
Chapter 25

Isometries of Hermitian Spaces

25.1 The Cartan-Dieudonné Theorem, Hermitian Case

The Cartan-Dieudonné theorem can be generalized (Theorem 25.1.3), but this requires allowing new types of
hyperplane reflections that we call Hermitian reflections. After doing so, every isometry in U(n) can always
be written as a composition of at most n Hermitian reflections (for n ≥ 2). Better yet, every rotation in
SU(n) can be expressed as the composition of at most 2n−2 (standard) hyperplane reflections! This implies
that every unitary transformation in U(n) is the composition of at most 2n− 1 isometries, with at most one
Hermitian reflection, the other isometries being (standard) hyperplane reflections. The crucial Lemma 7.1.3
is false as is, and needs to be amended. The QR-decomposition of arbitrary complex matrices in terms of
Householder matrices can also be generalized, using a trick.

In order to generalize the Cartan-Dieudonné theorem and the QR-decomposition in terms of Householder
transformations, we need to introduce new kinds of hyperplane reflections. This is not really surprising, since
in the Hermitian case, there are improper isometries whose determinant can be any unit complex number.
Hyperplane reflections are generalized as follows.

Definition 25.1.1 Let E be a Hermitian space of finite dimension. For any hyperplane H , for any nonnull
vector w orthogonal to H , so that E = H ⊕G, where G = Cw, a Hermitian reflection about H of angle θ is
a linear map of the form ρH, θ:E → E, defined such that

ρH, θ(u) = pH(u) + eiθpG(u),

for any unit complex number eiθ %= 1 (i.e. θ %= k2π).

Since u = pH(u) + pG(u), the Hermitian reflection ρH, θ is also expressed as

ρH, θ(u) = u+ (eiθ − 1)pG(u),

or as

ρH, θ(u) = u+ (eiθ − 1)
(u · w)
‖w‖2

w.

Note that the case of a standard hyperplane reflection is obtained when eiθ = −1, i.e., θ = π.

We leave as an easy exercise to check that ρH, θ is indeed an isometry, and that the inverse of ρH, θ is
ρH,−θ. If we pick an orthonormal basis (e1, . . . , en) such that (e1, . . . , en−1) is an orthonormal basis of H ,
the matrix of ρH, θ is
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(
In−1 0

0 eiθ

)

We now come to the main surprise. Given any two distinct vectors u and v such that ‖u‖ = ‖v‖, there
isn’t always a hyperplane reflection mapping u to v, but this can be done using two Hermitian reflections!

Lemma 25.1.2 Let E be any nontrivial Hermitian space.

(1) For any two vectors u, v ∈ E such that u %= v and ‖u‖ = ‖v‖, if u · v = eiθ|u · v|, then the (usual)
reflection s about the hyperplane orthogonal to the vector v − e−iθu is such that s(u) = eiθv.

(2) For any nonnull vector v ∈ E, for any unit complex number eiθ %= 1, there is a Hermitian reflection ρθ
such that

ρθ(v) = eiθv.

As a consequence, for u and v as in (1), we have ρ−θ ◦ s(u) = v.

Proof . (1) Consider the (usual) reflection about the hyperplane orthogonal to w = v − e−iθu. We have

s(u) = u− 2
(u · (v − e−iθu))

‖v − e−iθu‖2
(v − e−iθu).

We need to compute
−2u · (v − e−iθu) and (v − e−iθu) · (v − e−iθu).

Since u · v = eiθ|u · v|, we have

e−iθu · v = |u · v| and eiθv · u = |u · v|.

Using the above and the fact that ‖u‖ = ‖v‖, we get

−2u · (v − e−iθu) = 2eiθ ‖u‖2 − 2u · v,
= 2eiθ(‖u‖2 − |u · v|),

and

(v − e−iθu) · (v − e−iθu) = ‖v‖2 + ‖u‖2 − e−iθu · v − eiθv · u,
= 2(‖u‖2 − |u · v|),

and thus,

−2
(u · (v − e−iθu))

‖(v − e−iθu)‖2
(v − e−iθu) = eiθ(v − e−iθu).

But then,
s(u) = u+ eiθ(v − e−iθu) = u+ eiθv − u = eiθv,

and s(u) = eiθv, as claimed.

(2) This part is easier. Consider the Hermitian reflection

ρθ(u) = u+ (eiθ − 1)
(u · v)
‖v‖2

v.
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We have

ρθ(v) = v + (eiθ − 1)
(v · v)
‖v‖2

v,

= v + (eiθ − 1)v,

= eiθv.

