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Suppose d>2, n>d+1, and we have a set P of n points in d-dimensional Euclidean space.
Then P contains a subset Q of d points such that for any p∈P , the convex hull of Q∪{p}
does not contain the origin in its interior.

We also show that for non-empty, finite point sets A1, . . . ,Ad+1 in R
d, if the origin is

contained in the convex hull of Ai ∪Aj for all 1≤ i< j ≤ d+1, then there is a simplex S
containing the origin such that |S∩Ai|=1 for every 1≤ i≤d+1. This is a generalization of
Bárány’s colored Carathéodory theorem, and in a dual version, it gives a spherical version
of Lovász’ colored Helly theorem.

1. Introduction

Let P be a finite point set in R
d, in general position with respect to the

origin O, in the sense that no k elements of P lie in a (k−1)-dimensional
linear subspace of R

d (2≤k≤d). We say that P surrounds the origin if for
every Q⊂P with |Q|= d, there exists an x∈P \Q such that the origin is
contained in conv({x}∪Q), the convex hull of {x}∪Q.

In the special case d=2, consider a planar point set P ={p1,p2, . . . ,pn},
whose elements are listed and enumerated mod n in cyclic order, as they
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can be seen from the origin. Clearly, P surrounds the origin if and only if
for every i, there exists j such that the triangle pipi+1pj contains the origin
in its interior. From this, it can be deduced that n must be odd. This so-
called “antipodality” property of point sets was explored by Lovász [8] and
others [4,9] to bound the maximum number of “halving lines” of a set of n
points in the plane.

R. Strausz [10] discovered the following interesting property of planar
point sets P surrounding the origin.

Proposition 1 (Strausz). For any coloring of the elements of P with three
colors such that every color is used at least once, there is a rainbow triangle
which contains the origin in its interior, that is, a triangle whose vertices are
of different colors.

Using the terminology of [1], we can say that the 3-uniform hypergraph
consisting of all triples in P whose convex hulls contain the origin is tight.

It turns out, somewhat counter-intuitively, that in three and higher di-
mensions, there exists no nontrivial point set that surrounds the origin. By
an application of Barnette’s inequality for the minimal number of facets of
a simplicial polytope, we show the following.

Theorem 2. Let d > 2 and let P be a finite point set in R
d in general

position with respect to the origin, and suppose that |P | > d+1. Then P
contains a d-tuple Q such that the convex hull of Q∪{x} does not contain
the origin for any x∈P .

The above property can be generalized as follows. For any 0≤k≤d+1,
we say that the set P ⊂R

d has property S(k), if for every Q⊂P with |Q|=k,
there exists an R⊂P\Q with |R|=d+1−k, such that the origin is contained
in conv(Q∪R).

Obviously, property S(k) depends on the choice of origin, and it is mono-
tonic in the sense that property S(k) is stronger than property S(k − 1).
Carathéodory’s theorem (see [6]) states that if the origin is contained
in convP , then it is contained in the convex hull of some (d+1)-tuple of P ,
or simply, O∈ convP implies property S(0). In fact, we may triangulate P
from any given point of P which implies that properties S(0) and S(1) are
equivalent.

At the other end of the spectrum, it is easy to show that if |P |>d+1, then
P does not have property S(d+1) (this immediately follows by triangulating
the point set). Theorem 2 tells us that for d> 2 and |P |≥ d+1, properties
S(d+1) and S(d) are equivalent. The following two questions arise.
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Problem 3. Let d≥2 be fixed.

1. What is the largest integer k=k(d) such that there are arbitrarily large
finite point sets P ⊂R

d in general position with respect to the origin that
have property S(k)?

2. What is the smallest integer K =K(d) such that there is no finite point
set P ⊂R

d in general position with respect to the origin with more than
d+1 elements, which has property S(K +1)?

Clearly, we have k(d)≤K(d), for every d.

We will prove Theorem 2 in Section 2, and in Section 3 we use the Gale
transform to give an equivalent formulation of Problem 3 in terms of facets of
convex polytopes. From this viewpoint it will be easy to extract the following
lower bound on k(d).

Theorem 4. For every integer d≥2, there exist arbitrarily large point sets
in R

d in general position with respect to the origin with property S
(⌊

d
2

⌋
+1

)
.

