
Chapter 24

Approximating Closed Rational
Surfaces

24.1 Partitioning the Parameter Domain

In this chapter, the problem of drawing a closed rational surface is considered. As in the case of rational
curves, the key to drawing a closed rational surface is to partition the parameter domain into simple connected
regions Ri such as triangles or rectangles, in such a way that there is some prespecified region R0 and some
projectivities such that every other region is the image of the region R0 under one of the projectivities.
Furthermore, if the patch associated with the region R0 is given by a control net N0, we want the control net
Ni associated with the region Ri to be computable very quickly from N0. However, since there are two kinds
of rational surfaces, rectangular rational surfaces F : Ã× Ã → Ẽ and triangular rational surfaces F : P̃ → Ẽ ,
the situation is more complicated than in the case of curves.

In the case of the real projective plane RP2 = P̃, we can use the fact that RP2 is obtained as the quotient
of the sphere S2 after identification of antipodal points. To get a partition of the real projective plane, we
can use the projection on a plane of any polyhedron inscribed in the sphere S2. This way of dividing the
real projective plane into regions is discussed quite extensively in Hilbert and Cohn-Vossen [84] (see Chapter
III). As noted by Hilbert, it is better to use polyhedra with central symmetry, so that the projective plane
is covered only once since vertices come in pairs of antipodal points. In particular, we can use the four
Platonic solids other than the tetrahedron, but if we want rectangular or triangular regions, only the cube,
the octahedron, and the icosahedron can be used. Indeed, projection of the dodecahedron yields pentagonal
regions (see Hilbert and Cohn-Vossen [84], page 147-150). We can also inscribe a rhombus inside of the
sphere and project it onto a plane.

If we project the cube onto one of its faces from its center, we get three rectangular regions (see section
24.3.). It is easy to find the projectivities that map the central region onto the other two. Since we are
dealing with the projective plane, it is better to use triangular control nets to avoid base points, and it is
necessary to split the central rectangle into two triangles. Thus, the trace of the rational surface is the union
of six patches over various triangles. It is shown in section 24.3 how the control nets of the other four patches
are easily (and cheaply) obtained from the control nets of the two central triangles.

If we project the octahedron onto one of its faces from its center, we get four triangular regions (see section
24.4). This time, it is a little harder to write down the projectivities that map the central triangle rst to the
other three triangles R,S, T . However it is not necessary to find explicit formulae for these projectivities,
and using a geometric argument, we can find very simple formulae to compute the control nets associated
with the other three triangles from the control net associated with the central triangle, as shown in section
24.4.
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Projecting the icosahedron onto one of its faces from its center yields ten triangular regions, but we
haven’t found formulae to compute control nets of the other regions from the central triangle. We leave the
discovery of such formulae as an open and possibly challenging problem.

Let us now consider the problem of partitioning RP1 × RP1 = Ã × Ã into simple regions. Since the
projective line RP1 is topologically a circle, a very simple method is to inscribe a rectangle (or a square) in
the circle and then project it. One way to do so leads to a partition of RP1 into [−1, 1] and RP1−] − 1, 1[.
The corresponding projectivity is t $→ 1

t . As shown in section 22.4, other projections lead to a partition of

RP1 into [r, s] and RP1− ]r, s[ for any affine frame (r, s). In all cases, the torus is split into four rectangular
regions, and there are very simple formulae for computing the control nets of the other three rectangular
nets from the control net associated with the patch over [−1, 1]× [−1, 1] (or more generally, [r1, s1]× [r2, s2]),
as shown in section 24.2.

Other methods for drawing rational surfaces were investigated by DeRose [45] and Bajaj and Royappa
[6, 7], and will be discussed in section 24.2 and section 24.4.

As we said earlier, there is a problem with our methods when all the numerators and the denominator
vanish simultaneously. In this case, we have what is called a base point . We will give a new method for
resolving base points (in the case of a rational surface specified by a triangular control net), using a simple
“blowing-up” technique based on an idea of Warren [177].

24.2 Splitting Rectangular Rational Surfaces Into Four Rectan-
gular Patches

In this section, we show that every rectangular rational surface can be obtained as the union of four rect-
angular patches, and that the control nets for these patches can be computed very easily from the original
control net. The idea is simple: we partition RP1×RP1 into the four regions associated with the partitioning
of RP1 into [−1, 1] and RP1−]− 1, 1[. Let ϕ be the projectivity of RP1 defined such that

ϕ(u, t) = (t, u).

We also define the following rectangular surfaces.

Definition 24.2.1 Given an affine space E of dimension ≥ 3, for every rectangular rational surface F : Ã×
Ã → Ẽ of bidegree 〈p, q〉 specified by some 〈p, q〉-symmetric multilinear map f : (Â)p × (Â)q → Ê , define the
three 〈p, q〉-symmetric multilinear maps fi: (Â)p × (Â)q → Ê , i = 1, 2, 3, such that

f1((u1, t1), . . . , (up, tp), (v1, s1), . . . , (vq, sq)) = f(ϕ(u1, t1), . . . ,ϕ(up, tp), (v1, s1), . . . , (vq, sq)),

f2((u1, t1), . . . , (up, tp), (v1, s1), . . . , (vq, sq)) = f((u1, t1), . . . , (up, tp),ϕ(v1, s1), . . . ,ϕ(vq, sq)),

f3((u1, t1), . . . , (up, tp), (v1, s1), . . . , (vq, sq)) = f(ϕ(u1, t1), . . . ,ϕ(up, tp),ϕ(v1, s1), . . . ,ϕ(vq , sq)).

The following lemma shows that provided that there are no base points, a rectangular rational surface is
the union of four rectangular patches, and that given a rectangular net α w.r.t. (−1, 1)× (−1, 1), the other
three nets can be obtained very easily from α.

Lemma 24.2.2 Given an affine space E of dimension ≥ 3, for every rectangular rational surface F : Ã×Ã →
Ẽ of bidegree 〈p, q〉 specified by some 〈p, q〉-symmetric multilinear map f : (Â)p × (Â)q → Ê , if f1, f2, f3 are
the 〈p, q〉-symmetric multilinear maps of definition 24.2.1, except for the base points (if any), the trace
F1([−1, 1]× [−1, 1]) is the trace of F over ϕ([−1, 1])× [−1, 1], the trace F2([−1, 1]× [−1, 1]) is the trace of
F over [−1, 1]× ϕ([−1, 1]), and the trace F3([−1, 1]× [−1, 1]) is the trace of F over ϕ([−1, 1])× ϕ([−1, 1]).
Furthermore, if the control net (in Ê) of the rectangular surface F w.r.t. (−1, 1)× (−1, 1) is

α = (αi, j)0≤i≤p, 0≤j≤q,
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the control nets θ1, θ2, and θ3 (in Ê) of the rectangular surfaces F1, F2, F3 w.r.t. (−1, 1) × (−1, 1) is are
given by the equations

θ1i, j = (−1)p−i αi, j ,

θ2i, j = (−1)q−j αi, j ,

θ3i, j = (−1)p+q−i−j αi, j .

The proof is left as an an exercise (see the Problems). In view of Lemma 22.4.2, the same result applies
to surfaces specified by a rectangular net over [r1, s1]× [r2, s2] for any affine frames (r1, s1) and (r2, s2), since
we can use the projectivity

ϕ(t) =
(s+ r)t − 2rs

2t− (s+ r)

that maps [r, s] onto RP1−]r, s[. The upshot is that in order to draw a closed rational surface specified by
a rectangular net α w.r.t. (r1, s1) × (r2, s2), we simply have to compute the nets θ1, θ2, θ3, which is very
cheap, and draw the corresponding rectangular patches. For example, a torus can be defined by the following
rectangular net of bidegree 〈2, 2〉 w.r.t. (−1, 1)× (−1, 1):

tornet4 = {{0, -(a + b), 0, 4}, {0, 0, 4c, 0}, {0, (-a + b), 0, 4},
{4(a + b), 0, 0, 0}, {0, 0, 0, 0}, {4(a - b), 0, 0, 0},
{0, a + b, 0, 4}, {0, 0, 4c, 0}, {0, a - b, 0, 4}}

For a = 2, b = 1, c = 1, we get

tornet4 = {{0, -3, 0, 4}, {0, 0, 4, 0}, {0, -1, 0, 4},
{12, 0, 0, 0}, {0, 0, 0, 0}, {4, 0, 0, 0},
{0, 3, 0, 4}, {0, 0, 4, 0}, {0, 1, 0, 4}}

The result of subdividing the patches associated with F , F1, F2 and F3 is shown in Figure 24.1.

On the other hand, the method applied to a rectangular net of bidegree 〈2, 2〉 for an ellipsoid yields base
points. For example, it can be shown that a control net of bidegree 〈2, 2〉 w.r.t. (−1, 1) × (−1, 1) for an
ellipsoid is given by:

recelnet3 = {{-8/3, -2, 2/3, 3}, {-8, 0, -2, 1}, {-8/3, 2, 2/3, 3},
{0, -6, -2, 1}, {0, 0, 6, -1}, {0, 6, -2, 1},
{8/3, -2, 2/3, 3}, {8, 0, -2, 1}, {8/3, 2, 2/3, 3}}

Unfortunately, the patch corresponding to F3 has a base point. The same thing happens for the Steiner
roman surface. This is not surprising since neither the sphere nor the real projective plane are of the same
topological type as the torus. It can be shown that a control net of bidegree 〈2, 2〉 w.r.t. (−1, 1)× (−1, 1)
for the Steiner roman surface is given by:

sqstein3 = {{-2/3, -2/3, 2/3, 3}, {0, -2, 0, 1}, {2/3, -2/3, -2/3, 3},
{-2, 0, 0, 1}, {0, 0, 0, -1}, {2, 0, 0, 1},
{-2/3, 2/3, -2/3, 3}, {0, 2, 0, 1}, {2/3, 2/3, 2/3, 3}};

Again, the patch corresponding to F3 has base points.

Another method for drawing rectangular rational surfaces was investigated by DeRose [45] who credits
Patterson [135] for the original idea behind the method. Basically, the method consists in using the ho-

mogeneous Bernstein polynomials

(
p
i

)(
q
j

)
uitp−i

1 vjtq−j
2 , and to view a rectangular rational surface as a
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Figure 24.1: A torus

rational map from RP1 × RP1. Then, by using any 2D model of the projective line, it is possible to draw a
closed rational surface in one piece.

In general, it is not easy to remove base points. This involves a technique from algebraic geometry known
as “blowing-up” (see Fulton [67] or Harris [83]). In section 24.5, we will present a method for resolving base
points in the case of triangular rational surfaces. However, we have not worked out the resolution of base
points in the case of rectangular rational surfaces. We leave this problem as an interesting challenge to the
reader.

