It allows
the strategic truncation of higher-order eigenmodes depending on the task at hand and
the modalities that should be represented most faithfully.

Multilinear analysis subsumes mixtures of probabilistic PCA or view-based mod-
els [15, 11] when one uses a different choice of basis functions. Starting with the eigen-
modesZ �5Upixels, we multiply the viewpoint parameter matrixU views to form the prod-
uct Z �2 Uviews �5 Upixels, which yields the principal axes of variation of the image

9



Published in the Proc. of the European Conference on Computer Vision (ECCV ’02), Copenhagen, Denmark, May, 2002.

(a)

people# viewpoints! people# illuminations! people# expressions!

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data
tensorD. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix
Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of
the product Z �5 Upixels, in which the core tensor Z transforms the eigenvectorsUpixels to yield a
5-mode, 28� 5� 3� 3� 7943 tensor of eigenmodes which capture the variability across modes
(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at
the top of each array indicate the names of the horizontal and vertical modes depicted in that array.
Note that the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the
three arrays).
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illumination basis 1 illumination basis 2 illumination basis 3
people# expressions! people# expressions! people# expressions!

...
...

...

(a) (b) (c)

Fig. 5. Some of the eigenvectors in the 28 � 3 � 3 � 7943 tensor Z �2 Uviews �5 Upixels for
viewpoint 1. These eigenmodes are viewpoint specific.

ensemble across the people mode, illumination mode, and expression mode for each of
the 5 viewpoints. Fig. 5 shows the eigenvectors that span all the images in viewpoint 1.
In essence, the multilinear analysis provides for each viewpoint the principal axes of a
multidimensional Gaussian.

Similarly, we can define a person specific set of eigenvectors that span all the im-
ages. Fig. 6(a–c) illustrates the effect of multiplying the eigenvectors of Fig. 4(b–d) by
Upeople to obtain the 5�3�3�7943 tensor of eigenvectorsZ �1Upeople�5Upixels. These
new eigenvectors are now person-specific. The figure shows all of the eigenvectors for
slice 1 of the tensor, associated with subject 1 in Fig. 3(a). The eigenvectors shown
capture the variations across the distribution of images of this particular subject over all
viewpoints, expressions, and illuminations. Fig. 6(d–e) shows portions of slices 2 and
3 through the tensor (the upper 3� 3 portions of arrays analogous to that in (a) of the
figure are shown), showing some of the eigenvectors specific to subject 2 and to subject
3, respectively.
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illumination basis 1 illumination basis 2 illumination basis 3
viewpoints# expressions! viewpoints# expressions! viewpoints# expressions!

(a) (b) (c)

illumination basis 1 illumination basis 1
viewpoints# expressions! viewpoints# expressions!

...
...

(d) (e)

Fig. 6. (a,b,c) All the eigenvectors in the 5�3�3�7943 tensorZ�1Upeople�5Upixels for subject 1.
This is the top slice (subject 1 in Fig. 3(a)) of the tensor depicted in Fig. 4(b–d) but multiplied by
Upeople, which makes the eigenvectors person-specific. (d) Person specific eigenvectors for subject
2 and (e) for subject 3; the upper 3� 3 portions of arrays analogous to that in (a) are shown.
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expres. 1 & illum. 2 expres. 1 & view 3 illum. 2 & view 3
people# viewpoints! people# illuminations! people# expressions!

...
...

...

(a) (b) (c)

Fig. 7. This 28 � 5 � 3 � 3 � 7943 tensor Z �2 Uviews �3 Uillums �4 Uexpres �5 Upixels defines
45 different basis for each combination of viewpoints, illumination and expressions. These basis
have 28 eigenvectors which span the people space. The topmost row across the three panels
depicts the average person, while the eigenvectors in the remaining rows capture the variability
across people in the various viewpoint, illumination, and expression combinations. (a) The first
column is the basis spanning the people space in viewpoint 1, illumination 2 and expression 1,
the second column is the basis spanning the people space in viewpoint 2, illumination 2 and
expression 1, etc. (b) The first column is the basis spanning the people space in viewpoint 1,
illumination 1 and expression 1, the second column is the basis spanning the people space in
viewpoint 1, illumination 2 and expression 1, etc. (c) The first column is the basis spanning the
people space in viewpoint 3, illumination 2 and expression 1, the second column is the basis
spanning the people space in viewpoint 3, illumination 2 and expression 2, etc.
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An important advantage of multilinear analysis is that it maps all images of a person,
regardless of viewpoint, illumination and expression, to the same coefficient vector,
given the appropriate choice of basis, thereby achieving zero intra-class scatter. Thus,
multilinear analysis creates well separated people classes by maximizing the ratio of
inter-class scatter to intra-class scatter [1]. By comparison, PCA will represent each
different image of a person with a different vector of coefficients.