Thus, ρθ(v) = eiθv. Since ρθ is linear, changing v to eiθv, we get

ρ−θ(e
iθv) = v,

and thus, ρ−θ ◦ s(u) = v.

Remarks:

(1) If we use the vector v + e−iθu instead of v − e−iθu, we get s(u) = −eiθv.

(2) Certain authors, such as Kincaid and Cheney [100] and Ciarlet [33], use the vector u+ eiθv instead of
our vector v + e−iθu. The effect of this choice is that they also get s(u) = −eiθv.

(3) If v = ‖u‖ e1, where e1 is a basis vector, u · e1 = a1, where a1 is just the coefficient of u over the basis
vector e1. Then, since u · e1 = eiθ|a1|, the choice of the plus sign in the vector ‖u‖ e1 + e−iθu has the
effect that the coefficient of this vector over e1 is ‖u‖+ |a1|, and no cancellations takes place, which is
preferable for numerical stability (we need to divide by the square norm of this vector).

The last part of Lemma 25.1.2 shows that the Cartan-Dieudonné is salvaged, since we can send u to v
by a sequence of two Hermitian reflections when u %= v and ‖u‖ = ‖v‖, and since the inverse of a Hermitian
reflection is a Hermitian reflection. Actually, because we are over the complex field, a linear map always
have (complex) eigenvalues, and we can get a slightly improved result.

Theorem 25.1.3 Let E be a Hermitian space of dimension n ≥ 1. Every isometry f ∈ U(E) is the
composition f = ρn ◦ ρn−1 ◦ · · · ◦ ρ1 of n isometries ρj, where each ρj is either the identity or a Hermitian
reflection (possibly a standard hyperplane reflection). When n ≥ 2, the identity is the composition of any
hyperplane reflection with itself.

Proof . We prove by induction on n that there is an orthonormal basis of eigenvectors (u1, . . . , un) of f such
that

f(uj) = eiθjuj ,

where eiθj is an eigenvalue associated with uj, for all j, 1 ≤ j ≤ n.

When n = 1, every isometry f ∈ U(E) is either the identity or a Hermitian reflection ρθ, since for any
nonnull vector u, we have f(u) = eiθu for some θ. We let u1 be any nonnull unit vector.

Let us now consider the case where n ≥ 2. Since C is algebraically closed, the characteristic polynomial
det(f −λid) of f has n complex roots which must be the form eiθ, since they have absolute value 1. Pick any
such eigenvalue eiθ1 , and pick any eigenvector u1 %= 0 of f for eiθ1 of unit length. If F = Cu1 is the subspace
spanned by u1, we have f(F ) = F , since f(u1) = eiθ1u1. By lemma 10.2.6, f(F⊥) ⊆ F⊥ and E = F ⊕ F⊥.
Furthermore, it is obvious that the restriction of f to F⊥ is unitary. Since dim (F⊥) = n− 1, we can apply
the induction hypothesis to F⊥, and we get an orthonormal basis of eigenvectors (u2, . . . , un) for F⊥ such
that

f(uj) = eiθjuj ,

where eiθj is an eigenvalue associated with uj, for all j, 2 ≤ j ≤ n Since E = F ⊕ F⊥ and F = Cu1, the
claim is proved. But then, if ρj is the Hermitian reflection about the hyperplane Hj orthogonal to uj and of
angle θj , it is obvious that

f = ρθn ◦ · · · ◦ ρθ1 .
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When n ≥ 2, we have id = s ◦ s for every reflection s.

Remarks:

(1) Any isometry f ∈ U(n) can be express as f = ρθ ◦ g, where g ∈ SU(n) is a rotation, and ρθ is a
Hermitian reflection. Indeed, by the above theorem, with respect to the basis (u1, . . . , un), det(f) =
ei(θ1+···+θn), and letting θ = θ1 + · · · + θn and ρθ be the Hermitian reflection about the hyperplane
orthogonal to u1 and of angle θ, since ρθ ◦ ρ−θ = id, we have

f = (ρθ ◦ ρ−θ) ◦ f = ρθ ◦ (ρ−θ ◦ f).

Letting g = ρ−θ ◦ f , it is obvious that det(g) = 1. As a consequence, there is a bijection between
S1×SU(n) and U(n), where S1 is the unit circle (which corresponds to the group of complex numbers
eiθ of unit length). In fact, it is a homeomorphism.