24.3 Splitting Triangular Rational Surfaces Into Six Triangular
Patches

As we explained in section 24.1, if we project a cube onto one of its faces from its center, we obtain a partition
of the projective plane P̃ into three rectangular regions, in such a way that there exist simple projectivities
ϕ and ψ between the square [−1, 1]× [−1, 1] and the other two regions.



24.3. SPLITTING TRIANGULAR PATCHES INTO SIX TRIANGULAR PATCHES 675

F
u

Fϕ

Fψ

v

Figure 24.2: Dividing the projective plane into 3 rectangular regions

The projectivity ϕ is induced by the linear isomorphism of R3 given by

(u, v, w) $→ (v, w, u).

The projectivity ψ is induced by the linear isomorphism of R3 given by

(u, v, w) $→ (w, u, v).

Provided that F has no base points, the trace of the rational surface F can be obtained as the union of
the traces of three rational surfaces F (u, v), Fϕ(u, v) = F

(
v
u ,

1
u

)
, and Fψ(u, v) = F

(
1
v ,

u
v

)
, over the square

[−1, 1]× [−1, 1]. It is important to note that the degree of the two new patches is not raised.

An an example of the rational surfaces Fϕ and Fψ, if F is the sphere defined by the fractions

x(u, v) =
2u

u2 + v2 + 1
, y(u, v) =

2v

u2 + v2 + 1
, z(u, v) =

u2 + v2 − 1

u2 + v2 + 1
,

under the map
ϕ: (u, v) $→ (v/u, 1/u),

we get the rational surface Fϕ specified by

x(u, v) =
2uv

u2 + v2 + 1
, y(u, v) =

2u

u2 + v2 + 1
, z(u, v) =

v2 − u2 + 1

u2 + v2 + 1
,

and under the map
ψ(u, v) $→ (1/v, u/v),

we get the rational surface Fψ specified by

x(u, v) =
2v

u2 + v2 + 1
, y(u, v) =

2uv

u2 + v2 + 1
, z(u, v) =

u2 − v2 + 1

u2 + v2 + 1
.
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It is easily verified that Fϕ and Fψ define the unit sphere, but these parameterizations are quite different
from that of F .

Actually, it turns out that the method of this section holds for any region defined by a nondegenerate
quadrilateral (a, b, c, d), i.e. when (a, b, c, d) is a projective frame. However, the details are a bit messy, and
for simplicity, we restrict out attention to a rectangular region [r1, s1] × [r2, s2]. Since we are dealing with
triangular surfaces, it will be necessary to split the rectangle [r1, s1] × [r2, s2] into two triangles, and thus,
we will obtain the trace of a rational surface as the union of 6 patches over various triangles in the rectangle
[r1, s1]× [r2, s2]. Letting a, b, c, d be the vertices of the rectangle [r1, s1]× [r2, s2] defined such that

a = (s1, s2), b = (r1, s2), c = (r1, r2), d = (s1, r2),

as shown below

ab

c d

u

v

Figure 24.3: Some affine frames associated with the rectangle (a, b, c, d)

we will consider the following affine frames

∆bca = ((r1, s2), (r1, r2), (s1, s2)),

∆dac = ((s1, r2), (s1, s2), (r1, r2)),

∆bad = ((r1, s2), (s1, s2), (s1, r2)).

In particular, a rectangular surface patch defined over the rectangle [r1, s1]× [r2, s2] will be treated as the
union of two triangular surface patches defined over the triangles∆bca and ∆dac. It is somewhat unfortunate
that a control net over the third frame ∆bad needs to be computed, but that is what the proof of lemma
24.3.2 shows. In any case, such a control net can be computed very cheaply from a control net over ∆bca
(or ∆dac).

There is simple geometric explanation of the partitioning method in terms of the usual model of the real
projective plane P̃ = RP2 in R3. Recall that in this model, the real projective plane RP2 consists of the
points in the plane z = 1 corresponding to the lines through the origin not in the plane z = 0, and of the
points at infinity corresponding to the lines through the origin in the plane z = 0. We view the vertices
of the rectangle (a, b, c, d) defined above as points in the plane z = 1, in which case their coordinates are
(s1, s2, 1), (r1, s2, 1), (r1, r2, 1), and (s1, r2, 1). Then, we have the parallelepiped (a, b, c, d,−a,−b,−c,−d).
There is a unique projectivity P(ϕ) such that

P(ϕ)(a) = a, P(ϕ)(b) = c, P(ϕ)(c) = d, P(ϕ)(d) = b.
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For instance, it is induced by the unique linear map ϕ such that

ϕ(a) = a, ϕ(b) = −c, ϕ(c) = −d.

Since d = −b+ a+ c, we get

ϕ(d) = −ϕ(b) + ϕ(a) + ϕ(c) = c+ a− d = (r1, s2, 1) = b.

The linear map ϕ transforms the top face (a, b, c, d) of the parallelepiped to the back face (a,−c,−d, b). When
a line L through the origin and passing through a point of the face (a,−c,−d, b) varies, the intersection of
L with the plane z = 1 varies in ϕ([r1, s1] × [r2, s2]). We can define a rhombus (a, e, f, g,−a,−e,−f,−g)
inscribed in the sphere of center O = (0, 0, 0) and of radius R =

√
s21 + s22 + 1 passing through a, as follows:

the points e, f, g are on the upper half-sphere and they are determined by the intersection of the lines (O, b),
(O, c) and (O, d) with the sphere. Then, it is obvious that under the central projection of center O onto the
plane z = 1, the top face (a, e, f, g) of the rhombus projects onto the face (a, b, c, d) of the parallelepiped,
and that the projection of the rhombus onto the plane z = 1 yields the desired partitioning of RP2.

Similarly, there is a unique projectivity P(ψ) such that

P(ψ)(a) = a, P(ψ)(b) = d, P(ψ)(c) = b, P(ψ)(d) = c.

It is induced by the unique linear map ψ such that

ψ(a) = a, ψ(b) = d, ψ(c) = −b.

Since d = −b+ a+ c, we get

ψ(d) = −ψ(b) + ψ(a) + ψ(c) = −d+ a− b = (−r1,−r2,−1) = −c.

The linear map ψ transforms the top face (a, b, c, d) of the parallelepiped to the right face (a, d,−b,−c).
When a line L through the origin and passing through a point of the face (a, d,−b,−c) varies, the inter-
section of L with the plane z = 1 varies in ψ([r1, s1] × [r2, s2]). Again, it is obvious that under the central
projection of center O onto the plane z = 1, the top face (a, e, f, g) of the rhombus projects onto the face
(a, b, c, d) of the parallelepiped, and that the projection of the rhombus onto the plane z = 1 yields the
desired partitioning of RP2. Figure 24.4 shows the parallelepiped (a, b, c, d,−a,−b,−c,−d) and the rhombus
(a, e, f, g,−a,−e,−f,−g).

We will now use the maps ϕ and ψ to show how the trace of a rational surface F can be obtained as the
union of the traces of three rational surfaces over the rectangle [r1, s1]× [r2, s2].1 The first of these surfaces
is F itself, and the two other rational surfaces Fϕ and Fψ are easily obtained from F . However, depending
on the multilinear map f defining F , the surface F (and thus, Fϕ and Fψ) may have base points , that is, we
may have

f((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸
m

) = 0

for some (u, v, z) (= (0, 0, 0). We will show how to deal with this situation later on.

In order to render the trace of F , we will use the fact that it is the union of the six traces F (∆bca),
F (∆dac), F (ϕ(∆bca)), F (ϕ(∆dac)), F (ψ(∆bca)), and F (ψ(∆dac)). Furthermore, the last four traces are
also obtained as traces of Fϕ and Fψ over some appropriate choice of affine frames among ∆bca, ∆dac, and
∆bad.

1While reading Appell’s Treatise of Rational Mechanics, we stumbled on the fact that the change of variable (u, v) !→

(1/v, u/v) was used by Appell in his solution to a problem of Bertrand (see [3], Tome I, Part III, Chapter XI, page 422-423).
Appell explains that he found this “homographic transformation” in 1889. The problem of Bertrand is to find all central force
laws depending only on the position of a moving particle, so that the trajectory of the particle is a conic for every choice of
initial conditions.
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Figure 24.4: Parallelepiped and rhombus associated with (a, b, c, d)

We now show how Fϕ and Fψ are defined, and how their control points can be computed very simply
from the control points of F (computed with respect to the affine frames ∆bca, ∆dac, and ∆bad). We will
assume that the homogenization P̂ of the affine plane P is identified with the direct sum R2 ⊕ RO, where
O = (0, 0). Then, every element of P̂ is of the form (u, v, z) ∈ R3.

Definition 24.3.1 Given an affine space E of dimension ≥ 3, for every rational surface F : P̃ → Ẽ of degree
m specified by some symmetric multilinear map f : (P̂)m → Ê , the symmetric multilinear maps fϕ: (P̂)m → Ê
and fψ: (P̂)m → Ê are defined such that

fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . ,ϕ(um, vm, wm)),

fψ((u1, v1, w1), . . . , (um, vm, wm)) = f(ψ(u1, v1, w1), . . . ,ψ(um, vm, wm)).

Let Fϕ: P̃ → Ẽ be the rational surface specified by fϕ: (P̂)m → Ê , and let Fψ: P̃ → Ẽ be the rational surface

specified by fψ: (P̂)m → Ê .

Observe that the base points of Fϕ, if any, have coordinates (u, v, w) (= (0, 0, 0) such that

f(ϕ(u, v, w), . . . ,ϕ(u, v, w)) = 0,

and that the base points of Fψ , if any, have coordinates (u, v, w) (= (0, 0, 0) such that

f(ψ(u, v, w), . . . ,ψ(u, v, w)) = 0.

Lemma 24.3.2 Given an affine space E of dimension ≥ 3, for every rational surface F : P̃ → Ẽ of degree m
specified by some symmetric multilinear map f : (P̂)m → Ê, if fϕ and fψ are the symmetric multilinear maps
of definition 24.3.1, except for base points, F , Fϕ and Fψ have the same trace. The trace of Fϕ over ∆bca
is the trace of F over ϕ(∆bca), the trace of Fϕ over ∆dac is the trace of F over ϕ(∆dac), the trace of Fψ
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over ∆bca is the trace of F over ψ(∆bca), and the trace of Fψ over ∆dac is the trace of F over ψ(∆dac).