In our facial image database there are 45 images per person that vary with viewpoint,
illumination, and expression. PCA represents each person as a set of 45 vector-valued
coefficients, one for each image in which the person appears. The length of each PCA
coefficient vector is 28� 5 � 3� 3 = 1215. By contrast, multilinear analysis enables
us to represent each person with a single vector coefficient of dimension 28 relative
to the bases comprising the tensor Z �2 Uviews �3 Uillums �4 Uexpres �5 Upixels, some of
which are shown in Fig. 7. Each column in the figure is a basis and it is composed of
28 eigenvectors. In any column, the first eigenvector depicts the average person and
the remaining eigenvectors capture the variability across people, for the particular com-
bination of viewpoint, illumination, and expression associated with that column. The
eigenvectors in any particular row play the same role in each column. This is the reason
why images of the same person taken under different viewpoint, illumination, and ex-
pression conditions are projected to the same coefficient vector by the bases associated
with these conditions.

6 Conclusion

We have identified the analysis of an ensemble of images resulting from the confluence
of multiple factors related to scene structure, illumination, and viewpoint as a problem
in multilinear algebra. Within this mathematical framework, the image ensemble is rep-
resented as a higher-dimensional tensor. This image data tensor must be decomposed
in order to separate and parsimoniously represent the constituent factors. To this end,
we prescribe the “N -mode SVD” algorithm, a multilinear extension of the conventional
matrix singular value decomposition (SVD).

Although we have demonstrated the power of N -mode SVD using ensembles of
facial images, which yielded TensorFaces, our tensor decomposition approach shows
promise as a unifying mathematical framework for a variety of computer vision prob-
lems. In particular, it subsumes as special cases the simple linear (1-factor) analysis
associated with conventional SVD and principal components analysis (PCA), as well
as the incrementally more general bilinear (2-factor) analysis that has recently been in-
vestigated in the context of computer vision [4, 14]. Our completely general multilinear
approach accommodates any number of factors by taking advantage of the mathemati-
cal machinery of tensors.

Not only do tensor decompositions play an important role in the factor analysis
of multidimensional datasets, as described in this paper, but they also appear in con-
junction with higher order statistics (higher order moments and cumulants) that are
employed in independent component analysis (ICA). Hence, we can potentially apply
tensor decomposition to ICA.
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In future work, we will develop algorithms that exploit our multilinear analysis
framework in a range of applications, including image compression, resynthesis, and
recognition.
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Abstract

Multilinear algebra, the algebra of higher-order tensors, of-
fers a potent mathematical framework for analyzing ensem-
bles of images resulting from the interaction of any num-
ber of underlying factors. We present a dimensionality re-
duction algorithm that enables subspace analysis within the
multilinear framework. This N -mode orthogonal iteration
algorithm is based on a tensor decomposition known as
the N -mode SVD, the natural extension to tensors of the
conventional matrix singular value decomposition (SVD).
We demonstrate the power of multilinear subspace anal-
ysis in the context of facial image ensembles, where the
relevant factors include different faces, expressions, view-
points, and illuminations. In prior work we showed that
our multilinear representation, called TensorFaces, yields
superior facial recognition rates relative to standard, lin-
ear (PCA/eigenfaces) approaches. Here, we demonstrate
factor-specific dimensionality reduction of facial image en-
sembles. For example, we can suppress illumination effects
(shadows, highlights) while preserving detailed facial fea-
tures, yielding a low perceptual error.

Keywords: nonlinear subspace analysis, N -mode compo-
nent analysis, multilinear models, tensor decomposition,
N -mode SVD, dimensionality reduction.