In other words, k(d)≥
⌊

d
2

⌋
+1.

From Theorems 2 and 4 it follows that k(2) = 2 = K(2) and k(3) = 2 =
K(3). It would be interesting to know if there are values of d for which
k(d)<K(d) holds.

In Section 4 we return to R. Strausz’ original observation concerning
3-colorings of planar point sets that surround the origin. We noticed that
Proposition 1 is a consequence of the following.

Theorem 5. Let A1, . . . ,Ad+1 be non-empty, finite point sets in R
d. If the

origin is contained in the convex hull of Ai ∪Aj for all 1 ≤ i < j ≤ d + 1,
then the origin is contained in some simplex S with |S ∩Ai| = 1 for every
1≤ i≤d+1.

To see how this relates to Proposition 1, consider a 3-coloring of a planar
point set P that surrounds the origin, that is, a partition of P into non-
empty parts A1,A2,A3. If the origin is not contained in the convex hull of,
say A1 ∪A2, then for any point a1 ∈A1 and any point of a2 ∈A2, the fact
that P surrounds the origin implies that there exists a point a3 which must
belong to A3, such that the origin is contained in the triangle a1a2a3. On
the other hand, if the origin is contained in the convex hulls of the pairwise
unions, Ai∪Aj, then there exists a rainbow triangle that contains the origin,
by Theorem 5.

Another interesting special case of Theorem 5 is when the origin is con-
tained in the convex hull of Ai for every 1≤ i≤d+1. This is Bárány’s version
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of Carathéodory’s theorem [2], which is often called the Colored Carathédory
Theorem.

There is a well-known dual statement to Bárány’s theorem, often called
the Colored Helly Theorem, which had been discovered earlier by Lovász
(see Section 5). In Section 5 we establish a dual version of Theorem 5 (The-
orem 11), which can be interpreted as a colored version of the Spherical
Helly Theorem (see [6] for details).

2. Proof of Theorem 2

A simplicial polytope is a convex polytope for which every k-dimensional
face is a k-simplex. In particular, if all the (d + 1)-tuples of a point set
P ⊂R

d are affinely independent, then convP is a simplicial polytope, and if
P is also in convex position then the number of vertices of convP equals |P |.

Let P be a d-dimensional polytope. For 0≤k≤d−1 we denote by fk(P )
the number of k-dimensional faces of P . A special case of Barnette’s lower
bound theorem [3] states that if P is a simplicial polytope, then we must
have

fd−1(P ) ≥ (d − 1)f0(P ) − (d + 1)(d − 2),

which for d=3 is an equality by Euler’s polyhedral formula.

Proof of Theorem 2. For d≥3, let P be an n-point set in R
d (n≥d+1) in

general position with respect to the origin. We will show that if P surrounds
the origin, then n=d+1 which will prove Theorem 2.

First, project P from the origin to the unit sphere centered at the origin,
to obtain a point set P ′ in convex position. It is clear that P ′ is also in
general position with respect to the origin and that P ′ surrounds the origin
if and only if P does. In fact, it suffices to check this for the case when
P is a simplex. Moreover, by projecting some of the points slightly farther
away from the origin, if necessary, we can assume that P ′ is not only in
general position with respect to the origin, but that all the (d+1)-tuples of
P ′ are affinely independent. Therefore convP ′ is a simplicial polytope on n
vertices, which we denote by S.

Let v be a vertex of S. Since P ′ is in general position with respect to the
origin, the line passing through v and O intersects the relative interior of a
unique facet of S, which gives us a function

λ : {vertices of F} → {facets of F}.

Now, if P surrounds the origin, for every facet F of S, there must exist a
vertex v of S such that the origin is contained in the simplex spanned by v
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and F . This implies that λ(v) = F . Therefore the function λ is surjective,
and we must have f0(S)≥fd−1(S). By Barnette’s inequality, we obtain

n = f0(S) ≥ (d − 1)f0(S) − (d + 1)(d − 2).

Since d≥3, this implies n≤d+1, as required.

Remark. We found several other proofs of Theorem 2. One can show that
if there is an n-point set in R

d (d > 3) that surrounds the origin, one can,
by a suitable projection, get an (n−1)-point set in R

d−1 that surrounds the
origin. Thus we can reduce the problem to R

3.
Another approach is by counting simplices of triangulations of an n-point

set in R
d, analogously to the argument in [5].