Furthermore, if the control nets (in Ê) of the surface F w.r.t. the affine frames ∆bca, ∆dac, and ∆bad, are
respectively

α = (αi, j, k)(i,j,k)∈∆m
,

β = (βi, j, k)(i,j,k)∈∆m
,

γ = (γi, j, k)(i,j,k)∈∆m
,

the control nets θ1 and θ2 (in Ê) of the surface Fϕ w.r.t. the affine frames ∆bca and ∆dac, and the control

nets ρ1 and ρ2 (in Ê) of the surface Fψ w.r.t. the affine frame ∆bca and ∆dac, are given by the equations

θ1i, j, k = (−1)i+j βj, k, i,

θ2i, j, k = (−1)k γi, j, k,

ρ1i, j, k = (−1)j γj, k, i,

ρ2i, j, k = (−1)i+k αk, i, j .

Proof . We have

fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . ,ϕ(um, vm, wm)),

and thus

P(fϕ)([u1, v1, w1], . . . , [um, vm, wm]) = P(f)([ϕ(u1, v1, w1)], . . . , [ϕ(um, vm, wm)]).

In view of the properties of ϕ, it is clear that F and Fϕ have the same trace (except for base points), and
that the trace of Fϕ over ∆bca is the trace of F over ϕ(∆bca), and the trace of Fϕ over ∆dac is the trace of
F over ϕ(∆dac). A similar argument applies to F and Fψ . The formulae for computing the control points
of Fϕ w.r.t. the triangle ∆bca are obtained by computing

fϕ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

).

Since
fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . ,ϕ(um, vm, wm)),

ϕ(b) = −c, ϕ(c) = −d, and ϕ(a) = a, we have

fϕ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = f(−c, . . . ,−c︸ ︷︷ ︸
i

,−d, . . . ,−d︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

that is
fϕ(b, . . . , b︸ ︷︷ ︸

i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = (−1)i+jf(c, . . . , c︸ ︷︷ ︸
i

, d, . . . , d︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

and since the control points βi, j, k are computed w.r.t. the triangle ∆dac, we get

θ1i, j, k = (−1)i+j βj, k, i.

The formulae for computing the control points of Fϕ w.r.t. the triangle ∆dac are obtained by computing

fϕ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

).
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Since
fϕ((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . ,ϕ(um, vm, wm)),

ϕ(d) = b, ϕ(c) = −d, and ϕ(a) = a, we have

fϕ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = f(b, . . . , b︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

,−d, . . . ,−d︸ ︷︷ ︸
k

),

that is
fϕ(d, . . . , d︸ ︷︷ ︸

i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = (−1)kf(b, . . . , b︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, d, . . . , d︸ ︷︷ ︸
k

),

and since the control points γi, j, k are computed w.r.t. the triangle ∆bad, we get

θ2i, j, k = (−1)k γi, j, k.

The formulae for computing the control points of Fψ w.r.t. the triangle ∆bca are obtained by computing

fψ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

).

Since
fψ((u1, v1, w1), . . . , (um, vm, wm)) = f(ψ(u1, v1, w1), . . . ,ψ(um, vm, wm)),

ψ(b) = d, ψ(c) = −b, and ψ(a) = a, we have

fψ(b, . . . , b︸ ︷︷ ︸
i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = f(d, . . . , d︸ ︷︷ ︸
i

,−b, . . . ,−b︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

that is
fψ(b, . . . , b︸ ︷︷ ︸

i

, c, . . . , c︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

) = (−1)jf(d, . . . , d︸ ︷︷ ︸
i

, b, . . . , b︸ ︷︷ ︸
j

, a, . . . , a︸ ︷︷ ︸
k

),

and since the control points γi, j, k are computed w.r.t. the triangle ∆bad, we get

ρ1i, j, k = (−1)j γj, k, i.

Finally, the formulae for computing the control points of Fψ w.r.t. the triangle ∆dac are obtained by
computing

fψ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

).

Since
fψ((u1, v1, w1), . . . , (um, vm, wm)) = f(ψ(u1, v1, w1), . . . ,ψ(um, vm, wm)),

ψ(d) = −c, ψ(c) = −b, and ψ(a) = a, we have

fψ(d, . . . , d︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = f(−c, . . . ,−c︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

,−b, . . . ,−b︸ ︷︷ ︸
k

),

that is
fψ(d, . . . , d︸ ︷︷ ︸

i

, a, . . . , a︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

) = (−1)i+kf(c, . . . , c︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, b, . . . , b︸ ︷︷ ︸
k

),

and since the control points αi, j, k are computed w.r.t. the triangle ∆bca, we get

ρ2i, j, k = (−1)i+k αk, i, j .
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The above calculations show that ϕ and ψ can be defined as above provided that d = −b + a + c, or
equivalently b+ d = a+ c, which means that (a, b, c, d) is a parallelogram. Actually, lemma 24.3.2 also holds
in the more general situation where (a, b, c, d) is a projective frame, i.e. a quadrilateral whose vertices are in
general position. However, the definition of the linear maps ϕ and ψ is a little more messy. As before, we
identify a, b, c, d with points in the plane z = 1, and we let a = (a1, a2, 1), b = (b1, b2, 1), c = (c1, c2, 1), and
d = (d1, d2, 1). To find a linear map ϕ inducing the unique projectivity P(ϕ) such that

P(ϕ)(a) = a, P(ϕ)(b) = c, P(ϕ)(c) = d, P(ϕ)(d) = b,

we let d = λa + µb + νc and b = λ′a + µ′c + ν′d, where λ + µ + ν = 1 and λ′ + µ′ + ν′ = 1, and ϕ is the
unique linear map such that

ϕ(λa) = λ′a, ϕ(µb) = µ′c, ϕ(νc) = ν′d.

Then, ϕ(d) = b, as desired. The linear map ψ can be defined in a similar way. The proof still goes through
since the maps involved are multilinear, and thus not disturbed by scalar multiples.

Lemma 24.3.2 shows that in order to render a rational surface, provided that it does not have base points,
we just need to compute the control nets α,β, γ for the surface F w.r.t. the affine frames ∆bca, ∆dac, and
∆bad, since then, the control nets θ1 and θ2 (in Ê) of the surface Fϕ w.r.t. the affine frames ∆bca and ∆dac,

and the control nets ρ1 and ρ2 (in Ê) of the surface Fψ w.r.t. the affine frame ∆bca and ∆dac, are obtained
at trivial cost.

Remark : It should be noted that the surface patches associated with the control nets α, β, θ1, θ2, ρ1,
and ρ2, may overlap in more than boundaries. In fact, we will see examples where α and β determine the
entire surface, and other examples in which θ1, θ2, ρ1, and ρ2, determine the entire surface.

We now describe an implementation of this method in Mathematica. The function net123 computes the
nets net1, net2, and net3, over the reference triangles

reftrig1 = ((−1, 1, 1), (−1,−1, 3), (1, 1,−1))

reftrig2 = ((1,−1, 1), (1, 1,−1), (−1,−1, 3))

reftrig3 = ((−1, 1, 1), (1, 1,−1), (1,−1, 1))

from the original net, using newcnet3. The function newcnet3, as well as other functions, can be found in
Gallier [70].

(* Computes the new nets net1, net2, net3, in order to compute *)
(* theta1, theta2, rho1, rho2 *)

net123[{oldnet__}, mm_, debug_] :=
Block[
{net = {oldnet}, net0, net1, net2, net3, res, reftrig1,
reftrig2, reftrig3, stop},

reftrig1 = {{-1, 1, 1}, {-1, -1, 3}, {1, 1, -1}};
reftrig2 = {{1, -1, 1}, {1, 1, -1}, {-1, -1, 3}};
reftrig3 = {{-1, 1, 1}, {1, 1, -1}, {1, -1, 1}};
stop = testm[net, mm];
If[stop === 1, Return["*** Unable to Run ***"]];

net1 = newcnet3[net0,mm,reftrig1];
Print["New Net 1: ", net1];
net2 = newcnet3[net0,mm,reftrig2];
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Print["New Net 2: ", net2];
net3 = newcnet3[net0,mm,reftrig3];
Print["New Net 3: ", net3];
res = Join[{net1}, {net2}];
res = Join[res, {net3}];
res

];

(* To test that a triangular net really has size
(m + 1)(m + 2)/2, when the polar degree is m *)

testm[cnet__, m_] := Block[
{cc = cnet, ll, s, i, stop, res},
(ll = Length[cc]; s = N[Sqrt[2 * ll]]; i = 1; stop = 1; res = 1;
While[i <= s && stop === 1,

If[(res === ll) && (i === m + 1), stop = 0, i = i + 1;
res = res + i]

];
If[stop === 1,

Print["*** Net Size: ", ll,
" Inconsistent with Surface Degree: ", m, " ***"]];

stop
)
];

Using the nets net1, net2, and net3, the nets theta1, theta2, rho1, and rho2, are computed as follows:

(* Computes the new nets theta1 and theta2 *)

thetanet[{inlnet__}, mm_, debug_] :=
Block[
{net1, net2, net3, lnet = {inlnet}, anet, theta1, theta2,
pt, i, j, k, res},

net1 = lnet[[1]]; net2 = lnet[[2]]; net3 = lnet[[3]];
anet = convtomat[net2,mm];
theta1 = {};
Do[

Do[
pt = anet[[j + 1, mm - i - j + 1]];
If[OddQ[i + j], pt = -pt];
theta1 = Append[theta1, pt], {j, 0, mm - i}

], {i, 0, mm}
];

anet = convtomat[net3,mm];
theta2 = {};
Do[

Do[
pt = anet[[i + 1, j + 1]];
If[OddQ[mm - i - j], pt = -pt];
theta2 = Append[theta2, pt], {j, 0, mm - i}

], {i, 0, mm}
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];
Print["New Net theta1: ", theta1];
Print["New Net theta2: ", theta2];
res = Join[{theta1}, {theta2}];

res
];

(* Computes the new nets rho1 and rho2 *)

rhonet[{inlnet__}, mm_, debug_] :=
Block[
{net1, net2, net3, lnet = {inlnet}, anet, rho1, rho2,
pt, i, j, k, res},

net1 = lnet[[1]]; net2 = lnet[[2]]; net3 = lnet[[3]];
anet = convtomat[net3,mm];
rho1 = {};
Do[

Do[
pt = anet[[j + 1, mm - i - j + 1]];
If[OddQ[j], pt = -pt];
rho1 = Append[rho1, pt], {j, 0, mm - i}

], {i, 0, mm}
];

Print["New Net rho1: ", rho1];
anet = convtomat[net1,mm];
rho2 = {};
Do[

Do[
pt = anet[[mm - i - j + 1, i + 1]];
If[OddQ[mm - j], pt = -pt];
rho2 = Append[rho2, pt], {j, 0, mm - i}

], {i, 0, mm}
];

Print["New Net rho2: ", rho2];
res = Join[{rho1}, {rho2}];

res
];

The following function displays the two patches corresponding to the control nets theta1 and theta2.
A similar function can be written for rho1 and rho2, and all six patches can also be displayed.