1 Introduction

Natural images are generated by the interaction of multiple
factors related to scene structure, illumination, and imag-
ing. Human perception remains robust despite significant
variation of these factors. For example, people possess a
remarkable ability to recognize faces despite a broad vari-
ety of expressive facial geometries, viewpoints, and lighting
conditions. Our work confronts the challenge of learning
tractable, nonlinear models of image ensembles useful in
image compression and in difficult appearance-based recog-
nition problems [5], such as facial recognition under vary-
ing conditions [1].

We have recently introduced a multilinear approach to
the analysis of image ensembles that explicitly accounts
for each of the multiple factors implicit in image forma-
tion [13, 12]. Our approach is motivated by the observation

that multilinear algebra, the algebra of higher-order tensors,
offers a potent mathematical framework for analyzing the
multifactor structure of the image ensemble. It provides
techniques for decomposing the ensemble in order to dis-
entangle the constituent factors or modes.

The natural generalization of matrices (i.e., linear opera-
tors defined over a vector space), tensors define multilinear
operators over a set of vector spaces. Hence, tensor anal-
ysis, which subsumes linear analysis as a special case, is
a unifying mathematical framework suitable for addressing
a variety of visual problems. In particular, we have intro-
duced algorithms for learning multilinear models of facial
image ensembles, called TensorFaces [13]. In facial recog-
nition scenarios that involve varying viewpoint and illumi-
nation, TensorFaces yield dramatically improved recogni-
tion rates [12] over the linear facial recognition method
known as eigenfaces [10].

This paper addresses subspace analysis within our mul-
tilinear framework, via dimensionality reduction over the
multiple affiliated vector spaces. Multilinear dimensional-
ity reduction generalizes the conventional version associ-
ated with linear principal components analysis (PCA), trun-
cation of the singular value decomposition (SVD), whose
optimality properties are well-known. Unfortunately, opti-
mal dimensionality reduction is not straightforward in mul-
tilinear analysis. For multilinear dimensionality reduction,
we present an N -mode orthogonal iteration algorithm based
on a tensor decomposition known as the N -mode SVD. The
latter is a natural extension to higher-order tensors of the
conventional matrix SVD.

Following a review in Section 2 of the details of our mul-
tilinear approach, Section 3 presents the multilinear dimen-
sionality reduction algorithm. In Section 4, we demonstrate
factor-specific dimensionality reduction of facial image en-
sembles. In particular, we show that we can suppress illumi-
nation effects such as shadows and highlights, yet preserve
detailed facial features, yielding a low perceptual error. Sec-
tion 5 concludes the paper.

2 Synopsis of the Multilinear Approach

A tensor is a higher order generalization of a vector (first
order tensor) and a matrix (second order tensor).

1
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Figure 1: Flattening a (3rd-order) tensor. The tensor can be flat-
tened in 3 ways to obtain matrices comprising its mode-1, mode-2,
and mode-3 vectors.

2.1 Tensor Fundamentals

Tensors are multilinear mappings over a set of vector
spaces. The order of tensor A ∈ IRI1×...×In×...×IN is N .1

Elements of A are denoted as Ai1...in...iN
or ai1...in...iN

,
where 1 ≤ in ≤ In. In tensor terminology, matrix col-
umn vectors are referred to as mode-1 vectors and row vec-
tors as mode-2 vectors. The mode-n vectors of an Nth or-
der tensor A are the In-dimensional vectors obtained from
A by varying index in while keeping the other indices
fixed. The mode-n vectors are the column vectors of matrix
A(n) ∈ IRIn×(I1...In−1In+1...IN ) that results by mode-n flat-
tening the tensor A (Fig. 1). The n-rank of A, denoted Rn,
is defined as the dimension of the vector space generated by
the mode-n vectors: Rn = rankn(A) = rank(A(n)).

A generalization of the product of two matrices is the
product of a tensor and a matrix. The mode-n prod-
uct of a tensor A ∈ IRI1×...×In×...×IN by a matrix
U ∈ IRJn×In , denoted by A ×n U, is a tensor B ∈
IRI1×...×In−1×Jn×In+1×...×IN whose entries are

(A×nU)i1...in−1jnin+1...iN
=

∑

in

ai1...in−1inin+1...iN
ujnin

.