3. k-surrounding sets

A point set P in general position with respect to the origin O is said to be
k-surrounding, or is said to have property S(k), if any k-element subset of
P can be extended to a (d+1)-element subset of P that contains O in its
interior.

Proof of Theorem 4. The case when d is odd follows from the case when
d is even. To see this, suppose P ⊂R

2k has property S(k+1), and consider
P as a subset of the hyperplane {(x1, . . . ,x2k,−1)} ⊂ R

2k+1, such that P
surrounds the point (0, . . . ,0,−1). Let Q = P ∪ {(0, . . . ,0,1)}. It is easily
seen that Q has property S(k +1): Let X ⊂ Q be of size k +1. If X ⊂ P ,
there exists a set Y ⊂P with |Y |= k such that (0, . . . ,0,−1) ∈ convX ∪Y .
Then the origin is contained in conv (X∪Y ∪{(0, . . . ,0,1)}). Otherwise, X =
X ′ ∪ {(0, . . . ,0,1)}, where X ′ ⊂ P and |X ′| = k. Taking into account that
property S(k + 1) implies property S(k), there exists a set Y ⊂ P with
|Y |=k+1 such that (0, . . . ,0,−1)∈convX ′∪Y , and consequently, the origin
is contained in convX ∪Y . Therefore, it suffices to consider the case when
d is even.

To complete the proof of Theorem 4, it will be more convenient to trans-
form the problem via the well known Gale transform. (For details concerning
the Gale transform, we refer the reader to [7] or [11].)

Let d≥ 2 be an integer and suppose P ⊂ R
d is in general position with

respect to the origin, |P |=n, and P has property S(k). The Gale transform
of P ∪{O} is a (|P |+1)-element vector configuration in R

n−d, which we
denote by V∪{1}. Here |V|=n and the vector 1 corresponds to the origin O
in the “primal” space.
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Property S(k) corresponds to the following property of V: For every
U⊂V with |U|=n−k, there exists W⊂U with |W|=n−d−1, such that
(nW ·1)(nW ·v) < 0 for every v ∈ V \W. Here, nW is some fixed vector
orthogonal to W, and · denotes the usual dot product.

In particular, property S(k) implies that there is an (n− d− 1)-dimen-
sional hyperplane H through the origin with normal vector n such that
(n ·1)(n ·v)<0 for every v∈V. Therefore, if we extend the vectors of V to
rays, they will intersect H−1. The set of intersection points, P ∗, is a set of
n points in general position in R

n−d−1 with the following property, denoted
by S∗(k): Among any n−k points of P ∗, there are some n−d−1 that form
a facet of convP ∗.

In fact, this necessary condition is also sufficient, for one can choose an
appropriate vector 1 in R

n−d, which yields a corresponding point set P ⊂R
d

with property S(k). Summarizing:

Observation 6. There exist n points in R
d satisfying property S(k) if and

only if there exist n points in R
n−d−1 satisfying property S∗(k).

We now complete the proof of Theorem 4. First note that for d=2, the
regular (2n+1)-gon has property S(2). It remains to exhibit arbitrarily large
point sets in R

d for even d≥4 with property S
(

d
2 +1

)
.

For positive integers k and n>2k−1, let C(n,k) denote the cyclic poly-
tope on n vertices in R

n−2k+1. The facets of C(n,k) have a simple charac-
terization known as Gale’s evenness condition (see [7] or [11]). Using this
characterization, it is easy to show that when n is odd, C(n,k) has prop-
erty S∗(k). Hence, by Observation 6, there exist n points in R

2k−2 with
property S(k).

By Observation 6, Problem 3 can be reformulated in terms of the prop-
erty S∗(k). We obtain the following.

Problem 7. Let d≥2 be fixed.
1. What is the largest integer k = k(d) such that there exists arbitrarily

large finite point sets P in general position in R
|P |−d−1 that have prop-

erty S∗(k)?
2. What is the smallest integer K = K(d) such that there exists no finite

point set P in general position in R
|P |−d−1 with more than d+1 elements,

which has property S∗(K +1)?