(* Computes the new nets 3 and 4 involved in showing all the patches *)
(* and displays the closed surface *)
(* if light = 1, uses light triangulation trianglight, *)
(* else ltriang *)
(* if fcnet = 1, displays control net, otherwise skip it *)

render34[{net__}, mm_, n_, light_, fcnet_, lx_, mx_,ly_,my_,lz_,mz_,
debug_] :=

Block[
{net0, net1, net2, net3, anet, theta1, theta2, rho1, rho2, lnet,
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surf1, surf2, surf3, surf4, surf5, surf6, surf, image, stop, theta,
i, j, k},

stop = testm[{net}, mm];
If[stop === 1, Return["*** Unable to Run ***"]];
net0 = maptohat[{net}];
lnet = net123[{net}, mm, debug];
theta = thetanet[lnet, mm, debug];
theta1 = theta[[1]]; theta2 = theta[[2]];
surf3 = rsubdiv4[theta1, mm, n, debug];
If[debug === 1,

Print["Third patch: ", surf3]
];

If[light === 1, surf3 = trianglight[surf3,mm],
surf3 = ltriang[surf3,mm]];

Print["Third patch done! "];
surf4 = rsubdiv4[theta2, mm, n, debug];
If[debug === 1,

Print["Fourth patch: ", surf4]
];

If[light === 1, surf4 = trianglight[surf4,mm],
surf4 = ltriang[surf4,mm]];

Print["Fourth patch done! "];
surf = Join[surf3, surf4];
Print["Ready to display! "];
If[fcnet === 1, image = {surf, controlnet3D[{net},mm]},

image = surf
];

Show[
Graphics3D[{Thickness[0.0006], image}],
PlotRange -> {{lx, mx}, {ly, my}, {lz, mz}},
Axes -> True,
AxesLabel -> {"x", "y", "z"},
DisplayFunction -> $DisplayFunction];

];

The purpose of the functions ltriang and ltrianglight is to build a triangulation of each control net
in a list of nets. The function ltriang builds a list of solid triangles, using the Mathematica construct
Polygon. The advantage of this construct is that polygons are treated as nontransparent objects, and when
a surface is displayed, hidden parts are automatically removed. It is also very easy to use the shading options
of Mathematica, or color the polygons as desired. There is even a way of coloring differently both sides of
each polygon. The function ltrianglight only builds the edges on the triangular sides of the net. Such
functions are easily written and are left as an exercise.

Going back to example 1 from section 23.4 (an ellipsoid), iterating the subdivision algorithm 3 times on
the nets net1 and net2 yields the surface shown in Figure 24.5.

Iterating the subdivision algorithm 3 times on the nets theta1 and theta2 yields the surface shown in
Figure 24.6.

Iterating the subdivision algorithm 3 times on the nets rho1 and rho2 yields the surface shown in Figure
24.7.

The result of putting all these patches together is the entire ellipsoid, showed in Figure 24.8.
Of course, we could have taken advantage of symmetries, and our point is to illustrate the algorithm.
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Figure 24.5: Patches 1, 2, of an ellipsoid
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Figure 24.6: Patches 3, 4, of an ellipsoid
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Figure 24.7: Patches 5, 6, of an ellipsoid
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Figure 24.8: An entire ellipsoid
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24.4 Splitting Triangular Rational Surfaces Into Four Triangular
Patches

As explained in section 24.1, we obtain a partition of the real projective plane RP2 into four triangles if we
project an octahedron onto one of its faces from its center. We sketch such a method, leaving the details as
an exercise.

r

s

t

rst

T

T R

R

S

S

Figure 24.9: Splitting RP2 into four triangles

We let r, s, t be the vertices of the central triangle. The four triangles defined by the lines 〈r, s〉, 〈s, t〉,
and 〈r, t〉 are denoted as rst, R, S, and T , where R,S, T contain points at infinity. It is easy to find three
projectivities ϕi:RP

2 → RP2, i = 1, 2, 3, such that ϕ1(rst) = R, ϕ2(rst) = S, and ϕ3(rst) = T . Then, we
get some rational surfaces Fi = F ◦ϕi, i = 1, 2, 3. Indeed, if we use the model of RP2 in R3 where the points
r, s, t are considered as being in the plane z = 1, it is immediately verified that the linear maps

(r, s, t) $→ (−r, s, t),

(r, s, t) $→ (r,−s, t),

(r, s, t) $→ (r, s,−t),

induce ϕ1,ϕ2,ϕ3. Furthermore, if the control net (in Ê) of the triangular surface F w.r.t. the affine frame
∆rst is α = (αi, j, k)(i,j,k)∈∆m

, it can be shown that the control nets θ1, θ2, and θ3 of the surfaces F1, F2, F3

w.r.t. ∆rts are given by the formulae

θ1i, j, k = (−1)iαi, j, k,

θ2i, j, k = (−1)jαi, j, k,

θ3i, j, k = (−1)kαi, j, k.

Provided that there are no base points, the traces of F, F1, F2, F3 over ∆rst cover the entire trace of F
(over RP2). The upshot is that in order to draw a closed rational surface given by a triangular net α over
∆rst, we simply have to draw the four patches specified by α, θ1, θ2, and θ3, over ∆rst.

For example, we can apply the above method to the Steiner roman surface specified by the following
triangular net over ((1, 0), (0, 1), (0, 0)):
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stein1 = {{0, 0, 0, 1}, {1, 0, 0, 1}, {1, 0, 0, 2},
{0, 1, 0, 1}, {1, 1, 1, 1},
{0, 1, 0, 2}};

It turns out that the patch F3 is quite distorted. Applying the method to a net over a bigger triangle
helps reduce the distorsion. In particular, we can send r and s to infinity, in which case the method ends up
being equivalent to a method due to Bajaj and Royappa [6, 7]. Indeed, if we project the octahedron onto a
plane containing one of its vertices and perpendicular to the line from this vertex to the center, we obtain
the following partition of RP2 into four quadrants:

Figure 24.10: Splitting RP2 into four quadrants

This way of partitioning RP2 corresponds to the method investigated by Bajaj and Royappa [6, 7]. The
four maps

(u, v) $→
(

σ1u

1− u− v
,

σ2v

1− u− v

)
,

where σi ∈ {−1, 1} for i = 1, 2, map the triangle ((1, 0), (0, 1), (0, 0)) bijectively onto the four quadrants of
the plane respectively. However, Bajaj and Royapa do not consider the problem of computing the control
nets of the surfaces

F

(
σ1u

1− u− v
,

σ2v

1− u− v

)
.

There is a method for computing control points for these patches, but this method is more complicated than
ours. For more details, see the problems.

In general, given a projectivity ϕ: P̃ → P̃ (of the projective plane) defined by some invertible matrix




a1 b1 c1

a2 b2 c2

a3 b3 c3



 ,

given any rational surface specified by a symmetric multilinear map f : (P̂)m → Ê , we can define the multi-
linear map g: (P̂)m → Ê such that

g((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . ,ϕ(um, vm, wm)),
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that is,

g((u1, v1, w1), . . . , (um, vm, wm))

= f((a1u1 + b1v1 + c1w1, a2u1 + b2v1 + c2w1, a3u1 + b3v1 + c3w1),

. . . , (a1um + b1vm + c1wm, a2um + b2vm + c2wm, a3um + b3vm + c3wm)).

The multilinear map g defines the rational surface obtained by the “change of variable” ϕ. For any affine
frame ∆ = (r = (r1, r1), s = (s1, s2), t = (t1, t2)), the control points

g(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

)

can be computed in terms of some appropriate polar values of f (see the Problems).

Another method for drawing triangular rational surfaces was also investigated by DeRose [45] who credits
Patterson [135] for the original idea behind the method. Basically, the method consists in using the homoge-

neous Bernstein polynomials

(
m
i j k

)
uivjwk, where i+ j+k = m, and to view a triangular rational surface

as a rational map from the real projective plane. Then, by using any 3D model of the projective plane, it is
possible to draw a closed rational surface in one piece.

24.5 Resolving Base Points of Triangular Nets

We now consider the case in which Fϕ and Fψ (as defined in section 24.3) have base points. An example for
which this happens is the torus.

An elliptic torus can be defined parametrically as follows:

x = (a− b sinϕ) cos θ,

y = (a− b sinϕ) sin θ,

z = c cosϕ.

As usual, we obtain a rational parameterization by expressing cos t and sin t in terms of tan(t/2), and we
get the fractions

x =
(1− u2)(a(1 + v2)− 2bv)

(1 + u2)(1 + v2)
,

y =
2u(a(1 + v2)− 2bv)

(1 + u2)(1 + v2)
,

z =
c(1− v2)

1 + v2
.

Thus, the torus as a rational surface F is defined by

x(u, v) = (1 − u2)(a(1 + v2)− 2bv),

y(u, v) = 2u(a(1 + v2)− 2bv),

z(u, v) = c(1 + u2)(1 − v2),

w(u, v) = (1 + u2)(1 + v2).

Rendering F over [−1, 1]× [−1, 1] yields one fourth of the torus, specifically, the front half of the upper
half. Performing the change of variables

(u, v) $→
(
v

u
,
1

u

)
,
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the rational surface Fϕ is defined by

x(u, v) = (u2 − v2)(a(1 + u2)− 2bu),

y(u, v) = 2uv(a(1 + u2)− 2bu),

z(u, v) = c(u2 − 1)(u2 + v2),

w(u, v) = (u2 + v2)(u2 + 1).

Unfortunately, x(0, 0) = y(0, 0) = z(0, 0) = w(0, 0) = 0, and (0, 0) is a base point of Fϕ.

Performing the change of variables

(u, v) $→
(
1

v
,
u

v

)
,

the rational surface Fψ is defined by

x(u, v) = (v2 − 1)(a(u2 + v2)− 2buv),

y(u, v) = 2v(a(u2 + v2)− 2buv),

z(u, v) = c(v2 − u2)(v2 + 1),

w(u, v) = (u2 + v2)(v2 + 1).

Unfortunately, we also have x(0, 0) = y(0, 0) = z(0, 0) = w(0, 0) = 0, and (0, 0) is a base point of Fψ .

If we try to render the rational surfaces Fϕ and Fψ over [−1, 1]× [−1, 1], we discover that some regions of
these surfaces are not drawn properly. In these regions, there are holes and many lines segments shooting in
all directions! The problem is that (0, 0) is a discontinuity point for both surfaces, and that the limit reached
when u and v approach 0 depends very much on the ratio v/u. One way to understand what happens is to
let v = ku, simplify the fractions, and see what is the limit when u approaches 0. For Fϕ, after calculations,
we find that the limit when u approaches 0 is

(
a(1− k2)

1 + k2
,

2ak

1 + k2
, −c

)
,

which corresponds to the circle of radius a in the plane z = −c. For Fψ, after calculations, we find that the
limit when u approaches 0 is (

−a+
2bk

1 + k2
, 0, −c(1− k2)

1 + k2

)
,

which corresponds to an ellipse in the plane y = 0, centered at the point (−a, 0, 0). It is indeed in the
neighborhood of these two curves on the torus that Fϕ and Fψ are not drawn properly.