(1)

1We denote scalars by lower case letters (a, b, . . .), vectors by
bold lower case letters (a,b, . . .), matrices by bold upper-case letters
(A,B, . . .), and higher-order tensors by calligraphic upper-case letters
(A,B, . . .).

The mode-n product B = A ×n U can be computed via
the matrix multiplication B(n) = UA(n), followed by a
re-tensorization to undo the mode-n flattening.2

The scalar product of two tensors A,B ∈ IRI1×...×IN ,
is defined as 〈A,B〉 =

∑
i1

. . .
∑

iN
ai1...iN

bi1...iN
. The

Frobenius norm of a tensor A is ‖A‖ =
√〈A,A〉.

2.2 Tensor Decomposition of Image Ensembles

Image formation is the consequence of interactions among
multiple factors—scene geometry, camera viewpoint, illu-
mination conditions, etc. We formulate the analysis of an
ensemble of images as a problem in multilinear algebra.
Within this mathematical framework, the image ensemble
is represented as a higher-order tensor. This image data ten-
sor D must be decomposed in order to separate and parsi-
moniously represent the constituent factors.

To this end, we subject D to a generalization of ma-
trix SVD. Matrix SVD orthogonalizes the column and row
space, the two associated spaces of a matrix. An order
N > 2 tensor D is an N -dimensional matrix comprising
N spaces. N -mode SVD is a “generalization” of conven-
tional matrix (i.e., 2-mode) SVD. It orthogonalizes these N
spaces and decomposes the tensor as the mode-n product
(1) of N -orthogonal spaces. Thus a tensor can be expressed
as a multilinear model of factors as follows:

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN . (2)

Tensor Z , known as the core tensor, is analogous to the
diagonal singular value matrix in conventional matrix SVD,
but it does not have a simple, diagonal structure. The core
tensor governs the interaction between the mode matrices
U1, . . . ,UN . Mode matrix Un contains the orthonormal
vectors spanning the column space of matrix D(n) resulting
from the mode-n flattening of D.

The N-mode SVD algorithm for decomposing D ac-
cording to equation (2) is as follows:

1. For n = 1, . . . , N , compute matrix Un in (2) by com-
puting the SVD of the flattened matrix D(n) and set-
ting Un to be the left matrix of the SVD.3

2. Solve for the core tensor as follows:

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (3)

2The mode-n product of a tensor and a matrix is a special case of the in-
ner product in multilinear algebra and tensor analysis. Note that for tensors
and matrices of the appropriate sizes, A×m U×n V = A×n V×m U
and (A×n U) ×n V = A×n (VU).

3For a non-square, m × n matrix A, the matrix U in the SVD
A = UΣVT can be computed more efficiently, depending on which
dimension of A is smaller, by decomposing either the m × m matrix
AAT = UΣ2UT and then computing VT = Σ+UT A or by de-
composing the n × n matrix AT A = VΣ2VT and then computing
U = AVΣ+.

2



Published in the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI, June, 2003.

2.3 TensorFaces

The multilinear analysis of facial image ensembles leads to
the TensorFaces representation. We illustrate the technique
using a portion of the Weizmann face image database: 28
male subjects photographed in 5 viewpoints, 4 illumina-
tions, and 3 expressions. Using a global rigid optical flow
algorithm, we aligned the original 512 × 352 pixel images
relative to one reference image. The images were then dec-
imated by a factor of 3 and cropped as shown in Fig. 2,
yielding a total of 7943 pixels per image within the ellipti-
cal cropping window.

Our facial image data tensor D is a 28×5×4×3×7943
tensor (Fig. 2(c)). Applying multilinear analysis to D, using
our N -mode SVD algorithm with N = 5, we obtain

D = Z×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (4)

where the 28× 5× 3× 3× 7943 core tensor Z governs the
interaction between the factors represented in the 5 mode
matrices: The 28 × 28 mode matrix Upeople spans the space
of people parameters, the 5×5 mode matrix Uviews spans the
space of viewpoint parameters, the 4×4 mode matrix Uillums

spans the space of illumination parameters and the 3 × 3
mode matrix Uexpres spans the space of expression parame-
ters. The 7943 × 1680 mode matrix Upixels orthonormally
spans the space of images. Reference [13] discusses the at-
tractive properties of this analysis, some of which we now
summarize.