4. Proof of Theorem 5

Let S
d−1 denote the (d− 1)-dimensional unit sphere in R

d centered at the
origin. By central projection from the origin it is clear that it suffices to prove
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Theorem 5 for point sets on S
d−1. For the proof it will also be convenient to

make a general position assumption. We say that a finite point set A⊂S
d−1

is in general position if any 1≤k≤d points of A span a k-dimensional linear
subspace of R

d. Thus a set of points is in general position on S
d−1 if and

only if it is in general position with respect to the origin in (as a point set
in R

d). We will prove the following.

Theorem 8. Let A1, . . . ,Ad+1 be disjoint, non-empty, finite point sets such
that A1∪·· ·∪Ad+1 is in general position on S

d−1. If the origin is contained
in the convex hull of Ai ∪Aj for all 1 ≤ i < j ≤ d + 1, then the origin is
contained in some simplex S with |S∩Ai|=1 for every 1≤ i≤d+1.

It is clear that Theorem 8 implies Theorem 5. For an infinite sequence of
convex sets {Kj}∞j=1 converging to a compact convex set K in R

d, if the origin
is contained in every Kj , then the origin is contained in K as well. Thus we
may replace the points of

⋃
Ai from Theorem 5 by convergent sequences of

points in general position on S
d−1, obtaining an infinite sequence of point

sets {Cj}∞j=1, where each Cj =A(1,j)∪·· ·∪A(d+1,j) satisfies the conditions of
Theorem 8. Therefore we can find an infinite sequence {Sj}∞j=1 of simplices
containing the origin such that |Sj ∩ A(i,j)| = 1 for every 1 ≤ i ≤ d + 1.
The sequence {Sj} converges to a (possibly degenerate) simplex S, where
|S∩Ai|=1 for every 1≤ i≤d+1, which must contain the origin as well.

For 0≤ k ≤ d, it makes sense to speak of a k-simplex of A, that is, the
spherical convex hull of some k+1 points of A, which is denoted by convS .
More generally, if X is contained in some open hemisphere, then convS X
is the intersection of all open hemispheres that contain X. The fact that a
point set is in general position on S

d−1 implies that any d points of A are
contained in some open hemisphere H⊂S

d−1.

Remark. This is not the standard definition of the spherical convex hull,
and it might be more appropriate to call it the strong spherical convex hull.
A subset K ⊂ S

d−1 is called strongly convex if it is contained in an open
hemisphere, and for every pair of points x and y in K, the shortest arc from
x to y is contained in K (see [6]). By this definition, we require a set to be
contained in some open hemisphere in order to have a convex hull. It is also
important to note that a point set in general position on S

d−1 contains the
origin in its affine convex hull (or simply, the convex hull) if and only if it
is not contained in any open hemisphere. Thus the point sets that contain
the origin in their affine convex hull are precisely the ones for which the
spherical convex hull is undefined.
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Lemma 9. For d≥2, let A1, . . . ,Ad be disjoint, non-empty, finite point sets
on S

d−1 such that A1∪·· ·∪Ad is in general position, and suppose Ai∪Aj is
not contained in any open hemisphere, for any 1≤ i<j≤d. Let U denote the
union of all (d−1)-simplices spanned by the d-tuples consisting of a single
point from each Ai. If U does not cover S

d−1, then for some 1≤ i≤d there
exists an open hemisphere H such that Ai⊂H⊂U .

The proof of Lemma 9 requires a basic topological fact (Claim 10, below)
which follows by considering the (Brouwer) degree of a mapping f :Sk→S

k,
but for completeness we also give a direct proof.

For d ≥ 2, let K be a finite collection of (d − 1)-simplices on S
d−1.

A point p ∈ S
d−1 will be called generic with respect to K provided that

p is not contained in any of the faces of the simplices of K of dimen-
sion less than d− 1. In other words, p is generic with respect to K if and
only if p does not belong to the boundary of any member of K. For a
generic point p, let the order of p with respect to K denote the number
of (d− 1)-simplices of K which contain p in their relative interiors. (We
may omit the ‘with respect to K’ when it is clear from the situation what
K is.)

Claim 10. For k ≥ 2, let B = {a1, . . . ,ak, b1, . . . , bk} be distinct points in
general position on S

k−1. Let K denote the collection of all (k−1)-simplices
formed by k-tuples of B with no repeated indices. Either the order of every
generic point is even, or the order of every generic point is odd.