We now propose a method to resolve the singularities caused by base points. The method is inspired by
a technique in algebraic geometry known as “blowing-up” (see Fulton [67] or Harris [83]). What is new is
that we give formulae for computing “resolved” control nets.

In most cases, base points occur during a subdivision step in which a triangular net with a corner of zeros
appears. Using a change of base triangle if necessary, it can be assumed without loss of generality that the
corner of zeros has t as one of its vertices. If we display control nets (in Ê) with F (r) at the top corner, F (s)
as the rightmost lower corner, and F (t) as the leftmost lower corner, a control net θ = (θi, j, k)(i,j,k)∈∆m

of
degree m has the following shape:

×
××
. . .

× × . . .× ×
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0 × × . . .× ×
0 0 × × . . .× ×

. . .

0 . . . 0 × × . . .× ×
0 0 . . . 0 0︸ ︷︷ ︸

n

× × . . .× ×︸ ︷︷ ︸
m+1−n

It is assumed that all entries designated as × are nonzero. The more general case can be treated, but it
is computationally too expensive to be practical.

Given an affine frame ∆rst in the plane, recall that a rational surface F of degree m defined by the
control net θ = (θi, j, k)(i,j,k)∈∆m

is the projection onto Ẽ of the polynomial surface G in Ê defined by θ.
Also, we have

G(u, v) =
∑

i+j+k=m

θi, j, k
m!

i!j!k!
uivj(1− u− v)k,

for all u, v ∈ R. It will be convenient to assume that if θi, j, k ∈ Ê is a weighted point, then its weight is
denoted as wi,j,k, and if θi, j, k is a control vector, then we assign it the weight wi,j,k = 0. If we define w(u, v)
as

w(u, v) =
∑

i+j+k=m

wi,j,k
m!

i!j!k!
uivj(1− u− v)k,

whenever w(u, v) (= 0, we have

F (u, v) =
∑

i+j+k=m

θi, j, k
m!

i!j!k!

uivj(1− u− v)k

w(u, v)
,

for all u, v ∈ R.

The “blowing-up” method used here relies on the following observation based on an idea of Warren [177].
Given the polynomial surface G in E (and w), we define the polynomial surface Gb and wb as follows:

Gb(α,β) = G(α(1 − β),αβ),

wb(α,β) = w(α(1 − β),αβ).

Since α(1− β) + αβ = α, we get

Gb(α,β) =
∑

i+j+k=m

θi, j, k
m!

i!j!k!
αi+j(1− α)kβj(1− β)i,

and

wb(α,β) =
∑

i+j+k=m

wi,j,k
m!

i!j!k!
αi+j(1− α)kβj(1− β)i.

Now, if θi, j, k = 0 for i+ j < n (with i+ j + k = m), we note that both Gb(α,β) and wb(α,β) are divisible

by αn. If we define the polynomial surface G̃ (and w̃), such that

G̃(α,β) =
Gb(α,β)

αn

and

w̃(α,β) =
wb(α,β)

αn
,
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then we have
Gb(α,β)

wb(α,β)
=

G̃(α,β)

w̃(α,β)
,

for all α (= 0. Furthermore when α = 0, we have

G̃(0,β) =
∑

i+j=n

θi, j,m−n
m!

i!j!(m− n)!
βj(1− β)i,

and

w̃(0,β) =
∑

i+j=n

wi,j,m−n
m!

i!j!(m− n)!
βj(1− β)i.

Thus, for all β for which G̃(0,β) and w̃(0,β) are not simultaneously null,

G̃(0,β)

w̃(0,β)

is defined, and the polynomial surface G̃ defines the rational surface F̃ such that

F̃ (α,β) =
G̃(α,β)

w̃(α,β)
.

Thus, what happens is that the triangular patch F over ∆rst is really a four-sided patch, the point F (t)
being “blown up” into the rational curve of degree n whose control points are

(θi, j, m−n)i+j=n.

If this rational curve has no base points, then the rational surface patch F̃ defined by the polynomial surface
G̃ has no base point, and it extends the surface patch F over ∆rst. If it has base points, they are common
zeros of some polynomials in β, and by simplifying by common factors and using continuity, we could
eliminate these base points. For simplicity, we will assume that the boundary curve has no base points.

Viewing G̃ as a bipolynomial surface, note that G̃ has bidegree 〈m−n,m〉. Also observe that the function

(α,β) $→ (α(1 − β),αβ)

maps the unit square with vertices

(0, 0), (0, 1), (1, 1), (1, 0)

onto the triangle ∆rst = ((0, 1), (1, 0), (0, 0)), in such a way that the edge ((0, 0), (0, 1)) is mapped onto t,
the vertex (1, 1) is mapped onto s, and the vertex (1, 0) is mapped onto r. Furthermore, if u = α(1− β) and
v = αβ, we get

α = u+ v

and

β =
v

u+ v

and thus, the map is invertible except on the line u + v = 0. Thus, we can think of the inverse map as
“blowing up” the affine frame ∆rst into the unit square. Specifically, the point t is “blown up” into the edge
((0, 0), (0, 1)).
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(0, 0)

(0, 1)

(1, 0)

(1, 1)

t

s

r

Figure 24.11: Blowing up a triangle into a square

The only remaining problem is that the above method yields a rational square patch not given by a control
net, and that we often need to map the unit square to an arbitrary base triangle. The second problem is
easily solved. Assume that the affine frame ∆rst has coordinates ((r1, r2), (s1, s2), (t1, t2)). It is easily seen
that the map defined such that

u = (s1 − r1)αβ + (r1 − t1)β + t1,

v = (s2 − r2)αβ + (r2 − t2)β + t2,

maps the unit square to the triangle ∆rst, in such a way that the edge ((0, 0), (0, 1)) is mapped onto t, the
vertex (1, 1) is mapped onto s, and the vertex (1, 0) is mapped onto r. Some simple calculations show that

α =
(s2 − r2)(u− t1)− (s1 − r1)(v − t2)

(r1 − t1)(s2 − r2)− (r2 − t2)(s1 − r1)
,

β =
(r1 − t1)(v − t2)− (r2 − t2)(u − t1)

(s2 − r2)(u− t1)− (s1 − r1)(v − t2)
,

and thus, the map is only invertible outside the line of equation

(s2 − r2)(u− t1)− (s1 − r1)(v − t2) = 0,

the parallel to the vector (s1 − r1, s2 − r2) through t.

Now, if g: (P)m → Ê is the polar form associated with G, we can compute the polar form gb: (P)m ×
(P)m → Ê associated with the bipolynomial surface Gb as follows:

gb(u1, . . . , um, v1, . . . , vm) =
1

m!

∑

σ∈Sm

g((u1(1− vσ(1)), u1vσ(1)), . . . , (um(1− vσ(m)), umvσ(m))),

where Sm denotes the group of permutations on {1, . . . ,m}. The above formula corresponds to the case of
the simple mapping u = α(1 − β), v = αβ, and it is obvious how to adapt it to the more general map

u = (s1 − r1)αβ + (r1 − t1)β + t1,

v = (s2 − r2)αβ + (r2 − t2)β + t2,

Now, over the affine basis (0, 1), the square control net θ = (θ i,j)0≤i,j≤m associated with gb is defined
such that

θ i,j = gb(0, . . . , 0︸ ︷︷ ︸
m−i

, 1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
m−j

, 1, . . . , 1︸ ︷︷ ︸
j

).
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However, if θi, j, k = 0 for i + j < n, with i + j + k = m, then θ i,j = 0 for i < n, and thus we obtain the

rectangular net θ̃ of degree (m− n,m) associated with g̃, given by

θ̃ = (θ i,j)n≤i≤m, 0≤j≤m,

which corresponds to the rational surface defined by G̃.

Thus, we know how to compute a rectangular net for the blown-up version G̃ of G. A triangular net
of degree 2m − n can easily be obtained. Indeed, there is a simple way for converting the polar form
g: (P)p × (P)q → Ê of a bipolynomial surface of degree (p, q) into a symmetric multilinear polar form
g∆: (P)p+q → Ê , using the following formula: letting m = p+ q, we have

g∆((u1, v1), . . . , (um, vm)) =
1(
m
p

)
∑

I∪J={1,...,m}
I∩J=∅

|I|=p, |J|=q

g(
∏

i∈I

ui,
∏

j∈J

vj),

where
g(
∏

i∈I

ui,
∏

j∈J

vj) = g(ui1 , . . . , uip , vj1 , . . . , vjq ),

with I = {i1, . . . , ip}, and J = {j1, . . . , jq}.

Note that it is also possible to convert the polar form f∆: (P)m → Ê of a surface of degree m into a
symmetric (m,m)-multilinear polar form g: (P)m × (P)m → Ê , using the following formula:

g(u1, . . . , um, v1, . . . , vm) =
1

m!

∑

σ∈Sm

f((u1, vσ(1)), . . . , (um, vσ(m))),

where Sm denotes the group of permutations on {1, . . . ,m}.

Thus, we have a method for blowing up a control net θ of degree m with a corner of zeros of size n, into
a triangular net θ̃ of degree 2m− n, by first blowing up the triangular net θ into a rectangular net θ̃ , and
then converting θ̃ into a triangular net θ̃.

The following function blows up the triangular net θ into a rectangular net θ̃ . The function poldecas3
computing polar values given a triangular net can be found in Gallier [70], and the built-in Mathematica
function Permutation returns the list of all permutations of a finite set.