Multilinear analysis subsumes linear, PCA analysis. As
shown in Fig. 3, each column of Upixels is an “eigenimage”.
Since they were computed by performing an SVD of the
matrix D(pixels) obtained as the mode-5 flattened data ten-
sor D, these eigenimages are identical to the conventional
eigenfaces [6, 10]. Eigenimages represent only the principal
axes of variation over all the images. The big advantage of
multilinear analysis beyond linear PCA is that TensorFaces
explicitly represent how the various factors interact to pro-
duce facial images. Tensorfaces are obtained by forming
the product Z ×5 Upixels (Fig. 4(a)).

The facial image database comprises 60 images per per-
son that vary with viewpoint, illumination, and expression.
PCA represents each person as a set of 60 vector-valued co-
efficients, one from each image in which the person appears.
The length of each PCA coefficient vector is 28×5×4×3 =
1680. By contrast, multilinear analysis enables us to repre-
sent each person, regardless of viewpoint, illumination, and
expression, with the same coefficient vector of dimension
28 relative to the bases comprising the 28×5×4×3×7943
tensor

B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (5)

some of which are shown in Fig. 4(b). This many-to-one
mapping is useful for face recognition. Each column in the
figure is a basis matrix that comprises 28 eigenvectors. In
any column, the first eigenvector depicts the average person

(a)

(b)

Pe
op
le

Expressions

Views

Il
lu
m
in
at
io
n

(c)

Figure 2: The facial image database (28 subjects, 60 images per
subject). (a) The 28 subjects shown in expression 2 (smile), view-
point 3 (frontal), and illumination 2 (frontal). (b) Part of the image
set for subject 1. Left to right, the three panels show images cap-
tured in illuminations 1, 2, and 3. Within each panel, images of
expressions 1, 2, and 3 (neural, smile, yawn) are shown horizon-
tally while images from viewpoints 1, 2, 3, 4, and 5 are shown
vertically. The image of subject 1 in (a) is the image situated at
the center of (b). (c) The 5th-order data tensor D for the image
ensemble; only images in expression 1 (neutral) are shown.

. . .

Figure 3: Upixels contains the PCA eigenvectors (eigenfaces),
which are the principal axes of variation across all images.
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(a) (b)
Figure 4: (a) A partial visualization of the 28 × 5 × 4 × 3 × 7943 TensorFaces representation of D, obtained as T = Z ×5 Upixels

(only the subtensor of T associated with expression 1 (neutral) is shown). Note that the mode matrix Upixels contains the conventional PCA
eigenvectors or “eigenfaces”, the first 10 of which are shown in Fig. 3, which are the principal axes of variation across all of the images.
(b) A partial visualization of the 28 × 5 × 4 × 3 × 7943 tensor B = Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels (again, only the subtensor
associated with the neutral expression is shown), which defines 60 different bases for each combination of viewpoints, illumination and
expressions. These bases have 28 eigenvectors which span the people space. The eigenvectors in any particular row play the same role in
each column. The topmost plane depicts the average person, while the eigenvectors in the remaining planes capture the variability across
people in the various viewpoint, illumination, and expression combinations.

and the remaining eigenvectors capture the variability over
people, for the particular combination of viewpoint, illumi-
nation, and expression associated with that column. Each
image is represented with a set of coefficient vectors repre-
senting the person, viewpoint, illumination and expression
factors that generated the image. This is an important dis-
tinction that is relevant for image synthesis and recognition.

2.4 Face Recognition Using TensorFaces

We have proposed a recognition method based on multilin-
ear analysis which uses the recognition bases in Fig. 4(b)
(see [12] for the details). In our preliminary experi-
ments with the Weizmann face image database, Tensor-
Faces yields significantly better recognition rates than PCA
(eigenfaces) in scenarios involving the recognition of peo-
ple imaged in previously unseen viewpoints and illumina-
tions.

In the first experiment, we trained our TensorFaces
model on an ensemble comprising images of 23 people,
captured from 3 viewpoints (0,±34 degrees), with 4 il-
lumination conditions (center, left, right, left+right). We
tested our model on other images in this 23 person dataset
acquired from 2 different viewpoints (±17 degrees) under
the same 4 illumination conditions. In this test scenario,
the PCA method recognized the person correctly 61% of

the time while TensorFaces recognized the person correctly
80% of the time.