Proof. Let L be the union of faces of the simplices of K, of dimension less
than k− 1. Then S

k−1 \L is a collection of finitely many open parts, and
any pair of generic points can be connected by a path on S

k−1 that does
not pass through any faces of dimension less than k−2. Thus it suffices to
consider how the order changes as we pass through a face of dimension k−2.
For any face F of dimension k−2, there are precisely two points ai and bi

(for a particular 1≤ i ≤ k) such that convS (F ∪{ai}) and convS (F ∪{bi})
are (k− 1)-simplices of K. Let H be the unique great (k− 2)-sphere that
contains F . If ai and bi are contained in the same open hemisphere bounded
by H, then the order changes by ±2 as we pass through F . If ai and bi are
contained in opposite open hemispheres bounded by H, then the order stays
the same as we pass through F .

Proof of Lemma 9. Suppose U does not cover S
d−1. Since U is the union of

finitely many simplices, U is closed and has a boundary which is a subset of
finitely many (d−2)-faces of simplices of U . Let p be a point of the boundary
of U with the property that it is contained in the relative interior of a unique
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(d−2)-face. Clearly such a point must exist, so suppose p is contained in the
relative interior of the unique (d− 2)-face, F = convS {a1, . . . ,ad−1}, where
ai∈Ai.

There is a unique great (d − 2)-sphere, H, which contains the points
a1, . . . ,ad−1 and bounds disjoint open hemispheres H+ and H−. If there
exists points x+∈Ad∩H+ and x−∈Ad∩H−, then p belongs to the (d−1)-
simplices convS ({x+}∪F ) and convS ({x−}∪F ), which have disjoint relative
interiors, share the common face F , and belong to U . This is impossible since
p is a boundary point of U , so we may assume that Ad⊂H−.

For every 1 ≤ i ≤ d− 1, we must have Ai ∩H+ �= ∅. If not, there ex-
ists an Ai such that Ai ∪Ad ⊂ H ∪H−, which, by the general position as-
sumption, means that Ai ∪Ad is contained in some open hemisphere. Pick
points a ∈ Ad ⊂ H− and pi ∈ Ai ∩ H+, and let bi = H ∩ convS {pi,a}.
It follows from the general position assumption that the set of points
J = {a1, . . . ,ad−1, b1, . . . , bd−1} is in general position on H. Let K denote
the set of (d− 2)-simplices spanned by the (d− 1)-tuples of J with no re-
peated indices. By our choice of p, it follows that p is a generic point in H
with respect to K.

Let G �=F be a (d−2)-simplex of K. It follows from how we defined the
points of J , that any point in the relative interior of G is contained in the
relative interior of a (d−1)-simplex spanned by U , for instance,

x ∈ int convS {a1, a2, b3, b4, . . . , bd−1} ⊂ int convS {a, a1, a2, p3, p4, . . . , pd−1}.

This means that p is covered only once (in H) by the (d−2)-simplices of K,
and hence has order 1. So by Claim 10, with k = d−1, the simplices of K
must cover H, and therefore

Ad ⊂ (H− ∪ H) ⊂
⋃

X∈K

convS ({a} ∪ X),

which completes the proof.

Proof of Theorem 8. The sets A1, . . . ,Ad are in general position on S
d−1

and satisfy the conditions of Lemma 9. Thus they define the set U . If there
exists a point a ∈ Ad+1 such that {−a} ∩U �= ∅, then −a is contained in
some (d − 1)-simplex, S of U , which means that the origin is contained
in conv({a} ∪S). On the other hand, if (−Ad+1)∩U = ∅, then U cannot
cover S

d−1, so by Lemma 9 there is some 1≤ i≤d and an open hemisphere H
such that Ai∪Ad+1⊂H⊂U , which is a contradiction.
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5. A Colored Spherical Helly Theorem

An open hemisphere H⊂S
d−1 determines an antipodal pair of normal vec-

tors, and the one contained in H we refer to as the pole of H.
The Spherical Helly Theorem states that for any collection C of closed

strongly convex sets on S
d−1, there is a point in common to every member

of C if and only if every d+1 or fewer members of C have a point in common.
This can be proved as a consequence of Helly’s theorem in R

d. Moreover, if
the members of C have no point in common, there exist open hemispheres
H1, . . . ,Hd+1 and sets K1, . . . ,Kd+1 in C such that Ki ⊂ Hi and H1 ∩ ·· · ∩
Hd+1 = ∅. This in turn implies that there is no open hemisphere which
contains the poles of all the Hi.