(* computes a rectangular net of degree ((m - nm), m)
from a triangular net of degree m *)

(* by "blowing up" a degenerate corner *)
(* General version, blowing up a triangular patch based on the

triangle ((r_1, r_2), (s_1, s_2), (t_1, t_2)),
wrt the standard frame (r, s, t) *)

sqblowup[{oldnet__}, {reftrig__}, mm_, nm_, debug_] :=
Block[
{net = {oldnet}, newnet, m = mm, rr, ss, ntrig,
temp, izargs, jzargs, pt, u, v, w, i, j, ii, permset,
perm, setm, pi, kk, ll, xx, lowi, r1, r2, s1, s2, t1, t2},
(rr = 0; ss = 1; lowi = nm;
Print["In sqblowup, m = ", m, ", nm = ", nm];
r1 = ntrig[[1, 1]]; r2 = ntrig[[1, 2]]; s1 = ntrig[[2, 1]];
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s2 = ntrig[[2, 2]];
t1 = ntrig[[3, 1]]; t2 = ntrig[[3, 2]];
Print[" r1 = ", r1, ", r2 = ", r2, ", s1 = ", s1,

", s2 = ", s2, ", t1 = ", t1, ", t2 = ", t2];
newnet = {}; setm = Table[ii, {ii, 1, m}];
If[debug === -2, Print["*** Left corner patch in blowup: ", net]];
Do[izargs = {};

Do[
izargs = Append[izargs, rr], {ii, 1, m - i}

];
Do[

izargs = Append[izargs, ss], {ii, m + 1 - i, m}
];

Do[
jzargs = {}; xx = 0;
Do[

jzargs = Append[jzargs, rr], {ii, 1, m - j}
];

Do[
jzargs = Append[jzargs, ss], {ii, m + 1 - j, m}
];

If[debug === 2, Print[" izargs = ", izargs]];
If[debug === 2, Print[" jzargs = ", jzargs]];
permset = Permutations[setm]; ll = Length[permset];
Do[

perm = permset[[kk]]; args = {};
If[debug === 2, Print[" perm = ", perm]];
Do[

pi = perm[[ii]];
u = (s1 - r1)*izargs[[ii]]*jzargs[[pi]] +

(r1 - t1)*izargs[[ii]] + t1;
v = (s2 - r2)*izargs[[ii]]*jzargs[[pi]] +

(r2 - t2)*izargs[[ii]] + t2;
w = 1 - u - v;
temp = {u, v, w};
args = Append[args, temp], {ii, 1, m}
];

If[debug === 2, Print[" args = ", args]];
pt = poldecas3[net, m, args];
xx = xx + pt, {kk, 1, ll}
];

pt = xx/ll; If[debug === 2, Print[" xx/ll: ", pt]];
newnet = Join[newnet, pt];
Print["In sqblowup, i = ", i, ", j = ", j], {j, 0, m}

], {i, lowi, m}
];

If[debug === 2, Print[" newnet = ", newnet]];
newnet
)
];
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The following function converts a rectangular net into a triangular net. It uses a function subsets that
returns the list of subsets of size p of some finite set setm. The function recpoldecas computing polar
values given a rectangular net can be found in Gallier [70].

(* converts a rectangular net of degree (p, q) to *)
(* a triangular net of degree m = p + q, wrt the standard

frame (r, s, t), where r = (1, 0, 0), s = (0, 1, 0),
t = (0, 0, 1) *)

rectotr[{oldnet__}, p_, q_, debug_] :=
Block[
{net = {oldnet}, i, j, newnet, Isets, I1, J1, ii, jj, l, m, setm,
pt1, pt2, pt, lambda, mu, xx, u, v, rr, ss, tt, r1, s1, r2, s2},
rr = {1, 0}; ss = {0, 1}; tt = {0, 0};
r1 = 0; r2 = 0; s1 = 1; s2 = 1;
newnet = {}; m = p + q;
(* Print["p = ", p," q = ", q]; *)
setm = Table[i, {i, m}];
Do[

Do[lambda = {}; mu = {}; u = {}; v = {};
Do[

lambda = Append[lambda, rr[[1]]];
mu = Append[mu, rr[[2]]], {ii, 1, i}
];

Do[
lambda = Append[lambda, ss[[1]]];
mu = Append[mu, ss[[2]]], {ii, 1, j}
];

Do[
lambda = Append[lambda, tt[[1]]];
mu = Append[mu, tt[[2]]], {ii, 1, m - i - j}
];

Isets = subsets[setm, p]; l = Length[Isets];
pt = 0;
Do[

I1 = Isets[[ii]]; J1 = relcomp[setm, I1];
If[debug === 2, Print[" I1 = ", I1]];
If[debug === 2, Print[" J1 = ", J1]];
u = {}; v = {};
Do[

kk = I1[[jj]];
pt1 = lambda[[kk]];
u = Append[u, pt1], {jj, 1, p}

];
If[debug === 2, Print[" u = ", u]];
Do[

kk = J1[[jj]];
pt2 = mu[[kk]];
v = Append[v, pt2], {jj, 1, q}

];
If[debug === 2, Print[" v = ", v]];
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xx = recpoldecas[net, p, q, r1, s1, r2, s2, u, v, debug];
pt = pt + xx, {ii, 1, l}
];

xx = pt/Binomial[m,p];
newnet = Join[newnet, {xx}];
Print["In rectotr, i = ", i, ", j = ", j], {j, 0, m - i}

], {i, 0, m}
];

If[debug === 2, Print[" newnet = ", newnet]];
newnet
];

The following function detects whether a triangular net contains a corner of zeros.

(* Detects whether a corner of a net contains zero vectors *)
(* And if so, if all the elements on the top nonzero row are identical *)

zerocorner[{net__}, oldm_, debug_] :=
Block[
{cc = {net}, anet, newnet = {}, m = oldm, pt,
stop1, stop2, i, j, res, flag},
(anet = convtomat[cc, m];
(* checks it top corner is zero *)
stop1 = 0; i = m;
While[stop1 === 0 && i >= 0,

j = 0; stop2 = 0;
While[stop2 === 0 && j <= m - i,

pt = anet[[i+1, j+1]];
If[nearzero[pt] === 1, j = j + 1, stop2 = 1]

];
If[stop2 === 0, i = i - 1, stop1 = 1]

];
(* checks it top nonzero row is consistent *)
If[stop1 === 1 && i < m,

flag = 0; j = 0;
While[flag === 0 && j < m - i,

If[anet[[i + 1, j + 1]] === anet[[i + 1, j + 2]],
j = j + 1,
flag = 1
]

];
If[flag === 1, res = {i, j},

res = {-1, i, anet[[i + 1, 1]]}],
res = {-1}

];
res

)
];

Going back to example 2 of section 23.4, a torus, it turns out that in subdividing the nets theta1, theta2,
rho1, and rho2, degenerate nets with a corner of zeros are encountered. In fact, these corners have two rows
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of zeros. and thus, the blowing up method yields nets of degree 6. For example, the net corresponding to
theta1 is resolved to a triangular net, which after 3 iterations of subdivision, yields the surface shown in
Figure 24.12.
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Figure 24.12: A blow up of patch 3 of a torus

The net corresponding to theta2 is resolved to a triangular net, which after 3 iterations of subdivision,
yields the surface shown in Figure 24.13.

Displaying these two pictures together, we get a shape reminicent of a horse-shoe crab, shown in Figure
24.14!

Similarly, blowing up the nets rho1 and rho2 yields the surface surface shown in Figure 24.15.

Together with the patches 1 and 2 from example 2 of section 23.4, we get the entire torus. Of course, we
could have taken advantage of symmetries, and our point is to illustrate the algorithm.

24.6 Problems

Problem 1 (i) Consider a rational surface F of degree 〈p, q〉 specified by the rectangular control net

N = (θi, j)0≤i≤p, 0≤j≤q

over (0, 1)× (0, 1), where each θi,j is a vector in Ê . Show that for every pair of constant ρ,σ (= 0, the control
net

(ρiσjθi, j)0≤i≤p, 0≤j≤q

also specifies the surface F . Show that if 0 < ρ,σ ≤ 1, the surface patch defined over (0, 1) × (0, 1) by
(θi, j)0≤i≤p, 0≤j≤q is equal to the surface patch defined over (0, 1) × (0, 1) by (ρiσjθi, j)0≤i≤p, 0≤j≤q . What
happens if ρ < 0 or ρ > 1 (or σ < 0 or σ > 1).
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Figure 24.13: A blow up of patch 4 of a torus
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Figure 24.14: A blow up of patches 4,3 of a torus
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Figure 24.15: A blow up of patches 5,6 of a torus

Hint : Use the change of variables

(u, v) $→
(

ρu

1 + (ρ− 1)u
,

σv

1 + (σ − 1)v

)
.

(ii) Assuming that every θi,j is a control point of the form 〈ai,j , wi,j〉, show that if w0,0, wp,0, w0,q, and
wp,q have the same sign, then it is possible to chose ρ and σ such that three of the weights w0,0, wp,0, w0,q,
and wp,q, are equal to 1.

Problem 2 (i) Consider a rational surface F of degree 〈p, q〉 specified by the rectangular control net

N = (θi, j)0≤i≤p, 0≤j≤q

over (0, 1)×(0, 1), where each θi,j is a vector in Ê . The weight points pi,j and qi,j (0 ≤ i ≤ p−1, 0 ≤ j ≤ q−1)
are the points defined such that

pi,j =
wi,j bi,j + wi+1,j bi+1,j

wi,j + wi+1,j
,

qi,j =
wi,j bi,j + wi,j+1 bi,j+1

wi,j + wi,j+1
.

Prove that the four points pi,j , pi,j+1, qi,j , qi+1,j are coplanar.

(ii) Prove that if all the weights are equal, then (pi,j , pi,j+1, qi,j , qi+1,j) is a parallelogram.

Problem 3 Write your own computer program for drawing a closed rational surface.

Problem 4 Write your own computer program for resolving base points.
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Problem 5 Prove that the polar form g: (P)p × (P)q → Ê of a bipolynomial surface of degree 〈p, q〉 can
be converted to a symmetric multiaffine map g∆: (P)p+q → Ê using the following formula:

g∆((u1, v1), . . . , (um, vm)) =
1(
m
p

)
∑

I∪J={1,...,m}
I∩J=∅

|I|=p, |J|=q

g(
∏

i∈I

ui,
∏

j∈J

vj),

where m = p+ q and

g(
∏

i∈I

ui,
∏

j∈J

vj) = g(ui1 , . . . , uip , vj1 , . . . , vjq ),

with I = {i1, . . . , ip}, and J = {j1, . . . , jq}.

Problem 6 Write a computer program using the method of problem 5 for converting a rectangular net
of degree 〈p, q〉 to a triangular net of degree p+ q.

Problem 7 Prove that the polar form f∆: (P)m → Ê of a surface of degree m can be converted into a
symmetric 〈m,m〉-multiaffine map g: (P)m × (P)m → Ê using the following formula:

g(u1, . . . , um, v1, . . . , vm) =
1

m!

∑

σ∈Sm

f((u1, vσ(1)), . . . , (um, vσ(m))),

where Sm denotes the group of permutations on {1, . . . ,m}.

Problem 8 Write a computer program using the method of problem 7 for converting a triangular net of
degree m to a rectangular net of degree 〈m,m〉.