(2) We abandoned the style of proof used in theorem 7.2.1, because in the Hermitian case, eigenvalues and
eigenvectors always exist, and the proof is simpler that way (in the real case, an isometry may not
have any real eigenvalues!). The sacrifice is that the theorem yields no information on the number of
hyperplane reflections. We shall rectify this situation shortly.

We will now reveal the beautiful trick (found in Mneimné and Testard [128]) that allows us to prove that
every rotation in SU(n) is the composition of at most 2n − 2 (standard) hyperplane reflections. For what
follows, it is more convenient to denote the Hermitian reflection ρH,θ about a hyperplane H as ρu, θ, where
u is any vector orthogonal to H , and to denote a standard reflection about the hyperplane H as hu (it is
trivial that these do not depend on the choice of u in H⊥). Then, given any two distinct orthogonal vectors
u, v such that ‖u‖ = ‖v‖, consider the composition ρv,−θ ◦ ρu, θ. The trick is that this composition can be
expressed as two standard hyperplane reflections! This wonderful fact is proved in the next lemma.

Lemma 25.1.4 Let E be a nontrivial Hermitian space. For any two distinct orthogonal vectors u, v such
that ‖u‖ = ‖v‖, we have

ρv,−θ ◦ ρu, θ = hv−u ◦ hv− e−iθu = hu+ v ◦ hu+ eiθv.

Proof . Since u and v are orthogonal, each one is in the hyperplane orthogonal to the other, and thus,

ρu, θ(u) = eiθu,

ρu, θ(v) = v,

ρv,−θ(u) = u,

ρv,−θ(v) = e−iθv,

hv−u(u) = v,

hv−u(v) = u,

hv− e−iθu(u) = eiθv,

hv− e−iθu(v) = e−iθu.

Consequently, using linearity,

ρv,−θ ◦ ρu, θ(u) = eiθu,

ρv,−θ ◦ ρu, θ(v) = e−iθv,

hv−u ◦ hv− e−iθu(u) = eiθu,

hv−u ◦ hv− e−iθu(v) = e−iθv,
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and since both ρv,−θ ◦ ρu, θ and hv−u ◦ hv− e−iθu are the identity on the orthogonal complement of {u, v},
they are equal. Since we also have

hu+ v(u) = −v,

hu+ v(v) = −u,

hu+ eiθv(u) = −eiθv,

hu+ eiθv(v) = −e−iθu,

it is immediately verified that
hv− u ◦ hv− e−iθu = hu+ v ◦ hu+ eiθv.

We will use Lemma 25.1.4 as follows.

Lemma 25.1.5 Let E be a nontrivial Hermitian space, and let (u1, . . . , un) be some orthonormal basis for
E. For any θ1, . . . , θn such that θ1 + · · ·+ θn = 0, if f ∈ U(n) is the isometry defined such that

f(uj) = eiθjuj ,

for all j, 1 ≤ j ≤ n, then f is a rotation (f ∈ SU(n)), and

f = ρun, θn ◦ · · · ◦ ρu1, θ1

= ρun,−(θ1+···+θn−1) ◦ ρun−1, θ1+···+θn−1 ◦ · · · ◦ ρu2,−θ1 ◦ ρu1, θ1

= hun−un−1 ◦ hun− e−i(θ1+···+θn−1)un−1
◦ · · · ◦ hu2−u1 ◦ hu2− e−iθ1u1

= hun−1+un ◦ hun−1+ ei(θ1+···+θn−1)un
◦ · · · ◦ hu1+u2 ◦ hu1+ eiθ1u2

.

Proof . It is obvious from the definitions that

f = ρun, θn ◦ · · · ◦ ρu1, θ1 ,

and since the determinant of f is

D(f) = eiθ1 · · · eiθn = ei(θ1+···+θn)

and θ1 + · · ·+ θn = 0, we have D(f) = e0 = 1, and f is a rotation. Letting

fk = ρuk,−(θ1+···+θk−1) ◦ ρuk−1, θ1+···+θk−1 ◦ · · · ◦ ρu3,−(θ1+θ2) ◦ ρu2, θ1+θ2 ◦ ρu2,−θ1 ◦ ρu1, θ1 ,

we prove by induction on k, 2 ≤ k ≤ n, that

fk(uj) =






eiθjuj if 1 ≤ j ≤ k − 1,
e−i(θ1+···+θk−1)uk if j = k, and
uj if k + 1 ≤ j ≤ n.