In a second experiment, we trained our TensorFaces
model on images of 23 people, 5 viewpoints (0,±17,±34
degrees), 3 illuminations (center light, left light, right light)
and tested it on the 4th illumination (left+right). PCA
yielded a poor recognition rate of 27% while Tensorfaces
achieved a recognition rate of 88%.

3 Dimensionality Reduction

Optimal dimensionality reduction in matrix PCA is ob-
tained by truncating the SVD (i.e., deleting eigenvectors
associated with the smallest eigenvalues). Unfortunately,
optimal dimensionality reduction is not as straightforward
in multilinear analysis.

3.1 Mode Matrix Truncation

A truncation of the mode matrices of the data tensor D
results in an approximation D̂ with reduced ranks R1 ≤
R̄1, R2 ≤ R̄2, . . . , RN ≤ R̄N , where R̄n = rankn(D) =
rank(D(n)) = rank(Un) is the n-rank of D for 1 ≤ n ≤ N .

4
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Figure 5: Data approximation through truncation. The data ten-
sor D can be decomposed into the product of a core tensor Z and
N mode matrices U1 . . .UN ; for the N = 3 case illustrated here,
D = Z×1U1×2U2×3U3. Deletion of the last mode-1 eigenvec-
tor of U1 incurs an error in the approximation equal to σ2

I1 , which
equals the Frobenius norm of the (grey) subtensor of Z whose
row vectors would normally multiply the eigenvector in the mode-
1 product Z ×1 U1.

The error of this approximation is

‖D − D̂‖2 =
R̄1∑

i1=R1+1

R̄2∑

i2=R2+1

· · ·
R̄N∑

iN=RN+1

Z2
i1i2...iN

(6)

The error is bounded by the sum of squared singular values
associated with the discarded singular vectors:

‖D−D̂‖2 ≤
R̄1∑

i1=R1+1

σ2
i1+

R̄2∑

i2=R2+1

σ2
i2+· · ·+

R̄N∑

iN=RN+1

σ2
iN

.

(7)
Note that the singular value associated with the mth singular
vector in mode matrix Un is equal to ‖Zin=m‖; i.e., the
Frobenius norm of subtensor Zin=m of the core tensor Z
(Fig. 5).

3.2 N-Mode Orthogonal Iteration Algorithm

Truncation of the mode matrices resulting from the N -mode
SVD algorithm may yield a good reduced-dimensionality
approximation D̂, but it is generally not optimal. A locally
optimal dimensionality reduction scheme for tensors is to
compute for D a best rank-(R1, R2, . . . , RN ) approxima-
tion4 D̂ = Ẑ ×1 Û1 ×2 Û2 . . . ×N ÛN , with orthonormal
In × Rn mode matrices Ûn, for n = 1, 2, . . . , N , which
minimizes the error function [2, 3, 9]

e = ‖D−Ẑ×1Û1 . . .×N ÛN‖+
N∑

i=1

Λi‖ÛT
i Ûi−I‖, (8)

4This best rank-(R1, R2, . . . , RN ) problem should not be confused
with the classical “best rank-R” problem for tensors [4]: An N th-order
tensor A ∈ IRI1×I2×...×IN has rank 1 when it is expressible as the outer
product of N vectors: A = u1 ◦ u2 ◦ . . . ◦ uN . The tensor element is
expressed as aij...m = u1iu2j . . . uN m, where u1i is the ith component

of u1, etc. The rank of a N th order tensor A, denoted R = rank(A), is
the minimal number of rank-1 tensors that yield A in a linear combination:

A =
∑R

r=1
σru

(r)
1 ◦ u

(r)
2 ◦ . . . ◦ u

(r)
N . Finding this minimal linear

combination for a given tensor A is known as the best rank-R problem.

where the Λi are Lagrange multiplier matrices. To this end,
our dimensionality-reducing N -mode orthogonal iteration
algorithm (a higher-order extension of the orthogonal itera-
tion for matrices) computes D̂ as follows:

1. Apply Step 1 of the N -mode SVD algorithm to D;
truncate each mode matrix Un, for n = 1, 2, . . . , N ,
to Rn columns, thus obtaining the initial (k = 0) mode
matrices U0