Problem 9 The following rectangular net of degree 〈4, 4〉 (over (−1, 1) × (−1, 1)) was obtained by
converting a triangular net for a torus.

rtornet = {{2, 0, 1, 1}, {3/2, 0, 1, 1}, {8/7, 0, 5/7, 7/6},
{1, 0, 1/3, 3/2}, {1, 0, 0, 2}, {2, 1, 1, 1}, {3/2, 3/4, 1, 1},
{8/7, 4/7, 5/7, 7/6}, {1, 1/2, 1/3, 3/2}, {1, 1/2, 0, 2},
{10/7, 12/7, 1, 7/6}, {15/14, 9/7, 1, 7/6}, {40/49, 48/49, 5/7, 49/36},
{5/7, 6/7, 1/3, 7/4}, {5/7, 6/7, 0, 7/3}, {2/3, 2, 1, 3/2},
{1/2, 3/2, 1, 3/2}, {8/21, 8/7, 5/7, 7/4}, {1/3, 1, 1/3, 9/4},
{1/3, 1, 0, 3}, {0, 2, 1, 2}, {0, 3/2, 1, 2}, {0, 8/7, 5/7, 7/3},
{0, 1, 1/3, 3}, {0, 1, 0, 4}};

Show that the nets ((−1)irtorneti,j), ((−1)jrtorneti,j), and ((−1)i+jrtorneti,j) have the base point
(0, 0, 0, 0). Can you explain why.

Problem 10 Show that the formula

gb(u1, . . . , um, v1, . . . , vm) =
1

m!

∑

σ∈Sm

g((u1(1− vσ(1)), u1vσ(1)), . . . , (um(1− vσ(m)), umvσ(m)))

(where Sm denotes the group of permutations on {1, . . . ,m}) can be used to compute a rectangular net for
a triangular patch.

Problem 11 Given an affine space E of dimension ≥ 3, let F : Ã × Ã → Ẽ be a rectangular rational
surface of bidegree 〈p, q〉 defined by some 〈p, q〉-symmetric multilinear map

f : (Â)p × (Â)q → Ê
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with
F ([u, t], [v, z]]) = P(f)([u, t], . . . , [u, t]︸ ︷︷ ︸

p

, [v, z], . . . , [v, z]︸ ︷︷ ︸
q

),

for all [u, t], [v, z] ∈ Ã.

(i) Letting

Bm
i (u, v) =

(
m
i

)
uivm−i,

and assuming that the control points induced by f over (0, 1) × (0, 1) are of the form 〈bi,j , wi,j〉 where
wi,j (= 0, prove that if

p, q∑

i, j=0

wi,jB
p
i (u, t)B

q
j (v, z) (= 0

then

F ([u, t], [v, z]) =

p, q∑

i, j=0

wi,jB
p
i (u, t)B

q
j (v, z) bi,j

p, q∑

i, j=0

wi,jB
p
i (u, t)B

q
j (v, z)

,

for all homogeneous coordinates [u, t], [v, z] ∈ R2.

(ii) Find a type of de Casteljau algorithm applying to these surfaces.

Hint : As for bipolynomial surfaces, we can view the surface as a curve of curves. Recall that in the case
of a curve (see problem 20 of chapter 22), instead of computing an affine combination (1− u) bri + u bri+1, we
compute the linear combination z bri + u bri+1.

(iii) As in problem 20 of chapter 22, by modeling the projective line in R2 as the C0-curve segment

t $→ (t, 1− |t|)

over [−1, 1], show how a closed biprojective rational surface can be drawn in a single piece (as the trace of
F ([u, 1 − |u|], [v, 1 − |v|]) over [−1, 1]× [−1, 1]). Apply this method to draw a full torus. Experiment with
other 2D models of the real projective line.

Remark : This problem is an adaptation of results due to DeRose [45].

Problem 12 (i) Prove lemma 24.2.2. Prove that the same result applies to surfaces specified by a
rectangular net over (r1, s1)× (r2, s2), where (r1, s1) and (r2, s2) are arbitrary frames.

(ii) Implement the above method. Test it on many examples, including the net of problem 9.

Problem 13 Let F : P̃ → Ẽ be a rational surface of total degreem specified by some symmetric multilinear
map f : (P̂)m → Ê .

(i) Letting

Bm
i,j,k(u, v, w) =

(
m
i j k

)
uivjwk,

where i+ j + k = m, and assuming that the control points induced by f over ((1, 0), (0, 1), (0, 0)) are of the
form 〈bi,j,k, wi,j,k〉 where wi,j,k (= 0, prove that if

∑

i+j+k=m

wi,j,kB
m
i,j,k(u, v, w) (= 0
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then

F ([u, v, w]) =

∑

i+j+k=m

wi,j,kB
m
i,j,k(u, v, w) bi,j,k

∑

i+j+k=m

wi,j,kB
m
i,j,k(u, v, w)

,

for all homogeneous coordinates [u, v, w] ∈ R3.

(ii) Find a type of de Casteljau algorithm computing F ([u, v, w]).

(iii) By modeling the projective plane in R3 as the C0-surface patch

(u, v) $→ (u, v, 1− |u|− |v|)

over the square S with vertices (1, 0), (0, 1), (−1, 0) and (0,−1), show how a closed projective rational surface
can be drawn in a single piece (as the trace of F ([u, v, 1− |u|− |v|]) over the square S). Apply this method
to draw a full crosscap. Experiment with other 3D models of the real projective plane.

Remark : This problem is an adaptation of results due to DeRose [45].

Problem 14 Given a projectivity ϕ: P̃ → P̃ (of the projective plane) defined by some invertible matrix




a1 b1 c1

a2 b2 c2

a3 b3 c3



 ,

given any rational surface specified by a symmetric multilinear map f : (P̂)m → Ê , we can define the multi-
linear map g: (P̂)m → Ê such that

g((u1, v1, w1), . . . , (um, vm, wm)) = f(ϕ(u1, v1, w1), . . . ,ϕ(um, vm, wm)),

that is,

g((u1, v1, w1), . . . , (um, vm, wm))

= f((a1u1 + b1v1 + c1w1, a2u1 + b2v1 + c2w1, a3u1 + b3v1 + c3w1),

. . . , (a1um + b1vm + c1wm, a2um + b2vm + c2wm, a3um + b3vm + c3wm)).

The multilinear map g defines the rational surface obtained by the “change of variable” ϕ.

(i) For any affine frame ∆ = (r = (r1, r1), s = (s1, s2), t = (t1, t2)), show that the control points

g(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where i+ j + k = m, are the polar values

(a3r1 + b3r2 + c3)
i(a3s1 + b3s2 + c3)

j(a3t1 + b3t2 + c3)
kf

((
a1r1 + b1r2 + c1
a3r1 + b3r2 + c3

,
a2r1 + b2r2 + c2
a3r1 + b3r2 + c3

, 1

)

︸ ︷︷ ︸
i

,

(
a1s1 + b1s2 + c1
a3s1 + b3s2 + c3

,
a2s1 + b2s2 + c2
a3s1 + b3s2 + c3

, 1

)

︸ ︷︷ ︸
j

,

(
a1t1 + b1t2 + c1
a3t1 + b3t2 + c3

,
a2t1 + b2t2 + c2
a3t1 + b3t2 + c3

, 1

)

︸ ︷︷ ︸
k

)
,
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provided that a3r1 + b3r2 + c3 (= 0, a3s1 + b3s2 + c3 (= 0, and a3t1 + b3t2 + c3 (= 0.

(ii) In the case of the maps

(u, v) $→
(

σ1u

1− u− v
,

σ2v

1− u− v

)
,

where σi ∈ {−1, 1} for i = 1, 2, used by Bajaj and Royappa, we can compute control nets with respect to
the triangle ∆ = ((2, 0), (0, 2), (0, 0) using the above formula, and then perfom a change of affine frame to
((1, 0), (0, 1), (0, 0)).

Show that a quarter of sphere is specified by the control net

sphnet = {{0, 0, -1, 1}, {0, 1, 0, 0}, {0, 0, 1, 1},
{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 1}};

Show that a quarter of the Steiner roman surface is specified by the control net

stein2 = {{0, 0, 0, 1}, {1, 0, 0, 0}, {0, 0, 0, 1},
{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

Problem 15 (i) Show that a control net of bidegree 〈2, 2〉 w.r.t. (−1, 1)× (−1, 1) for an ellipsoid is given
by

recelnet3 = {{-8/3, -2, 2/3, 3}, {-8, 0, -2, 1}, {-8/3, 2, 2/3, 3},
{0, -6, -2, 1}, {0, 0, 6, -1}, {0, 6, -2, 1},
{8/3, -2, 2/3, 3}, {8, 0, -2, 1}, {8/3, 2, 2/3, 3}}

(ii) Show that the patch corresponding to F3 (see lemma 24.2.2) has base points.

Problem 16 (i) Show that a control net of bidegree 〈2, 2〉 w.r.t. (−1, 1)× (−1, 1) for the Steiner roman
surface is given by

sqstein3 = {{-2/3, -2/3, 2/3, 3}, {0, -2, 0, 1}, {2/3, -2/3, -2/3, 3},
{-2, 0, 0, 1}, {0, 0, 0, -1}, {2, 0, 0, 1},
{-2/3, 2/3, -2/3, 3}, {0, 2, 0, 1}, {2/3, 2/3, 2/3, 3}};

(ii) Show that the patch corresponding to F3 (see lemma 24.2.2) has base points.

Problem 17 The purpose of this problem is to prove the result stated in section 24.4. Given three
noncollinear points r, s, t in the projective plane, the three lines 〈r, s〉, 〈s, t〉, and 〈r, t〉, delimit four triangular
regions (seven in A2). The four triangles defined by the lines 〈r, s〉, 〈s, t〉, and 〈r, t〉 are denoted as rst, R,
S, and T , where R,S, T contain points at infinity.

(i) Show that there are three projectivities ϕi:RP
2 → RP2, i = 1, 2, 3, such that ϕ1(rst) = R, ϕ2(rst) = S,

and ϕ3(rst) = T .

Hint : Use the model of RP2 in R3 where the points r, s, t are considered as being in the plane z = 1.
Then, consider the linear maps

(r, s, t) $→ (−r, s, t),

(r, s, t) $→ (r,−s, t),

(r, s, t) $→ (r, s,−t).

Show that these linear maps induce ϕ1,ϕ2,ϕ3.
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(ii) Consider the rational surfaces Fi = F ◦ ϕi, i = 1, 2, 3. Show that if the control net (in Ê) of the
triangular surface F w.r.t. the affine frame ∆rst is α = (αi, j, k)(i,j,k)∈∆m

, then the control nets θ1, θ2, and
θ3 of the surfaces F1, F2, F3 w.r.t. ∆rts are given by the formulae

θ1i, j, k = (−1)iαi, j, k,

θ2i, j, k = (−1)jαi, j, k,

θ3i, j, k = (−1)kαi, j, k.