The base case was treated in Lemma 25.1.4. Now, the proof of Lemma 25.1.4 also showed that

ρuk+1,−(θ1+···+θk) ◦ ρuk, θ1+···+θk(uk) = ei(θ1+···+θk)uk,

ρuk+1,−(θ1+···+θk) ◦ ρuk, θ1+···+θk(uk+1) = e−i(θ1+···+θk)uk+1,

and thus, using the induction hypothesis for k (2 ≤ k ≤ n− 1), we have

fk+1(uj) = ρuk+1,−(θ1+···+θk) ◦ ρuk, θ1+···+θk ◦ fk(uj) = eiθjuj, 1 ≤ j ≤ k − 1,

fk+1(uk) = ρuk+1,−(θ1+···+θk) ◦ ρuk, θ1+···+θk ◦ fk(uk) = ei(θ1+···+θk)e−i(θ1+···+θk−1)uk = eiθkuk,

fk+1(uk+1) = ρuk+1,−(θ1+···+θk) ◦ ρuk, θ1+···+θk ◦ fk(uk+1) = e−i(θ1+···+θk)uk+1,

fk+1(uj) = ρuk+1,−(θ1+···+θk) ◦ ρuk, θ1+···+θk ◦ fk(uj) = uj, k + 1 ≤ j ≤ n,



760 CHAPTER 25. ISOMETRIES OF HERMITIAN SPACES

which proves the induction step.

As a summary, we proved that

fn(uj) =

{
eiθjuj if 1 ≤ j ≤ n− 1,
e−i(θ1+···+θn−1)un when j = n,

but since θ1 + · · ·+ θn = 0, we have θn = −(θ1 + · · ·+ θn−1), and the last expression is in fact

fn(un) = eiθnun.

Therefore, we proved that

f = ρun, θn ◦ · · · ◦ ρu1, θ1 = ρun,−(θ1+···+θn−1) ◦ ρun−1, θ1+···+θn−1 ◦ · · · ◦ ρu2,−θ1 ◦ ρu1, θ1 ,

and using Lemma 25.1.4, we also have

f = ρun,−(θ1+···+θn−1) ◦ ρun−1, θ1+···+θn−1 ◦ · · · ◦ ρu2,−θ1 ◦ ρu1, θ1

= hun−un−1 ◦ hun− e−i(θ1+···+θn−1)un−1
◦ · · · ◦ hu2−u1 ◦ hu2− e−iθ1u1

= hun−1+un ◦ hun−1+ ei(θ1+···+θn−1)un
◦ · · · ◦ hu1+u2 ◦ hu1+ eiθ1u2

,

which completes the proof.

We finally get our improved version of the Cartan-Dieudonné theorem.

Theorem 25.1.6 Let E be a Hermitian space of dimension n ≥ 1. Every rotation f ∈ SU(E) different
from the identity is the composition of at most 2n − 2 hyperplane reflections. Every isometry f ∈ U(E)
different from the identity is the composition of at most 2n− 1 isometries, all hyperplane reflections, except
for possibly one Hermitian reflection. When n ≥ 2, the identity is the composition of any reflection with
itself.

Proof . By Theorem 25.1.3, f ∈ SU(n) can be written as a composition

ρun, θn ◦ · · · ◦ ρu1, θ1 ,

where (u1, . . . , un) is an orthonormal basis of eigenvectors. Since f is a rotation, det(f) = 1, and this implies
that θ1 + · · ·+ θn = 0. By lemma 25.1.5,

f = hun− un−1 ◦ hun− e−i(θ1+···+θn−1)un−1
◦ · · · ◦ hu2− u1 ◦ hu2− e−iθ1u1

,

a composition of 2n− 2 hyperplane reflections. In general, if f ∈ U(n), by the remark after Theorem 25.1.3,
f can be written as f = ρθ ◦ g, where g ∈ SU(n) is a rotation, and ρθ is a Hermitian reflection. We conclude
by applying what we just proved to g.

As a corollary of Theorem 25.1.6, the following interesting result can be shown (this is not hard, do it!).
First, recall that a linear map f :E → E is self-adjoint (or Hermitian) iff f = f∗. Then, the subgroup of
U(n) generated by the Hermitian isometries is equal to the group

SU(n)± = {f ∈ U(n) | det(f) = ±1}.