1,U
0
2, . . .U

0
N .5

2. Iterate, for k = 0, 1, . . .:

2.1. Set Ũk+1
1 = D ×2 Uk

2
T ×3 Uk

3
T

. . . ×N Uk
N

T
;

mode-1 flatten tensor Ũk+1
1 to obtain the matrix

Ũk+1
1 ; set the columns of Uk+1

1 to an orthonor-
mal basis for the R1-dimensional dominant sub-
space of Ũk+1

1 .6

2.2. Set Ũk+1
2 = D×1 Uk+1

1

T ×3 Uk
3

T
. . .×N Uk

N

T
;

mode-2 flatten tensor Ũk+1
2 to obtain the matrix

Ũk+1
2 ; set the columns of Uk+1

2 to an orthonor-
mal basis for the R2-dimensional dominant sub-
space of Ũk+1

2 .

· · ·
2.N. Set Ũk+1

N = D ×1 Uk+1
1

T ×2 Uk+1
2

T
. . . ×N−1

Uk+1
N−1

T
; mode-N flatten Ũk+1

N to obtain the ma-

trix Ũk+1
N ; set the columns of Uk+1

N to an or-
thonormal basis for the RN -dimensional domi-
nant subspace of Ũk+1

N .

until convergence: ||Uk+1
n

T · Uk
n||2 > (1 − ε)Rn, for

1 ≤ n ≤ N .

3. Set the converged mode matrices to Û1, Û2, . . . , ÛN .
Compute the core tensor Ẑ = ŨN ×N ÛT

N . The rank-
reduced approximation of D is D̂ = Ẑ ×1 Û1 ×2

Û2 . . . ×N ÛN .

4 Dimensionality Reduction in Illumination

To illustrate the dimensionality reduction abilities of the
N -mode orthogonal iteration algorithm presented in Sec-
tion 3.2, we employ from the Weizmann facial image
database an ensemble of images of 11 people, each pho-
tographed in neutral expression from a frontal viewpoint
under 16 different illuminations. Fig. 6(a) shows three of
the 176 original 7943-pixel images for one of the subjects.

5The complexity of computing the SVD of an m × n matrix A (see
Footnote 3) is O(mn min(m, n)), which is costly when both m and n
are large. However, we can compute the R leading singular factors of A
efficiently by first computing the rank-R modified Gram-Schmidt (MGS)
orthogonal factorization A ≈ QR, where Q is m × R and R is R × n,
and then computing the SVD of R and multiplying it as follows: A ≈
Q(ŨΣVT ) = (QŨ)ΣVT = UΣVT .

6We can compute Uk+1
1 as the I1 × R1 matrix whose columns are

the first R1 columns of the left matrix of the SVD of Ũk+1
1 . For greater

efficiency, we can proceed as suggested in Footnote 5.
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Applying the N -mode orthogonal iteration algorithm,
we compute in Step 1 an N -mode SVD of the 11×16×7943
ensemble tensor D and obtain mode matrices Upeople, Uillums,
and Upixels of dimension 11 × 11, 16 × 16, and 7943 × 176,
respectively. We then truncate the illumination mode ma-
trix Uillums from 16 columns to 3, thus obtaining the 16 × 3
reduced-rank matrix Ûillums. We iterate in Step 2, updating
Ûillums along with the other (non-truncated) mode matrices
Ûpeople and Ûpixels, until convergence (3 iterations).

Fig. 6(b) shows illumination-compressed images of the
subject extracted from the dimensionality-reduced multilin-
ear representation D̂ = Ẑ ×1 Ûpeople ×2 Ûillums ×3 Ûpixels. Note
that the 81.25% reduction of the illumination dimension-
ality suppresses illumination effects such as shadows and
highlights, but that it does not substantially degrade the ap-
pearance of the person, since the rank of the person mode
matrix was not reduced. Increasing the illumination dimen-
sionality to 6, the shadows and highlights begin to reappear,
as shown in Fig. 6(c).