Show that the traces of F, F1, F2, F3 over ∆rst cover the entire trace of F (over RP2).

(iii) Show that when r and s are points at infinity, the method is equivalent to Bajaj and Royappa’s
method.

Problem 18 Implement the method of problem 17. Test your program on the Steiner roman surface.

Problem 19 In the projective space RP3, a quadric Q is the set of points of homogeneous coordinates
(x, y, z, t) such that F (x, y, x, t) = 0, where F (x, y, z, t) is a homogeneous polynomial in x, y, z, t of total
degree 2. We can write the equation of a quadric as

F (x, y, z, t) = X(AX = 0,

where X( = (x, y, z, t) and A is a symmetric 4× 4 matrix.

We say that a quadric of equationX(AX = 0 is nondegenerate if det(A) (= 0 and degenerate if det(A) = 0.

An affine quadric in A3 is defined as the set of points of coordinates (x, y, z) such that

X(AX = 0,

where X( = (x, y, z, 1) and A is a symmetric 4× 4 matrix.

(i) Assuming that the quadric Q is nondegenerate, given any point c on Q, show that every line L through
c either intersects Q in a single point p other than c, or intersects Q twice at c, in which case the line L is
tangent to Q to c. More generally, show that the result holds provided that c is a nonsingular point , which
means that Fx, Fy, Fy, Ft do not vanish simultaneously at c. In the rest of this problem, assume that c is
nonsingular.

(ii) Any line L through c can be parameterized by picking a plane H not containing c, and by defining L
in terms of the intersection of L and H . Then, a line through c is parameterized by a triple of homogeneous
coordinates (u, v, w) ∈ R3. Compute the coordinates of the second intersection of L with Q. Conclude that a
nondegenerate quadric can be parameterized rationally in terms of fractions involving polynomials of degree
2. What about the affine case?

(iii) Let b0,0,2, b0,2,0 and b2,0,0 be three distinct points on the quadric, all distinct from c. The three planes
containing c and any two of b0,0,2, b0,2,0, b2,0,0 intersect the quadric Q in three conics all passing through c
and having coplanar tangents at c.

Show that the conic C1,0,1 passing through b0,0,2 and b2,0,0 is determined by a third point b1,0,1 which
is the intersection of the plane (c, b0,0,2, b2,0,0) and the tangent planes to Q at b0,0,2 and b2,0,0, and by the
condition that this conic is expressed as

C1,0,1(t) = (1− t)2 b0,0,2 + 2t(1− t) b1,0,1 + t2 b2,0,0,

with C1,0,1(∞) = c. A similar result holds for the other two conics, yielding two points b1,1,0 and b0,1,1.
Show that the six control points

b0,0,2, b0,2,0, b2,0,0, b1,0,1, b1,1,0, b0,1,1
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in Â3 define Q as a rational triangular surface of total degree 2.

(iv) Show that a rational triangular patch of degree 2 is a quadric iff the following three conditions hold:

(1) The three boundary curves intersect in a common point c.

(2) The boundary curves have coplanar tangents at c.

(3) The point c on each boundary curve corresponds to t = ±∞.

Problem 20 Write a computer program in order to visualize the evolution of a Steiner roman surface
into a cross-cap, as we move around the real projective plane in A4.

Problem 21 Show that the result of polarizing the folowing definition of a Klein bottle in A4

x =
(u4 − 6u2 + 1)((a+ r)v4 + 2(a− 3r)v2 + a+ r)

(u2 + 1)2(v2 + 1)2
,

y =
4u(1− u2)((a+ r)v4 + 2(a− 3r)v2 + a+ r)

(u2 + 1)2(v2 + 1)2
,

z =
4rv(1− u4)(1 − v2)

(u2 + 1)2(v2 + 1)2
,

t =
8ruv(1 + u2)(1− v2)

(u2 + 1)2(v2 + 1)2
,

yields the following control net when r = 1 and a = 2.

kleinet4 = {{3, 0, 0, 0, 1}, {3, 0, 1/2, 0, 1}, {41/15, 0, 14/15, 0, 15/14},
{39/17, 0, 20/17, 0, 17/14}, {183/101, 0, 120/101, 0, 101/70},
{7/5, 0, 1, 0, 25/14}, {9/8, 0, 11/16, 0, 16/7}, {1, 0, 1/3, 0, 3},
{1, 0, 0, 0, 4}, {3, 3/2, 0, 0, 1}, {3, 3/2, 1/2, 1/7, 1},
{41/15, 61/45, 14/15, 4/15, 15/14}, {39/17, 19/17, 20/17, 28/85, 17/14},
{183/101, 88/101, 120/101, 32/101, 101/70}, {7/5, 52/75, 1, 6/25, 25/14},
{9/8, 5/8, 11/16, 1/8, 16/7}, {1, 2/3, 1/3, 0, 3},
{11/5, 14/5, 0, 0, 15/14}, {11/5, 14/5, 7/15, 4/15, 15/14},
{243/121, 305/121, 105/121, 60/121, 121/105},
{39/23, 95/46, 25/23, 14/23, 46/35},
{441/331, 528/331, 360/331, 192/331, 331/210},
{81/83, 104/83, 75/83, 36/83, 83/42}, {2/3, 10/9, 11/18, 2/9, 18/7},
{15/17, 60/17, 0, 0, 17/14}, {15/17, 60/17, 7/17, 32/85, 17/14},
{19/23, 291/92, 35/46, 16/23, 46/35},
{39/53, 273/106, 50/53, 89/106, 53/35},
{25/43, 84/43, 40/43, 100/129, 129/70}, {1/3, 16/11, 25/33, 6/11, 33/14},
{-57/101, 360/101, 0, 0, 101/70},
{-57/101, 360/101, 34/101, 48/101, 101/70},
{-151/331, 1052/331, 204/331, 288/331, 331/210},
{-37/129, 332/129, 98/129, 44/43, 129/70},
{-29/161, 304/161, 120/161, 144/161, 23/10}, {-9/5, 3, 0, 0, 25/14},
{-9/5, 3, 6/25, 14/25, 25/14}, {-127/83, 221/83, 36/83, 84/83, 83/42},
{-37/33, 71/33, 6/11, 38/33, 33/14}, {-21/8, 33/16, 0, 0, 16/7},
{-21/8, 33/16, 1/8, 5/8, 16/7}, {-20/9, 11/6, 2/9, 10/9, 18/7},
{-3, 1, 0, 0, 3}, {-3, 1, 0, 2/3, 3}, {-3, 0, 0, 0, 4}}

Write a computer program in order to visualize the evolution of a crossed-torus into a Klein bottle, as
we move around the Klein bottle in A4.
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Problem 22 A surface of revolution S is obtained by rotating a plane curve C about a fixed line A called
the axis of rotation, such that the plane containing C also contains A. The curve C is called the generating
curve of S. The circles obtained by intersecting S with planes orthogonal to the axis A are the parallels of
S, and the various positions of C obtained by intersecting S with a plane containing the axis A are called
the meridians of S. Taking the axis A to be the z-axis, a surface of revolution S is defined by

x = R(v) cosu,

y = R(v) sinu,

z = H(v).

A generating curve of S is the curve (in the (x, z) plane) defined by

x = R(v),

z = H(v),

(i) Assume that C is a rational curve of degree m defined over [0, 1] by the control points

((b0, v0), . . . , (bm, vm)),

where vi (= 0, and let bi = (xi, 0, zi). If S is defined by

x = R(v)
1− u2

1 + u2
,

y = R(v)
2u

1 + t2
,

z = H(v),

show that as a rational rectangular surface, S is defined over [0, 1] × [0, 1] by a rectangular control net
((di,j , wi,j))0≤i≤2, 0≤j≤m, where

d0,j = (xj , 0, zj),

d1,j = (xj , xj , zj),

d2,j = (0, xj , zj),

w0,j = vj ,

w1,j = vj ,

w2,j = 2vj .

Does the above result hold when there are control vectors (when vj = 0 for some j)? Compute a control
net for S over [−1, 1]× [0, 1].

(ii) Implement a method for drawing a surface of revolution whose generating curve is a rational curve
defined by control points. Try it on a number of surfaces, including a sphere, an ellipsoid, and a torus.

Problem 23
The purpose of this problem is to study some surfaces known as the cyclides of Dupin.

Given any three distinct nonconcentric spheres S, S′, S′′, consider the set of all spheres tangent simulta-
neously to S, S′ and S′′ and exterior to S, S′ and S′′. By definition, the envelope of this family of spheres
is a cyclide of Dupin. The purpose of this problem is to characterize the cyclides of Dupin in terms of the
torus and the circular cone, and the circular cylinder (Dupin (1822) [54]). This problem is adpated from
Traité d’Analyse, Vol, I (1942), by Emile Picard [138].
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Consider the circles C′, C′, C′′, sections of S, S′, S′′ by the plane containing the centers of S, S′, S′′ (if
these centers are collinear, consider the section by any plane containing the centers).

(a) If the centers of C′, C′, C′′ are not collinear, let ω be the point that has equal power w.r.t. C,C′,
and C′′ (see problem 1(c)). If the power of ω is positive, show that by a suitable inversion, S, S′ and S′′ are
transformed into spheres whose centers are on a line ∆ (image of the circle orthogonal to C,C′ and C′′).

Since inversion preserves tangency, show that the image of the cyclide of Dupin is a torus of revolution
with axis ∆.

(b) If the power of ω is zero or negative, show that S, S′ and S′′ intersect in two points (possibly a double
point) on the line through ω perpendicular to the plane of C,C′ and C′′. Prove that by a suitable inversion,
S, S′ and S′′ are transformed into planes.

Since inversion preserves tangency, show that the image of the cyclide of Dupin is a circular cone or a
circular cylinder.

Remark : It can be shown that inversions preserve curvature lines. The previous argument can be used
to show that the lines of curvature of the Dupin cyclides are circles.

In summary, you proved that a Dupin cyclide is the image by inversion of a torus of revolution, or of a
circular cone, or of a circular cylinder. This characterization is apparently due to J. Liouville (1847) [114].
Another characterization is due to J.C. Maxwell (1867) [123].

(c) Extra credit : Prove that the locus of the center of the spheres tangent to three distinct spheres S, S′,
and S′′ is a conic.

Problem 24

(a) Given a parameterization of the torus, compute a parameterization of a cyclide of Dupin. Do the
same thing for a circular cone and a circular cylinder.

(b) Compute rectangular control nets from the above parameterizations.

(c) Implement a method for drawing Dupin cyclides and experiment with it, depending on the choice of
the center of inversion. You may want to implement the De Casteljau algorithm for rectangular surfaces and
use my method to draw a closed rectangular rational surface in four patches.