Equivalently, SU(n)± is equal to the subgroup of U(n) generated by the hyperplane reflections.

This problem had been left open by Dieudonné in [46]. Evidently, it was settled since the publication of
the third edition of the book [46].

Inspection of the proof of Lemma 7.2.4 reveals that this lemma also holds for Hermitian spaces. Thus,
when n ≥ 3, the composition of any two hyperplane reflections is equal to the composition of two flips. As
a consequence, a version of Theorem 7.2.5 holds for rotations in a Hermitian space of dimension at least 3.
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Theorem 25.1.7 Let E be a Hermitan space of dimension n ≥ 3. Every rotation f ∈ SU(E) is the
composition of an even number of flips f = f2k ◦ · · ·◦ f1, where k ≤ n− 1. Furthermore, if u %= 0 is invariant
under f (i.e. u ∈ Ker (f − id)), we can pick the last flip f2k such that u ∈ F⊥

2k, where F2k is the subspace of
dimension n− 2 determining f2k.

Proof . It is identical to that of Theorem 7.2.5, except that it uses Theorem 25.1.6 instead of Theorem 7.2.1.
The second part of the Lemma also holds, because if u %= 0 is an eigenvector of f for 1, then u is one of the
vectors in the orthonormal basis of eigenvectors used in 25.1.3. The details are left as an exercise.

We now show that the QR-decomposition in terms of (complex) Householder matrices holds for complex
matrices. We need the version of Lemma 25.1.2 and a trick at the end of the argument, but the proof is
basically unchanged.

Lemma 25.1.8 Let E be a nontrivial Hermitian space of dimension n. Given any orthonormal basis
(e1, . . . , en), for any n-tuple of vectors (v1, . . . , vn), there is a sequence of n isometries h1, . . . , hn, such
that hi is a hyperplane reflection or the identity, and if (r1, . . . , rn) are the vectors given by

rj = hn ◦ · · · ◦ h2 ◦ h1(vj),

then every rj is a linear combination of the vectors (e1, . . . , ej), (1 ≤ j ≤ n). Equivalently, the matrix
R whose columns are the components of the rj over the basis (e1, . . . , en) is an upper triangular matrix.
Furthermore, if we allow one more isometry hn+1 of the form

hn+1 = ρen,ϕn ◦ · · · ◦ ρe1,ϕ1

after h1, . . . , hn, we can ensure that the diagonal entries of R are nonnegative.

Proof . The proof is very similar to the proof of Lemma 7.3.1, but it needs to be modified a little bit since
Lemma 25.1.2 is weaker than Lemma 7.1.3. We explain how to modify the induction step, leaving the base
case and the rest of the proof as an exercise.

As in the proof of Lemma 7.3.1, the vectors (e1, . . . , ek) form a basis for the subspace denoted as U ′
k, the

vectors (ek+1, . . . , en) form a basis for the subspace denoted as U ′′
k , the subspaces U

′
k and U ′′

k are orthogonal,
and E = U ′

k ⊕ U ′′
k . Let

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1).

We can write
uk+1 = u′

k+1 + u′′
k+1,

where u′
k+1 ∈ U ′

k and u′′
k+1 ∈ U ′′

k . Let

rk+1,k+1 =
∥∥u′′

k+1

∥∥ , and eiθk+1 |u′′
k+1 · ek+1| = u′′

k+1 · ek+1.

If u′′
k+1 = eiθk+1rk+1,k+1 ek+1, we let hk+1 = id. Otherwise, by Lemma 25.1.2, there is a unique hyperplane

reflection hk+1 such that
hk+1(u

′′
k+1) = eiθk+1rk+1,k+1 ek+1,

where hk+1 is the reflection about the hyperplane Hk+1 orthogonal to the vector

wk+1 = rk+1,k+1 ek+1 − e−iθk+1u′′
k+1.

At the end of the induction, we have a triangular matrix R, but the diagonal entries eiθjrj, j of R may
be complex. Letting

hn+1 = ρen,−θn ◦ · · · ◦ ρe1,−θ1 ,
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we observe that the diagonal entries of the matrix of vectors

r′j = hn+1 ◦ hn ◦ · · · ◦ h2 ◦ h1(vj)

is triangular with nonnegative entries.