Thus, our multilinear model enables a strategic dimen-
sionality reduction, which is more targeted than linear
(PCA) dimensionality reduction. Fig. 7 compares Tensor-
Faces image compression against PCA compression. Ap-
plying PCA compression, we retain in Fig. 7(b) the 11 (out
of 176) most dominant eigenfaces and in Fig. 7(d) the 33
most dominant eigenfaces. Applying TensorFaces, we com-
press the dimensionality of the illumination mode from 16
to 1 (Rillums = 1) in Fig. 7(c) and from 16 to 3 (Rillums = 3) in
Fig. 7(e). Since Rpeople = 11, in the first instance we retain
11 × 1 TensorFaces, while in the second we retain 11 × 3
TensorFaces, each time equaling the number of retained
eigenfaces. Note that the total number of coefficients repre-
senting the compressed images is 11+1 and 11+3, respec-
tively. Interestingly, the root mean squared errors (RMSE)
relative to the original images, which are indicated in the
figure, are higher for the TensorFaces compressions than
they are for the PCA compressions. However, the “percep-
tual error” [8] of the TensorFaces compressions are signif-
icantly smaller, yielding substantially better image quality
than PCA in subspaces of comparable dimension.

5 Conclusion

We have approached the analysis of an ensemble of images
resulting from the confluence of multiple factors related to
scene structure, illumination, and viewpoint as a problem
in multilinear algebra. The ensemble is represented as a
higher-order tensor. This image data tensor is decomposed
into the product of a core tensor and several factor-specific
mode matrices. The core tensor characterizes the interac-
tion between the various factors, each of which is repre-
sented explicitly by a mode matrix whose orthonormal col-
umn vectors are factor-specific basis vectors.

We presented an N -mode orthogonal iteration algorithm
for learning parsimonious, reduced-dimensionality multi-

Original 3 Illum. Dims. 6 Illum. Dims.

(a) (b) (c)

Figure 6: A subject was imaged under 16 different illuminations.
(a) Three original images displaying different illumination condi-
tions. (b) Compression of the images in (a) by reducing the il-
lumination representation from 16 dimensions to 3 (Rillums = 3);
i.e., Ûillums is reduced to a 16 × 3 matrix. This degrades the illu-
mination effects (cast shadows, highlights). Arrows indicate the
shadow cast by the nose in the original images (a) and the atten-
uated shadow in the compressed images (b). The shadow begins
to reappear when the illumination dimensionality is increased to 6
(Rillums = 6) in (c); i.e., Ûillums a 16 × 6 matrix. Image sharpness
and detailed facial features are well-preserved in both (b) and (c).

linear models from raw image data tensors. The algorithm
enables us to reduce the dimensionality (rank) of each mode
matrix selectively. As an illustration of our technique, we
demonstrated its ability to reduce significantly the dimen-
sionality of the illumination subspace while not degrading
other factors, such as facial appearance, preserving detailed
facial features.

Our multilinear formulation accommodates any number
of factors by exploiting tensor machinery. It subsumes as
special cases the simple linear (1-factor) analysis known as
principal components analysis (PCA), as well as bilinear
(2-factor) analysis [7]. We are exploring several applica-
tions of multilinear analysis to computer vision and com-
puter graphics; e.g., the synthesis and recognition of actions
from human motion data [11] and the image-based render-
ing of textured surfaces [14].
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Original PCA TensorFaces PCA TensorFaces
11 Eigenfaces 11 TensorFaces 33 Eigenfaces 33 TensorFaces

RMSE: 14.62 33.47 9.26 20.22

RMSE: 14.33 30.58 7.78 14.69

(a) (b) (c) (d) (e)

Figure 7: The “perceptual error” of TensorFaces compression of illumination is smaller than indiscriminate PCA compression in a sub-
space of comparable dimension. (a) Original images. (b) PCA image compression obtained by retaining the 11 most dominant eigenfaces.
(c) TensorFaces image compression obtained by retaining 11 TensorFaces associated with Ûpeople ∈ IR11×11 and Ûillums ∈ IR16×1, which
reduces the illumination representation from 16 dimensions to 1 (Rillums = 1). (d) PCA image compression obtained by retaining the 33
most dominant eigenfaces. (e) TensorFaces image compression obtained by retaining 33 TensorFaces associated with Ûpeople ∈ IR11×11

and Ûillums ∈ IR16×3, which reduces the illumination representation from 16 dimensions to 3 (Rillums = 3). Compared to the original
images, the root mean squared errors (RMSE) of the PCA-compressed images are lower, yet the TensorFaces-compressed images have
significantly better perceptual quality.
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