The Colored Helly Theorem states that if C1, . . . ,Cd+1 are collections of
compact convex sets in R

d, and every selection of sets from distinct Ci have
a point in common, then, for some 1≤ i≤d+1, there is a point in common
to every member of Ci.

We can now state the dual version of Theorem 5. It can be interpreted as
a colored version of the Spherical Helly Theorem, and it implies the Colored
Helly Theorem.

Theorem 11. Let C1, . . . ,Cd+1 be non-empty, finite collections of closed
strongly convex sets on S

d−1. If every selection of sets from distinct Ci have
a point in common, then for some 1≤ i<j≤d+1 there is a point in common
to every member of Ci∪Cj.

Proof. Suppose for contradiction that for each pair of collections Ci,Cj (1≤
i < j ≤ d+1), the intersection of the members of Ci ∪Cj is empty. We will
define point sets A1, . . . ,Ad+1 and apply Theorem 5.

For a given pair of indices i < j, by the Spherical Helly Theorem there
exist sets K1, . . . ,Kd+1 ∈ Ci ∪ Cj, and open hemispheres H1, . . . ,Hd+1 with
Ki ⊂Hi such that H1∩ ·· · ∩Hd+1 = ∅. We associate the open hemispheres
with points a1, . . . ,ad+1 (the poles of the Hi), and it follows that they are
not contained in any open hemisphere. Let the point am ∈ Ai if Km ∈ Ci

and am ∈Aj if Km ∈Cj . Proceeding this way for every pair of indices i< j,
gives us point sets A1, . . . ,Ad+1, at most one of which is empty. If there is an
Ai that is empty, choose any K ∈ Ci and an open hemisphere H such that
K⊂H. Let a be the pole of H and set Ai ={a}.

By construction, the sets Ai are non-empty and they satisfy the condition
that Ai∪Aj is not contained in any open hemisphere. By Theorem 5, there
exist points a1 ∈ A1, . . . ,ad+1 ∈ Ad+1 that are not contained in any open
hemisphere. This implies that the corresponding hemispheres H1, . . . ,Hd+1
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have no point in common, which is a contradiction, since each Hi contains
a K∈Ci.

We show that Theorem 11 implies the Colored Helly Theorem. Given
collections C1, . . . ,Cd+1, let D be a large ball that contains every member of
C1∪·· ·∪Cd+1. If there is a point in common to every member of a subcollec-
tion of C1∪·· ·∪Cd+1, then this point must be in D as well. Let Cd+2 ={D}.

We regard R
d as an affine hyperplane in R

d+1 (which does not pass
through the origin) and centrally project the members of C1∪·· ·∪Cd+2

onto S
d. This provides a bijection between R

d and the points of an open
hemisphere of S

d. If the original collections satisfy the hypothesis of the
Colored Helly Theorem, then the projected collections will satisfy the hy-
pothesis of Theorem 11, and since we can find a point in common to ev-
ery member of two collections, one of these collections must be different
from Cd+2. So indeed Theorem 11 implies Lovász’ colored Helly theorem.

Remark. The previous argument implicitly shows that Theorem 11 (and
thus Theorem 5, too) is tight in the sense that we cannot hope for a point
in common to three of the collections. If such a statement were true, then it
would imply that we could find a point in common to two of the collections
in Lovász’ colored Helly theorem, but this is clearly not true. It is also easy
to see that if we reduce the number of collections in Theorem 11, then there
may not be a point in common to every member of even a single collection.

Remark. While preparing this manuscript we were made aware that The-
orems 5 and 11 were independently discovered by J. L. Arocha, I. Bárány,
J. Bracho, R. Fabila and L. Montejano.

References

[1] J. L. Arocha, J. Bracho and V. Neumann-Lara: On the minimum size of tight
hypergraphs, J. Graph Theory 16 (1992), 319–326.
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