Remark: For numerical stability, it may be preferable to use wk+1 = rk+1,k+1 ek+1 + e−iθk+1u′′
k+1 instead

of wk+1 = rk+1,k+1 ek+1 − e−iθk+1u′′
k+1. The effect of that choice is that the diagonal entries in R will be of

the form −eiθjrj, j = ei(θj+π)rj, j . Of course, we can make these entries nonegative by applying

hn+1 = ρen,π−θn ◦ · · · ◦ ρe1,π−θ1

after hn.

As in the Euclidean case, Lemma 25.1.8 immediately implies the QR-decomposition for arbitrary complex
n×n-matrices, where Q is now unitary (see Kincaid and Cheney [100], Golub and Van Loan [75], Trefethen
and Bau [170], or Ciarlet [33]).

Lemma 25.1.9 For every complex n× n-matrix A, there is a sequence H1, . . . , Hn of matrices, where each
Hi is either a Householder matrix or the identity, and an upper triangular matrix R, such that

R = Hn · · ·H2H1A.

As a corollary, there is a pair of matrices Q,R, where Q is unitary and R is upper triangular, such that A =
QR (a QR-decomposition of A). Furthermore, R can be chosen so that its diagonal entries are nonnegative.

Proof . It is essentially identical to the proof of Lemma 7.3.2, and we leave the details as an exercise. For
the last statement, observe that hn+1 ◦ · · · ◦ h1 is also an isometry.

As in the Euclidean case, the QR-decomposition has applications to least squares problems. It is also
possible to convert any complex matrix to bidiagonal form.

25.2 Affine Isometries (Rigid Motions)

In this section, we study very briefly the affine isometries of a Hermitian space. Most results holding for
Euclidean affine spaces generalize without any problems to Hermitian spaces.

The characterization of the set of fixed points of an affine map is unchanged. Similarly, every affine
isometry f (of a Hermitian space) can be written uniquely as

f = t ◦ g, with t ◦ g = g ◦ t,

where g is an isometry having a fixed point, and t is a translation by a vector τ such that
−→
f (τ) = τ , and

with some additional nice properties (see lemma 25.2.6). A generalization of the Cartan-Dieudonné theorem
can easily be shown: every affine isometry in Is(n,C) can be written as the composition of at most 2n− 1
isometries if it has a fixed point, or else as the composition of at most 2n + 1 isometries, where all these
isometries are hyperplane reflections except for possibly one Hermitian reflection. We also prove that every
rigid motion in SE(n,C) is the composition of at most 2n− 2 flips (for n ≥ 3).

Definition 25.2.1 Given any two nontrivial Hermitian affine spaces E and F of the same finite dimension
n, a function f :E → F is an affine isometry (or rigid map) iff it is an affine map and

‖f(a)f(b)‖ = ‖ab‖ ,

for all a, b ∈ E. When E = F , an affine isometry f :E → E is also called a rigid motion.
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Thus, an affine isometry is an affine map that preserves the distance. This is a rather strong requirement,
but unlike the Euclidean case, not strong enough to force f to be an affine map.

The following simple lemma is left as an exercise.

Lemma 25.2.2 Given any two nontrivial Hermitian affine spaces E and F of the same finite dimension n,

an affine map f :E → F is an affine isometry iff its associated linear map
−→
f :

−→
E → −→

F is an isometry. An
affine isometry is a bijection.

As in the Euclidean case, given an affine isometry f :E → E, if
−→
f is a rotation, we call f a proper (or

direct) affine isometry, and if
−→
f is a an improper linear isometry, we call f a an improper (or skew) affine

isometry. It is easily shown that the set of affine isometries f :E → E forms a group, and those for which
−→
f is a rotation is a subgroup. The group of affine isometries, or rigid motions, is a subgroup of the affine
group GA(E,C) denoted as Is(E,C) (or Is(n,C) when E = Cn). The subgroup of Is(E,C) consisting of
the direct rigid motions is also a subgroup of SA(E,C), and it is denoted as SE(E,C) (or SE(n,C), when

E = Cn). The translations are the affine isometries f for which
−→
f = id, the identity map on

−→
E . The

following lemma is the counterpart of lemma 10.3.2 for isometries between Hermitian vector spaces.

Lemma 25.2.3 Given any two nontrivial Hermitian affine spaces E and F of the same finite dimension n,
for every function f :E → F , the following properties are equivalent:

(1) f is an affine map and ‖f(a)f(b)‖ = ‖ab‖, for all a, b ∈ E.

(2) ‖f(a)f(b)‖ = ‖ab‖, and there is some Ω ∈ E such that

f(Ω+ iab) = f(Ω) + i(f(Ω)f(Ω + ab)),

for all a, b ∈ E.

Proof . Obviously, (1) implies (2). The proof that that (2) implies (1) is similar to the proof of Lemma 7.4.3,
but uses Lemma 10.3.2 instead of Lemma 6.3.2. The details are left as an exercise.

Inspection of the proof shows immediately that Lemma 7.5.1 holds for Hermitian spaces. For the sake of
completeness, we restate the Lemma in the complex case.

Lemma 25.2.4 Let E be any complex affine space of finite dimension For every affine map f :E → E, let
Fix(f) = {a ∈ E | f(a) = a} be the set of fixed points of f . The following properties hold:

(1) If f has some fixed point a, so that Fix(f) %= ∅, then Fix(f) is an affine subspace of E such that

Fix(f) = a+ E(1,
−→
f ) = a+Ker (

−→
f − id),

where E(1,
−→
f ) is the eigenspace of the linear map

−→
f for the eigenvalue 1.

(2) The affine map f has a unique fixed point iff E(1,
−→
f ) = Ker (

−→
f − id) = {0}.

Affine orthogonal symmetries are defined just as in the Euclidean case, and Lemma 7.6.1 also applies to
complex affine spaces.

Lemma 25.2.5 Given any affine complex space E, if f :E → E and g:E → E are orthogonal symmetries
about parallel affine subspaces F1 and F2, then g ◦ f is a translation defined by the vector 2ab, where ab is

any vector perpendicular to the common direction
−→
F of F1 and F2 such that ‖ab‖ is the distance between F1

and F2, with a ∈ F1 and b ∈ F2. Conversely, every translation by a vector τ is obtained as the composition of
two orthogonal symmetries about parallel affine subspaces F1 and F2 whose common direction is orthogonal
to τ = ab, for some a ∈ F1 and some b ∈ F2 such that the distance betwen F1 and F2 is ‖ab‖ /2.
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It is easy to check that the proof of Lemma 7.6.2 also holds in the Hermitian case.

Lemma 25.2.6 Let E be a Hermitian affine space of finite dimension n. For every affine isometry f :E →
E, there is a unique isometry g:E → E and a unique translation t = tτ , with

−→
f (τ) = τ (i.e., τ ∈

Ker (
−→
f − id)), such that the set Fix(g) = {a ∈ E, | g(a) = a} of fixed points of g is a nonempty affine

subspace of E of direction
−→
G = Ker (

−→
f − id) = E(1,

−→
f ),

and such that
f = t ◦ g and t ◦ g = g ◦ t.

Furthermore, we have the following additional properties:

(a) f = g and τ = 0 iff f has some fixed point, i.e., iff Fix(f) %= ∅.

(b) If f has no fixed points, i.e., Fix(f) = ∅, then dim(Ker (
−→
f − id)) ≥ 1.

The remarks made in the Euclidean case also apply to the Hermitian case. In particular, the fact that E
has finite dimension is only used to prove (b).

A version of the Cartan-Dieudonné also holds for affine isometries, but it may not be possible to get rid
of Hermitian reflections entirely.

Theorem 25.2.7 Let E be an affine Hermitian space of dimension n ≥ 1. Every affine isometry in Is(n,C)
can be written as the composition of at most 2n−1 isometries if it has a fixed point, or else as the composition
of at most 2n + 1 isometries, where all these isometries are hyperplane reflections except for possibly one
Hermitian reflection. When n ≥ 2, the identity is the composition of any reflection with itself.

Proof . The proof is very similar to the proof of Theorem 7.7.1, except that it uses Theorem 25.1.6 instead
of Theorem 7.2.1. The details are left as an exercise.

When n ≥ 3, as in the Euclidean case, we can characterize the affine isometries in SE(n,C) in terms of
flips, and we can even bound the number of flips by 2n− 2.

Theorem 25.2.8 Let E be a Hermitian affine space of dimension n ≥ 3. Every rigid motion f ∈ SE(E,C)
is the composition of an even number of flips f = f2k ◦ · · · ◦ f1, where k ≤ n− 1.

Proof . It is very similar to the proof of theorem 7.7.2, but it uses Lemma 25.1.7 instead of Lemma 7.2.5.
The details are left as an exercise.

A more detailed study of the rigid motions of Hermitian spaces of dimension 2 and 3 would seem worth-
while, but we are not aware of any reference on this subject.


